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Electron-atom scattering in the field of a low-frequency laser
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Previous work on potential scattering in the field of a low-frequency laser and a model multichannel

problem are combined to present a theory of electron-atom scattering in the field of a low-frequency laser.
The atomic distortion by the laser is treated in perturbation theory, which is consistent with the other
approximations of the theory. The only additional assumption necessary is that the scattering in the absence
of the laser has no sharp resonances which participate in the scattering in the presence of the laser. A result
is obtained which is a simple multichannel generalization of that of. Kroll and Watson. It is used to
calculate the average number of photons absorbed or emitted during scattering.

I. INTRODUCTION

A brief discussion of the history of the problem
of the scattering of a charged particle in the field
of a low-frequency laser is given. The cross sec-
tion for electron-atom scattering in the field of a
low-frequency laser is derived with the approxi-
mation that only nonresonant scattering occurs.
There is a cancellation of two terms of order +
which yields a simple generalization of the po-
tential-scattering cross section obtained by Kroll
and Watson. ' The result is used to derive an ex-
pression for the average number of photons trans-
ferred between the projectile and the laser, and
it is found that it can be either positive or nega-
tive, depending upon the details of the momentum-
transfer cross section.

II. NONRESONANT ELECTRON-ATOM SCATTERING

It has long been known' that the interaction of
low-frequency electromagnetic waves with matter
is much simpler than a similar problem at higher
frequencies. Recently Kroll and Watson' carried
this result beyond previous work by eliminating
the need for the expansion in powers of the field.
More precisely, for the problem of scattering of a
charged particle by a local potential in the field of
a low-frequency (classical) laser, they assumed
that the laser frequency (5= 1) was small com-
pared to the particle energy. More recently
Kriiger and Jung' have pointed out that it is also
necessary to assume that the T matrix in the ab-
sence of the laser has no resonance structure
which is comparable in width to w. The field is al-
lowed to be intense in the sense that the para-
meter o'.,= eE/m v' is not assumed small compared
to the range of the potential. We shall see that
this nevertheless allows for a perturbation treat-
ment of the field when dealing with bound states.

The low-frequency result of Kroll and Watson
can then be written

p~(l)/2m = (p',./2m)+ lu) (2.2)

which relates the magnitudes of the initial and

final momenta of the projectile. The cross sec-
tion appearing on the right-hand side of (2.1) is
-that in the absence of the field, but the momenta
appearing are shifted from the initial and final
momenta by a vector of order (d,

P,(l) = p, —&ulmn, /x(l),

PI(l) =p&(l)- &ulmo. , /x(l),
(2.3)

where

x(l ) = [pz(l )—p, ] ' o.',
and, since

P'(f) =P'(l), (2.4)

this cross section is evaluated on shell.
An interesting application of (2.1) can be made

to evaluate the average number of photons, l,
transferred during a scattering event. It is de-
fined

lv =P) f (p~(l)j;l)d—A~, , ,

where ar is the total cross section (for all l and

(2.5)

(2.1)

where the integer l describes the number of pho-
tons transferred between projectile and field dur-
ing the scattering. It enters into the energy-con-
servation condition
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directions of' p~). To evaluate l it is useful to re-
write the cross section on the right-hand side of
(2.1) as

d„Pg—(!) &;((),) qq (=2' ,I',((( P;((( l (2 (()

where the scattering potential has been assumed
to be central. The evaluation of (2.5) is further
facilitated by the expansion of (2.1) in powers of
leo. That is, we write

~p~(l)/p,
~

=1+ f(dm/p', .+ ~ ~ ~,

Jg(x(l)) = J',(x(0))+ 2 J;(x(0))JI(x(0))

x, pi(0) o.,+ ~,
Pf

(2.7)

do l&p; 'Q0 9 do

(0)
'

s . d~7("".)

i&em
1

o(, ~ (p;+py(0)) 8 do
p', "

. x(0) sp dA

where quantities such as p&(0) and x(0} are evalu-
ated at l = 0 and we use

,e=P', / m2, g=P, PI. (2.8)

These can be substituted back into (2.1) and (2.5),
and the l sums can be done with the aid of

tering can then be done with the result

for(e )=. ,'(u—mo(',[1+ (p, ~ o(,}']o,(s, )

+ ~m&', (p, o(,)'e, '
(e,), (2.10)0 g 0 fey

where or(e, ) and o,(e,) are the total cross section
and the momentum-transfer cross section, re-
spectively, both evaluated in the absence of the
field. The first term of (2.10) is positive definite
and represents heating in the sense that the parti-
cle, on the average, absorbs energy from the la-
ser. The sign of the second term depends upon
the energy derivative of the momentum-transfer
cross section and so can cause a net transfer of
energy to or from the laser. That is, it is in
principle possible to amplify the laser with the en-
ergy of an electron beam if the momentum-trans-
fer cross section is decreasing with energy. On
the other hand, if the projectiles have an initial
isotropic Maxwellian distribution, it can be shown
that l is positive so that particle heating by the la-
ser will always occur.

The derivation of Kroll and Watson' has been re-
peated4 in a more systematic way confirming their
results and giving the first off-shell contributions
to the T matrix in the u' terms. The procedure
used was an expression for the exact T matrix as
a power series in the scattering potential

QJf(x) = 1, QPJ~2(x) =—,QM,'(x) = 0. (2.9)
j

'The integral over the final direction of the scat-

T- - (l)=Q&~y"- (l),
f1~0

where

(2.11)

d3

gg ~ ~ op

where

U (K; a) = V(K)J,(K ~ o(o) (2.13)

a, =s( k;/2m-+iq. (2.14)

Hhre V is the (local) scattering potential in mo-
mentum space. Equations (2.11)—(2.14) lend them-
selves to an interesting interpretation. The laser
modifies the scattering problem by adding another
discrete degree of freedom denoted by the integer
I . The scattering potential in this augmented
space is U and the diagonal propagator is (6
+ (dL} ~. The propagators can then be expanded in
powers of (d (assuming no rapid variation of T
with respect to energy) and the L sums can then
be done4 yielding the Kroll and Watson result and
higher-order terms in ~. It must be pointed out
here that this result was obtained by this method

(2.12)

which means that momentum translations of the
form (2.3) will leave V unchanged. This result
will be modified by a nonlocal potential which we
expect to enter in the electron-atom scattering
potential through exchange scattering.

A subsequent paper' allowed for a multichannel
scattering from a two-state model atom by des-
cribing the atom in an adiabatic .approximation.
That is, with the assumption

(d&& W, (2.15)

where TV is the separation of the two dressed

I

and originally by Kroll and Watson by the explicit
use of the fact that' the original scatteringpotential
was local in configuration space so that

«~V ~k'&= V(k-k'),
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()() t@ (~f) (2.16)

states of the atom, the atomic states could be ob-
tained analytically. They could then be used to
calculate the 2 x 2 scattering-potential matrix. In
fact the only property of these states that was used
was that they could be written

where 8'„ is the dressed energy level and 4„ is a
periodic function of (dt. It has been pointed out by
Shirley' that this is a. general property of states in
a periodic field and has nothing to do with the two-
state nature of the model. An expansion technique
similar to (2.11) and (2.12) was used with (2.12)
replaced by (neglecting overall phases)

d'k
Ts ',(1)= Q ( —1) 2, , (

sUs(Os-k, ;1S,L S,) U(k, k;—, L,S,L—s7, ) —~ ~ ll(k (7, ;I„S,—OO).s,), , (2 17)

where

U(K;aSobS, )=V~ ~ (K)Z, (,(K no) (2.18)

k
&~ = k, , + W, — ' h+ —&u(S, + L,)+ iq.

~ 2m
(2.19)

(2.20)

then

The scattering potential is similar to that occur-
ring in the potential-scattering problem (2.13),
except that now the indices S, and S, on V(K) des-
cribe the periodic behavior of the scattering po-
tential induced by the periodic behavior of the
bound-state wave functions. More precisely, if
these are expanded

((2)t) Q@(S)(2 (SQt

S

is clearly a matrix in the space of the atomic
states, but these indices (n, n') have been sup-
pressed T. he energy denominators (2.19) are
similar to 6, (2.14), except that the additional de-
gree of freedom, the atomic state, also appears
in (2.19) via the atomic Hamiltonian I( which in this
simple model is a diagonal 2x 2 matrix of dressed
energies. In addition the integer 8& describes the
energy transferred to the projectile by the periodic
variation of the scattering potential, (2.21). In

effect, L describes the number of photons trans-
ferred directly between the projectile and the la-
ser, and 8 describes the indirect photon transfer
with the atomic target acting at the intermediary.

Again (2.17) can be expanded in powers of u, and

all the sums can be performed with the result that
the energy-conservation condition is now

V s(K) I
(4( ) VC, (SS i)date (2.21)

P&(l)/2m+ W&=P(/2m+ W + ul (2.22)

where V is the projectile-atom interaction. The
scattering potential on the left-hand side of (2.21)

I

and the T relatrix is given by

Ts,.())= f "—'ssO(()Osis(l)sisll)(Os()) f T(S)+ —(T(S),7(S))s— 1(S)

where

Z,.= (P',./2m)+ W,.+ iq,

P is the momentum operator, and H is the unper-
turbed Hamiltonian

H = h+ P2/2m .
The 2' matrix is constructed from a scattering po-
tential V(8) in the usual way,

T(8)= V(8)+ V(8)[1/(E(- H)]T (8),

and V(8) is the periodic matrix given by

V(8) =(C „(8),VC „.(8)) .

That is, it is the time-dependent potential matrix
where the time dependence arises from the perio-

(2.23)

t

dic variation of the atomic states induced by the
laser. Then time is frozen during the scattering
process (8=(dt), the particle scatters from this
potential as described by 2'(8), and then the
scattering amPlitude is coherently averaged over
the phase of the laser. The last three terms of
(2.23) are corrections to this process which we
shall see are actually of order u' and so wiQ be of
no interest here. Note that the matrix element is
formed between atomic states f and i and between

P&(l) and P((l) [E(I. (2.23)]; so the fir t order -re-
sult of Kroll a.nd Watson is contained here.

This model is unrealistic in that the atom is
treated as a two-state model but, as has been in-
dicated above, the generalization needed to in-.

clude the multistate atom is straightforward.
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must be extended to a dressed diagonal matrix of
infinite dimensionality, and V must be similarly
extended. The final modification necessary to
make the model realistic is the inclusion of ex-
change. It is well known' that exchange can be in-
serted at the cost of making the scattering poten-
tial nonlocal in configuration space. Then the
translation of momenta, which is necessary to ob-
tain the first-order Kroll-Watson result, no longer
leaves the scattering potential unchanged. When
this translation, by a term of order &, is per-
formed it can be expected to induce additional
terms in the transition matrix of order ~ because
of this nonlocality.

Our first task in extending (2.23) to a real atom
will be to find the realistic V matrix to order +.
This requires a knowledge of the target states to
order +. Fortunately these can be obtained by
straightforward perturbation theory since the
coupling between atoms and the (classical, single-
mode) laser field in dipole approximation is

1-im~u, r& cost u„1 ~ z
i~1

(2.28)

where the u„are the unperturbed states. These

Q p~
' A(t) =

(dQL0 'Qpt cos(ot t (2.27)
$~1 jul

which is of order u. If the states are written as in
(2.16), thenthe dressed energy W„ is just the un-
perturbed energy since the shift, the dynamical
Stark effect, is of order ~2. The shifted states
can be obtained by using first-order time-depen-
dent perturbation theory treating the laser-atom
coupling [E(I. (2.27)] as the perturbing term. They
can be written

4 (1 ~ ~ xz ~ (dt)

will enter in density matrices

p„„,(rx;x'x', &ut)

d'x, ' ' ' d'x, 4*„rxx, ' ~ x,; et

x 4„p(x'x'x, ~ ~ x,; (dt)

which we expand as

p„„,(~x;~dx', ~t)

= p'„'„' (p~ xx'x')+ p'„'„'i(gx;r'x' (dt)+ ~ ~ ~ .

(2.29)

(2.30)

Insertion of (2.28) into (2.29) and (2.30) yields

=im~c(, (r+x- r'-x')
t

x c0 s(dt p „„d('Yx; t' x ) . (2.31)

We now expand the total wave function in a close-
coupling form:

+=A,g 4„d(1 z; ~t)F„d(r„(dt) e '~~', (2.32)

where Ao is the antisymmetrization operator

Ao = I -Q ZCto (2.33}

and X&o is the electron exchange operator. The full
Hamiltonian can be written

P2 g
H=Q + —I)) 'A(t)'+ V~ + Q g t

jap ™m
g&g o

and then the operation

(2.34)

d'x 'd'x 4*(1 ~ ~ z ~t) —HI=0 (2.3-5)1 c n et

results in a set of coupled equations for the F.
These are

———+ coc(, p, cos(dt+ V,+ W„.E„(r„t) gd'xp„„, (x-,x; (dt)Q(r, x)F„,(~„t)-ie Po

n

—g JVx„„.(r„r'; rxt)P„,(r', t) d'r' = 0,
n'

( 2.36}

p„„,(r, r', txt) Jdxp (rx;r='x;txt). „„,

The exchange potential arises from the X&, in (2.33) and is given by

Vx, (r„r', (dt)F„,(~', (dt)= xi [p„„.(~',r, ; (dt—)E„d(r', t)]
. 8

(2.37)

2
—z W„+ 2

+ ~ao pocosrut+ Vo+V (ro r') p„„d(x'—,ro; (dt)F„d(r', t)

—.(. t) jd'xp„„,(r'x;r x;wtlt-)(r x)F„,(r',t)- (2.38)
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The exchange potential can now be expanded in & with the aid of (2.30) and (2.31), with the result

2

Vx&:&(r„r')=z p&'„&(r',r, ) i —z-W„+—'+ V, +1&(r,-r') p'„„",(r', r, )2m

—z(z —t) fd'xp, '„' (r'x, r .x)tt(r x)- (2.39)

x

V„„',"(r„r',&df) =-zp&„„&(r',ro;&dt) i ——z W„+ 2' + V, +1& (r, r') -p&„&z(r', r, '. (dt}
(

-z(z —t) fd'xp'„'„'(r x,r ,x;'tet)tt(r x) —ztztz, -p eesetp' )(rr)„.„, (2.40)

Insertion of (2.31) into (2.40) with a little algebra
results in

= -im(dZ0 (r-r')cos8V„„', '(r, r') . (2.41)

=s„„,(t(r)r f d xp (xx'; ~)t„).tt(r, x). -(2.42)

Lf this is expanded in powers of M, it is easily
shown that the first-order terms vanish because of
(2.31) and (2.37).

Returning to (2.23), it is seen that the last three
terms are really order (O'. This arises because of
the 8= (ut derivative. From (2.39) and (2.42), the
zero-order potentials a,re independent of t so that
the 8 derivative of T (proportional to the 8 deriva

I

As a brief digression it should be pointed out that
this result as well as Eci. (2.31) are, in the ~-0
limit, simply consequences of the gauge invariance
of the theory.

The direct potential in (2.36) can be written

V~„,(r, ~t)

tive of V) is of order (d. The first term of (2.23)
then contains the entire result to order (d.

There are two sources of corrections of order
~ that arise in T. The first simply comes from
the correction to the exchange potential of order
~ and there is no correction to the direct poten-
tial of this order. The second comes from the
translation of momenta that was necessary to get
the Kroll-Watson result, that is, to get the capi-
talized momenta (2.3) occurring in the initial and
final states of (2.23}. As was pointed out above,
the locality of the potential was used, but, for a
nonlocal potential, corrections will arise. For
nonlocal potentials, (2.18) must be replaced by

(kW, ~V ~k'fS, )

= (k
i
V..., ik ) Z, ,(k-k'Z, )

and the translation (2.3) replaces this by

(2.43)

(k+&& iv~ ~ ik'+X)8, „(k-k', ),
where X= m&4&&'o/x. This can be expanded in pow-
ers of ~ yielding

[(k(V g ~k')+ (ct)mf/x)ot ())t' + V„.)(k ~V@ g ~k')]sf, y(k-k' '&&t ). (2.44)

—(i&umflx)&&&, (r- r')V "&(r,r'), (2.45)

where only the zero-order part of the exchange
(nonlocal) potential enters. It is 8 independent.

The two first-order potentials are now included
in the T matrix in (2.23). When they are treated
to first order they generate a new term in (2.23)
which is

The second term of (2.44) is the second source of
e corrections in T(8). It can be transformed to
configuration space and to the 8 representation in-
stead of the S representation with the result that
it is

f"d8
exp(if 8+ ixsin8)(P&(l), f ~T

' (V ') "5V(8)
0

&&(V& &) 'T&"~P (l), i), (2.46)

where V& ) is the potential in the -0 limit and
T&0& is the T matrix which it generates. Both are
independent of 8. 5V(8) is the sum of (2.41) and

(2.45), and since the cos8 factor in (2.41) is the
only remaining 8 dependence in the bracket in
(2.46), it can be removed by an integration by
parts such that it is replaced by —I/x.

Then (2.41) and (2.45) exactly cancel each other,
and the T matrix for nonresonant electron-atom
scattering in the field of a low-frequency laser is
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given by

& «)=&( )(P (l»fl2'"(~)IP (l» )

+ 0((d') . (2.47)

,P) / 'Pf 1

then a result similar to (2.10) can be obtained:

As in the result of Kroll and Watson the T matrix
on the right-hand side is evaluated on-shell so
there is no difficulty in interpreting it in terms of
the T matrix in the absence of the laser. That is,
the energy-conservation equation

P', /2m+ W, =P', (1)/2m+ Wz- 1&v,

when combined with (2.3), yields

&=P,'(l)/2m+ W~ =P~2(l)/2pn+ W~ .
The cross section can then be written

da'

de (pgf; pj; l)

~( (l)) P)'(1) Pt(l)
Pq(l) p,. dQ

( 2.48)

(2.49)

x (P&(l),f;P&(l), l) . (2.50)

If we again rewrite the cross section in the ab-
sence of the laser as

+ [&+(p, ~.)'lg~g, , ,(&), (2»)
f

where we define a generalized momentum-transfer
cross section

v~, ,(E)= Jdn( )~g „~' (E). (2.52)

It is difficult to make statements about the sign of
l in this case. One reason is the fact that (2.52)
can be negative for superelastic scattering. How-
ever, if all the important o«, in (2.51) are posi-
tive, and if the distribution of the free electrons is
Maxwellian, then again l is positive definite.
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