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Generalized Nernst-Einstein relations for nonlinear transport coefficients
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A hierarchy of generalized Nernst-Einstein relations is derived that gives relations among the higher-order
transport coefficients that describe nonlinear mobility and non-Fickian diffusion. The results are valid for
the case where the transported species is present in only trace concentration, but are otherwise general. In
particular, the relations are independent of the density of the medium and of the form of the molecular
interactions. Both a phenomenological derivation and a more rigorous one based on a linear kinetic equation
are given. Some additional relations are also obtained for the special case of gaseous ions interacting
according to the Maxwell model, which may be approximately valid for gaseous ions having more general
interactions.

I. INTRODUCTION

It has long been recognized that there should be
some connection between the ease with which a
species can be pulled through a medium by an ex-
ternal force, and the ease with which the species
can diffuse through the same medium under the in-
fluence of its own concentration gradient. When
both the force and the gradient are small enough
that the transport follows linear equations (e.g. ,
Ohm's law when an electric field supplies the ex-
ternal force, and Fick's law of diffusion), then the
connection is given by the so-called Nernst-Ein-
stein relation

K =q;D/%AT,

where K is the mobility of a species of charge q,.
in an external electric field, arid D is its Fickiag
diffusion coefficient. The equivalent of this equa-
tion was obtained by Nernst, ' who was interested
in solutions of electrolytes and who used the con-
cept of osmotic pressure as the driving force. The
name of Einstein later became attached to the re-
lation through his work on Brownian motion, ' in
which he estimated K by means of the Stokes for-
mula for viscous drag on a sphere. The relation
was also derived independently for the special case
of ions in gases by Townsend, ' who took his start-
ing point from Maxwell's fundamental paper' on
kinetic theory.

The question addressed in this paper is whether
relations analogous to Eq. (l) hold when the ex-
ternal force and the concentration gradient are no
longer so small that the transport is linear in
these quantities. That is, when the mobility be-
comes nonlinear and the diffusion becomes non-
Fickian, a number of higher-order transport co-
efficients are required to describe the transport.
Are there relations among these higher-order co-
efficients? A suggestion that such relations might

exist came from some explicit calculations of a
few higher-order transport coefficients by Wheal-
ton and Mason' for a special simple case. Exam-
ination of the expressions for the coefficients
showed some obvious relations, but unfortunately
it was not clear whether these relations were re-
flections of a general law or were only artifacts of
the special case considered. This case consisted
of ions moving through a dilute monatomic gas,
with the ion-atom interaction given by the Maxwell
model, in which the cross section varies inversely
as the relative speed, so that the mean free time
between collisions is constant.

We show, by two separate lines of argument,
that a number of generalized Nernst-Einstein re-
lations exist under rather general circumstances.
These apply not only to the transport of species
number or mass, but also:to the transport of oth-
er quantities such as momentum or energy. The
main restrictive assumption we make is that the
species on which the external force acts, and
whose transport we are following, is present in
very much lower concentration than the species
of the background medium through which it moves.
(For simplicity we shall henceforth refer to the
species followed as "ions.") This assumption not

only simplifies the form of the trarisport equations,
but more importantly, simplifies the nature of the
ion velocity distribution function in an essential
way, as will be seen later. Incidentally, the de-
rivation of the original Nernst-Einstein relation
of Eq. (l) does not require the use of this assump-
tion. The relations we obtain are otherwise gen-
erally applicable —they apply to liquids as well as
to gases, for instance.

We begin with a phenomenological discussion
that serves to indicate the physical basis of the
argument, without too many mathematical trap-
pings. The results are restricted to mass trans-
port only. For a more rigorous and general form
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of results, we turn to a second line of argument
based on a kinetic equation for the ion velocity
distribution function, which we solve by a moment-
expansion method. The crucial feature of the kine-
tic equation is its linearity, which follows from
the assumption of trace concentration of ions. The
generalized Nernst-Einstein relations obtained in
this way have a mathematical structure that is
simple enought to encourage us to conjecture a
form of relation valid to all orders of deviation
from linear transport laws.

We also work out the special case of Maxwell-
model gaseous ions considered by Whealton and
Mason. A few further simple relations of the
Nernst-Einstein type are then also valid. These
special relations may be approximately valid for
gaseous ions having more general interactions
than those of the Maxwell model, but this conjec-
ture must be tested either by experiment or by
detailed calculations for particular interactions.

II. PHENOMENOLOGICAL ARGUMENTS

We begin with a brief derivation of the original
Nernst-Einstein relation of Eq. (1), without as-
suming that the ions are present in trace quantity.
We assume only that the external force (electric
field strength) and the concentration gradient are
so weak that the system can be considered to be
close to equilibrium, . and that the flux density of
ions J,. is linear in these quantities,

J,. = n,.ZE —D Vn, , (2)

where n, is the number density of ions. The me-
dium is assumed to be isotropic, so that both K
and D are scalars. Since Eq. (2) is supposed to
be valid anywhere sufficiently close to equilibrium,
we can pick any convenient special case in order
to investigate a possible relation between g and
D. We choose the steady state, J,. =0, and in par-
ticular we can choose a steady state of true equi-
librium, in which a steady electric field produces
a steady concentration gradient, and the diffusion
down this gradient exactly balances the forced f1ow

due to the field. At equilibrium the field causes a
spatial distribution of ions that is given by a Boltz-
mann expression

n,. = n', exp(q,.E ~ x/12s T), (3)

where x is the position vector and n', is a constant.
(A positive rather than a negative sign occurs in
the exponential because of the sign convention for
E.) From Eq. (3) we obtain a relation between Vn,
and E by differentiation,

vn,. =)2,(q, /I), r)E. . (4)

Substituting this expression into Eq. (2) and setting

J,. =0, we immediately obtain the Nernst-Einstein
relation of Eq. (1).

The interesting feature of the preceding argu-
ment is that the flux expression of Eq. (2) refers
to a system that deviates from equilibrium, but
for the ion distribution we can use ihe equilibrium
formula of Eq. (3). If we extend the flux equation
to allow for a second-order deviation from equi-
librium, we might therefore expect to have to take
into account at least first-order deviations from
Eq. (3). Deviations from Eq. (3) might arise for
strong fields, because a strong field could locally
increase the ion density enough to cause appreci-
able ion-ion interactions, for example. The ex-
plicit assumption of trace concentration of ions,
plus the implicit assumption that the background
medium of neutral molecules is unaffected by the
field, avoids the difficulty and allows us to use
Eq. (3) even when the field and the gradient are
no longer weak.

To extend the range of validity of the linear flux
law of Eq. (2), we add on terms with higher powers
of E and higher derivatives of x, No terms like
(Vn,-)2 occur, however, because of the assumption
of trace ion concentration. It is convenient to write
the resulting nonlinear flux equation in the form'

S. = ~.ZE -D~') Vn.

Z =Z +Z E'+Z E'+ ~ A-

D"'= I"'(8 +d 8'+d4E +. ~ )

+ EE(dll+dllZ'+ ~ ~ ~ ),
Q&2& = I &'& E(q', +q', Z'+ ~ ~ ~ )

+ E I (2)(qll +qll E2 + )

R(4) —I (2) I(2)()7 +. . . )&&0 j

(6b)

(6c)

where I"' is the unit second-order tensor. The
angle between E and Vn,. is arbitrary, despite

+Q'": V Vn —R"&:. V V V)). 4.. ~i i

and let the transport coefficients depend on E.
The mobility K is still a scalar, but the diffusion
coefficient D"' is a second-order tensor, Q"' a
third-order tensor, and B' ' a fourth-order tensor.
Various symmetries require that these tensors
have only two, three, and five independent com-
ponents, respectively. ' Moreover, inversion sym-
metry requires that K, D"', and R"' be even func-
tions of E and that Q"' be an odd function. We can
therefore expand the transport coefficients con-
veniently as power series in E. Assuming for
simplicity that the field is homogeneous, and in-
dicating by superscripts the components parallel
to the field (~~) a,nd parallel to the density gradient
(J), we obtain
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the suggestion of the (&) superscript. More ex-
plicitly, the gradient terms in Eq. (5) are

D"' Vn, =D,Vn, +d., E'Vn, +d,.E(E Vn,.)+.
(7a)

Q&'&: V Vn, =q, (E ~ V) Vn, +q, E.(V'n, ) + ~ ~ ~, (71)

B,&'&:. v v vn, = R,(v v) vn, + ~ ~ ~ . (7c)

We now repeat the argument used to obtain the
original Nernst-Einstein relation, using the con-
dition of trace ion concentration to justify the
Boltzmann expression for the spatial distribution
of ions at equilibrium. One differentiation yields
Eq. (4), and further differentiation yields

V Vn, =n, (q, /. ks T. )'E E,
V V Vn, =n,.(q,./ke T. )'E E E, etc.

(8a)

(8b)

K, —D,(q, /k&) T) =0,

K, —(d', +d",)(q, /keT)+(q, +q,')(q, /keT)'.
—R,(q, /ks T)'=0, etc.

Equation (») is the original Nernst-Einstein re-
lation, and (Bb) is the first higher-order relation.
It is probably not worthwhile to go beyond (Bb) be-
cause of the experimental difficulty of measuring
the higher-order transport coefficients, but the
procedure is clear.

Substituting these expressions back into Eq. (7),
setting J, =0 in Eq. (5), and equating the coeffi-
cients of different powers of E separately to zero,
we obtain

~n, i, mC, (12)

using the convention of summing over indices ap-
pearing once and only once as subscript and super-
script, and choosing the leading term proportional
to f,(i),

q„,(i) f.(i).
Final details on the form of the basis set depend
on the symmetry properties of the collision oper-
ator. If the molecular interactions are isotropic,
it is advantageous for the basis functions to con-
tain an irreducible representation of the group of
three-dimensional rotations. We therefore define

4„, (i) =-(&n,./k, T)'"")/' C„,(e,.)r,„(0,y), (14)

with spherical harmonics Y, depending on the
direction (e, &t)) of the ion velocity c, , and

ticular transport coefficient requires specific
knowledge of B(i).

The moment method is mathematically equiv-
alent to an expansion of f(i) in terms of a set of
basis functions, which are determined by the re-
quirement that the leadirig term of the expansion
be the equilibrium distribution function f,(i ) of
the kinetic equation. We use the condition of trace
concentration of ions as the justification for taking

f,(i ) to be Maxwellian in the ion velocities,

f,(i)«:exp(-m, . c,'/2ksT. ).
We expand f(i) in terms of basis functions 4„,„(i),

III. KINETIC DERIVATION
Ei —= n) i c/&2 kTe. (15)

( E f(i) = B(i)f(i),Bx gg ~ Bc (10)

where c,. is the velocity of species i, and B(i) is
a linear collision operator. We assume that the
system is in a steady state, so that no time de-
rivatives appear. Our procedure is to convert
Eq. (10) into a system of algebraic equations by
forming moments over a set of basis functions.

- Although these equations cannot be solved ex-
plicitly without specifying the form of B(i), it
turns out that the elements of the inverse colli-
sion matrix corresponding to B(i) can be alge-
braically eliminated to yield relations among
transport coefficients. These relations are in-
dependent of the nature of B(i), other than that
it be linear, although the calculation of any par-

In this section we obtain a set of generalized
Nernst-E instein relations by systematic solution
of a linear kinetic equation for the ion distribution
function f(i) of the form

(~ )
—

( ])&n-l)/22&)+))/2( + 1)(2~+»I2
nl 2m'

~l/2
)( i L (l +&/2) (~

(n + f + I)&) &n - i )/2 ( i) ' (16)

The expansion coefficients An )™of Eq. (12) are
generalized moments of f(i), as can be shown in

the following way. We construct a set of dual
basis functions 4n™(i)by means of an orthonor-
mality requirement

d3c &a,
n'l'm'(i ) C, (i )

5n'5)'5m'~ ~ (17)

which yields

with

(18)

The energy-dependent functions 4„,(e,.) include the
condition of Eq. (13) and contain generalized La-
guerre (Sonine) polynomials I,",(e, );
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&&( I )1) &1/ I (I + / ) (& )

Multiplying the expansion of Eq. (12) by these
functions and integrating, we obtain

~n, l, m dn& @n, 1, m(i)f(i).i (20)

The next step is to represent the kinetic equa-
tion in matrix form by means of the basis func-
tions, which yields

Dn', l', m'(i)~n, l ~ m Bn'(I )r~n, l, m
n, l, m ri

where

n"' ' (i)-=fd cr""',.(()c,e„, (i).

+ ' E ~ d'C, e" ' "(l) C„,„(i),
m' 8 C,-

nim

(22)

il()"n."'()')=ye, @ " '( )"n( ")@., ( ).

(23)

Equation (21) is an infinite set of linear algebraic
equations for the generalized moments A"' '
which can be solved in a formal sense provided
any dependent equations are first removed. The
dependent equations represent the so-called col-
lisional invariants and correspond to zero eigen-
values of B(i). In classical kinetic theory there
are five collisional invariants, corresponding to
conservation of mass, energy, and the three com-
ponents of linear momentum in a binary collision, '
so that the z -ro eigenvalue of the binary collision
operator is fivefold degenerate. But in the present
case the collision operator B(i) focuses on the
ions, and the only property of the ions that is al-
ways conserved in an interaction with the medium

A'"'= n (x}. (26)

The restricted collision matrix B of this inhomo-
geneous system of equations is seen from Eq. (23)
to be diagonal in 1, l' and m, ~'; it also is regu-
lar and can in principle be inverted. Multiplying
Eq. (24) by this inverse matrix, we obtain

(gn'gl'gm' g n', !',m'$gn, l, m Cn', l', m'
n E m n, Ptm 7

where

S n', l', m' —[B-1(lr )]n'D n, l', m'(i )

gn', l', m' —[B-1(Ir)] n'Dll, l'
~ m'(i ) tl (x)

(26)

(2'I)

(28)

A formal solution of Eq. (26) can be obtained by
series expansion, which yields

gn', l', m' [Sn't n', l . m Gn, l, m (2an, l, m
%=0

This is the unique series expansion of the gener-
alized moments in terms of powers of the gradient
operator and the electric field. Because the gra-
dient and the fieM occur only linearly in D and be-
cause of the linear nature of B, the structure of
Eq. (29) provides the kinetic justification for the
more phenomenological Eqs. (5)-(V) of Sec. II.

To find explicit relations among transport coef-
ficients, we need a definite procedure for generat-
ing the formal solution indicated by Eq (29). T.he
needed matrix elements of D, defined in Eq. (22),
have been discussed previously, ' and in the present
case are

is the ion mass. The zero eigenvalue of B(i) is
thus nondegenerate; moreover, its corresponding
eigenfunction is f,(i). We can therefore restrict
the indices in Eq. (21) to n, n &0, and rewrite it in
inhomogeneous form as
Dn', l', m'gn, l, m Bn'(Ir)gn, l', m'

n. &t m n

D,"-,™n, (x) nin' &0 it ~ j
where we have used the fact that the lowest mo-
ment is the ion density,

( g

(BX

4
21'+I (I', 0~10 l'+10) .m, Bxi m,

+gn'-1, f + 1, m+ gn'+ l, l + &, m

ex
(30}

En this expression all vectorial quantities are rep-
resented by their spherical components, denoted
by a superscript M. That is, the spherical com-
ponents of E are v(Z„+iE„)/2~' and Z, . The sym-

I

bols enclosed in angular brackets represent con-
ventional Clebsch-Qordan coefficients, and the
summation convention is extended for them so that
indices in bra vectors correspond to superscripts
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and indices in ket vectors to subscripts.
We now construct the formal solution (29) by a

recurrence procedure. Starting with initial values
of the generalized moments from Eq. (26) of the
form

I f I I I~n, l, m —~n, l, m
(o)

nT &Bn[E-1(])tn'6l' B
~

i

collision matrix can be algebraically eliminated
from the expressions for the transport coefficients,
to produce a number of generalized Nernst-Ein-
stein relations among transport coefficients. To
exhibit these relations, we first define generalized
transport coefficients as the expansion coefficients
in the Taylor series represented by Eq. (33), which
can be written symbolically as

I

' E"'n,.(x),
mi

we generate higher values by recursion,

(31)
A"' '=pa",' (

' ») (- ) m,.(x).

(34)

~n', l', m' g n', l', m'gn, l, m
(k+ &) n, l, m (k) (32)

This procedure generates the generalized moments
as a series,

I I I Igngl ym gn, l
(k)

k= 0
(33)

where the summation index k has the same mean-
ing as in Eq. (29).

If the elements of the inverse (restricted) col-
lision matrix are known, Eqs. (31)-(33)generate
a complete series solution of the transport equa-
tion. The recursion procedure (32) does not pose
any basic difficulty of principle, but in practice
becomes complicated because of the necessity of
generating the elements of the inverse collision
matrix. Fortunately, we do not need to proceed
to high-order results for the present purposes;
the results of the first iterations are straightfor-
ward and are given in the Appendix. What is some-
what surprising is that the elements of the inverse

The appearance of this symbolic expansion is de-
ceptively simple —the transport coefficients e are
really complicated tensorial quantities coupling
the qth-order tensorial powers of E' and the
(Ii —q)th-order tensorial powers of the gradient
operator to the generalized moments of order n'
and rank l'. An explicit general representation
of this feature of the a's is not necessary for the
present purposes, however. Since only a few of
the lower Nernst-Einstein relations are likely to
be of interest, it should suffice to give expressions
for the simple cases 3'=0, 1, 2.

For /'= 0, we have the scalar quantities,

~n, 0, 0 ~n, 0+2~ ~n, O q Bn
m Bx

2

+z,"'0 ' E ~ En,. x + ~ ~ ~
~

i

For l'=1, we have the spherical components of
the vectorial quantities,

l

gn' ~ ' ~ m'=en' ' qi Em'ti. (x) —n»' ~ ' ' +an' ' q' Em'E ~ En (x) —&n', i(/)
mi 8+ "m; m-) Bx

BS 8 Bs I
&n' ~ 1()() qi Em' E. S i +&n', &(~) qi E, S i +An', i(~~)

qi EVm2s ', V
Bi i +. . .

m; Bx '
m& Bx 8& m; Bx

Here the tensorial character of the coefficients n, mentioned above, makes it necessary. to distinguish be-
tween components parallel to the electric field (~~) and parallel to the density gradient (&). Finally, for /'
= 2 we can write

I

~n', 2, ' (2 iii I M»~) ', 2 S Ssi &n', 2 qi Eii Ssi +&n', 2 qi EiiEmii (~x) +. . .

(37)

Explicit expressions for the generalized trans-
port coefficients in terms of the elements of the
inverse collision matrix are given in the Appendix.
As already mentioned, the matrix elements can be
algebraically eliminated to obtain relations among

the transport coefficients; for /'=0, we find

0 +n, O B +n, 0+ B +n, 0STAT
0~2 1, 1 2, 0

i
(38)

For I'=1, we obtain the analogs of the Eqs. (9)
obtained phenomenologically in Sec. II,
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0 n, l g n,k T
0, 1 1, 07

[~,;.(&)+~,;2(II)]

2 k~ T q,- 1 1 2
2 m,. m,: [1(1,1)]' 0(2, 2) 1(2, 0))'

(45a)

+ ' [a".';,'(i)+al';, '(ll)]—
kgT 1

m,. ~,. [b(1, 1)]'b(2, 2) ' (45b)

which differ from Eqs. (9) only by some obvious
multiplicative factors of q,./m, . and RENT. Finally,
for ]t = 2 we fxnd

0 n, 2 9 n, 2+ B n, 2T i k T
0, 2 1, 1 2, 0 (40)

All these equations are of a generalized Nernst-
Einstein type, and their structure is simple enough
to suggest the following conjecture for a general
relation:

(2,2')' (41)

This expression is symbolic in the same sense
that Eq. (34) defining the n's is symbolic.

IV. MAXWELL MODEL

Q- 1
m,. b(1, 1) '

Z, =0,

(48a)

(42b)

(44a)

2 g- 1 1 1
Y m, [0(1,1)]' 0(2, 2) 0(2, 0))'

(44b)

q,- 'Ii 1
m,. & [b(1, 1)]'b(2, 2) ' (44c)

Whereas the relations deduced in Secs. II and III
are independent of the molecular interaction, the
restriction to the case of Maxwell-model interac-
tions generates some further simple relations,
which may also be approximately true for more
general interactions. We limit the discussion of
these relations to the case n'= l'=1, corresponding
to the spherical components of the diffusion flux
vector J,-.

For the Maxwell model the collision matrix is
diagonal in n, n'; we therefore can w'rite

ff"„'(f') = &"„'b(n', l') . (42)

The inversion of this matrix is trivial, and fram
the -general expressions in the Appendix we can
immediately write down explicit expressions for
the transport coefficients as defined by Eqs. (8),

D, =(ke T/q, )Z„
q'2 =(&sT/q;)d2,

(4V)

(48)

q', = (ke T/q, .)(2d,' + d') ), (49)

R, = 2(k~ T/q, )(q', + q]]) =((2~T/q, .)'(d, +d),). (50)

Clearly these relations are consistent with our
general result —in particular, Eq. (4V) is the or-
iginal Nernst-Einstein relation, and our Eq. (Qb)
or Eq. (39b) is obtained by summing Eqs. (48)-(50)
and setting K2=0. These results are also consis-
tent with the partial results obtained earlier by
Whealton and Mason' for the Maxwell model.

V. DISCUSSION

The present results show that there is a whole
hierarchy of relations among the nonlinear trans-
port coefficients, analogous to the Nernst-Einstein
relation between the linear coefficients. The main
restriction in our derivation is that the transported
species be present anly in trace concentration.

Although the phenomenological derivation pre-
sented is straightforward, the more rigorous kine-
tic derivation appears rather roundabout. In par-
ticular, the way that the elements of the inverse
collision matrix are eliminated at the end, so that
the results are independent of the molecular in-
teractions, appears almost fortuitous. We have
sought a more direct derivation using projection
operators rather than a matrix method, but with-
out achieving the desired simplification. The trou-
ble is that the interactions are contained in the in-
verse projected collision operators and do not drop
out unless the inverse operators obey some speci-
al commutation relations. To prove these rela-
tions w'e have had to revert to a matrix representa-
tion, and the apparent simplicity is lost.

Finally, the present generalized Nernst-Einstein
relations should be distinguished from some rather
similar relations frequently used for gaseous ions
at high electric fields, which are. really extensions
of the original linear relation given by Eq. (1).'

2 k'~ T 2 1 1 2
2 m,. [0(1,1)]* 0(2, 0)

+ 0(22))',
(«)

Eliminating the matrix elements b(n', i') among
these expressions, we obtain a number of general-
ized Nernst-E instein relations,
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Only Fickian diffusion is considered, but the elec-
tric field may be so high that the components D„
and D~ of D"' must be considered separately, and
the form of Eq. (1) is largely preserved by defin-
ing special ion temperatures T„and T,

University.

APPENDIX

We use the abbreviation

kB TJ

Qg

q,. d in(E/n, ) j '

(51a)

(51b)

kJ3 T 8 q,-

m~ ex sly

and have [cf. Eq. (31)]
~n', (', m —[ff-&(1)]n't))'~m's

(A1}

where n0 is the number density of neutral parti-
cles, and

kB Ti kB T+

kB T)] kB T + f]] +g ~

(52a)

(52b)

We are grateful to Professor J. B. Dorfman of
the University of Maryland for many interesting
and helpful discussions, especially regarding the
projection-operator technique. The work was sup-
ported in part by National Science Foundation
Grant CHE 78-09332. A grant from the Max Kade
Foundation enabled U.W. to spend a year at Brown

Here v„=KE is the ion drift speed, and g~ and g]]
are coefficients that depend primarily on the mass-
es of the ions and the neutral molecules and weak-
ly on their interaction. These relations were first
obtained by Wannier' for the Maxwell model, for
which they are exact, but they are often quite ac-
curate for real ion-molecule systems. " Various
refinements have been proposed for improving the
accuracy-of these useful relations, which need not
concern us here. The essential difference between
these and our results is that our results are exact
relations among field-independent higher-order
coefficients, whereas Eqs. (51) and (52}are ap-
proximate relations between field-dependent linear
coefficients.

Application of the matrix S, Eq. (27), yields

~n', g ', m' [~-1(f i
)]

n 'fi n I'. m.
'
(f )

x [a-'(1)] ", &"n, (A3)

Because of the particular structure of the differ-
ential matrix, Eq. (30), this expression is nonzero
only for E'=0 and 2. For E'=0 we have

A"" =P" (0) S S"n(+P,"(0) S n. (A4)

(0) 0 I 1) M i 1, m)
(0, 0i1, 0; 1, 0)

(A5)

The coefficients P are certain products of the in-
verse collision matrix and are listed at the end of
this appendix.

Similarly, we obtain for $'= 2,

~n', 2, m 2 (2) m'
I li M; 1,m)

5 (2, 0i1, 0 1, 0)

x ()"'(2)u"u x, +(),"(2)( ) u"x, .

The second iteration again generates two con-
tributions corresponding to E'=1 and 3. For /'=3
we have

where we have used the coupling property of the
Clebsch-Gordan coefficients to generate the scalar
product of two vectors,

5 (3,m'i 1, M; 2, m) (2, mal, M; 1,m)
35 (3, 0i1, 0;2, 0) (2, 0i1, 0;1,0)

x p"'() 2)uxuxu"x, +p"„($,2)u" u x, +n,"(3,2)( ) u"u"x,
x

(A7)

The second-order correction for l'=1 consists of two terms:

{2) n, 2, m (1) ~n, 0 0 {1) ~ (A8)
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More explicitly we have

(l, m' ~1, M; 2, m) (2, m~ 1, M; 1,m)
15 (1, 0

i
1, 0; 2, 0) (2, 0

i 1, 0; 1, 0)
le

x 0"'(), 2)21"D"21"n,+0",(), 2)21"( )
21 n, +0,"(1,2)( ) 21 21 n

+0",',(1, 2)(,
' )"(,

' )"2 "n,.

I

+ —I)'. (1, 0)21"21 21 0,. +0",(2, 0)21" 1& n,. +0"(1,0)(, ) 21 21 n,.

8
+ p",',(1, 0) ( „m"n,++ 0 .

I g~ g~yg (A9)

We stop the iteration at this level and add a more detailed evaluation of Eq. (A9). The ratios of Clebsch-
Qordan coefficients needed in the context of our iteration procedure are listed in Table I. By means of
Table I, we can derive the relation,

(1,m' ~1, M; 2, m) (2,m~1, M; 1,m)
(1, 0) 1, 0; 2, 0) (2, Oi 1, 0; 1, 0)

(A10)

for the spherical components of the vectors a, b, and c. Using instead the vector operators 8/Bx and S
in the proper way, we obtain the following after some algebraic manipulations from Eq. (A9):

kT'
p

' ] p
n'

y 0 8 n'
y g

n'
y p & n'

y 0

+ —,', P", (1, 2)]+ ' [—,', P"„(1,2)+ -', P,",(1, 0)] + * Z"'v'n, .

x [p;p" (1, 2) + —', p" (1, 0)]+ e [rfp",(1, 2) + —', p„"'(1,2) + —',p",'(1,, 0)]+—', p,"',(1, 2)

q, 8 Bn,-

2

[—„p" (1, 2)+-',p" (1,0)]+ s [ —,', p",(1, 2)+ —„p,"(,2)+-,'p", (1,0)+-,' p", (1,0)R i mi

+ ~0P,",(1, 2)+ —',P,",(1, 0) + ' E"E
m2 Qx

[-;,P" (1, 2) -', P" (1,o)].-', P",(1, 2) 'P,"(») -'.P", (»)
BX

[-,', P"'(1, 2) + lp" (1, o)]+ r';P",(1, 2) + -'P".(1, o) + —:P."-(1,2)
~%i

~

~

3g-'g-E [~P '(1, 2)+ -', P"'(1,0)].
mi

(A11)

Comparing these results with Eqs. (35)-(3V), we can make the following list of generalized transport co-
efficients:

k Tti', 0 3 n'O + 8 n'0 (A12)

+)2' ~ 0,2 B Pn'(0) +Pn'(0)
i

(A13)
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TABLE l. General values for the ratios of Clebsch-Gordan c oeffi elects(l', m'I l /if;f, m'-M)l
(f', oIz, o;i, oi.

l =l' —1

1 g' —ppg'}(l' —. ypg' —1}
l' 2

(l/2 I2}i/2l'

(l'+m'}(l'+m'-i)~' '

l =l'+&

1 ((l ''l))l' '+2))' '
l'+& II 2

1
[(l I + y}2

' t8]i/2l'+1
(f'-m' +&}ll'-m' +2)

Il'+] 2

&n', 0 pn'(0) (A14)

&n', 1 B Bn'(1} (A15)

+1,0 B1 (A16)

3 2

[1',P"'-(1, 2)+ 2P"'(1, o)]+I ' [1;P-".(» 2)+ 2P"+(» o-)+ 2P+ (1, o)+-1', P+ (1, 2)]

+ ' [—;,P,",(1, 2) + -', P"„(1,O)],
52

g

2

~".;2(II) =- '
I I.

—', p"-'(1, 2)+-',p"'(1, o)]+ ' [—,', p",'(1, 2)+-', p,"'(1,2)+-',p"„'(1,o)]+-',p,"',(1, 2), (A16)

n", ,','( ) =-
I(

'
&I [ —,', p" (1, 2) —,'p" (1, 0)]+ B [—,', p",(1, 2)+ —,', p," (1, 2)+ —,'p",(1, 0)+ —,'p,"(1,0)]Sl g St $

+ 1', P."+(1,2) + 2P++(» o), (A19)

4;,'(ll) =- '
( —,', ()".(), &) ln" 0, O))+ —', ()",(), 2)+ l , () 00)+ l("(~&))), ,Sgi

~,";,'( ) = — '
( —:,()"'(&, 2) + —'.))"'(&, O)] + () (); &) —4()-'., ("'), &) + l(),".(), 0)"), ,SS g

(A21)

",;.'=-[-;,P"'(1, 2) -'.P"'(1,0)],

a r&t'&n', 2 B
) pn'(2) + B pn'(2)5I m;) Sg

uTn,",*=-(2 '"))"(2)+();(2)),

n'
~ 2 2 pn'(2)

t

(A22)

(A23)

(A24)

(A25)

P" (0) =gB".'(0)nB", '(1),

P"'(0) = g B"'(0)B""(1)

p"'(3 2) = gB-"'(3)(n+4)B" '(2)(n+3)B", '(1),
n, n

P",(3, 2) = Q B„" (3)(lt +4) B"„ '(2) B", '(1),
n, n

The coefficients P are the following products of
inverse collision matrices, where we have ab-
breviated [B '(f )]"„asB"„(f):

P"'(2) =QB"„'(2)(n+3)B", '(1),

P," (3, 2) = gB" (3)B"."(2)(n+3)B", '(1),

P."',(3, 2) = g B"-. (3)B.""(2)B""(1),
n, n

p" (1, 2) = Q 8-„"(1)(ff.—1)B"„'(2)(n+3) B", '(1),

P",'(2) =g B" (2)Bl"(1),
n

P" (») = g B-" (1)(n -1)B" '(2) B""(1)
n, n
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p",'(1, 2) = g B-"„'(1)B„""(2)(n+ 3) B", '(1), P" (1, 0) = g B—"„(1)(n+2)B"„'(0)B",+ '(1),

Pn (1 2) Q Bn (1)B tl+ 1(2)Bn+ 1(1)
n, n

p" (1, 0) = g B-„" (1)(n + 2) B"„'(0)nB," '(1),
n, n

p," (1, 0) = Q B-"„(1)B"„'(0)nB", '(1),

P,"',(1, 0) = P B-"„'(1)B"„"(0)B","(1).

*Permanent address: Institute for Theoretical Physics
D, Univ. of IXisseldorf, D-4000 Dusseldorf, W. Ger-
many.

~W. Nernst, Z. Phys. Chem. 2, 613 {1888).
~A. Einstein, Ann. Phys. (Leipzig) 17, 549 {1905);

Z. Elektrochem. 14, 235 {1908). English translations
appear in Investigations on the Theory of the Brownian
Movement, edited by R. Furth (Dover, New York,
1956).

3J. S. Townsend, Philos. Trans. R. Soc. London A 193,
129 (1899).

4J. Clerk Maxwell, Philos. Trans. R. Soc. London 157,
49 {1867). Reprinted in The Scientific PaPers of
James Clerk Marvell {Dover, New York, 1962), Vol.

2, pp. 26-78; and in S. G. Brush, Einetic Theory
{Pergamon, New York, 1966), Vol. 2, pp. 23-87.

J.H. %healton and E. A. Mason, Ann. Phys. (N.Y.) 84,
8 (1974).

6J. H. Ferziger and H. G. Kaper, Mathematical Theory
of Transport Processes in Gases {North-Holland, Am-
sterdam, 1972).

~U. Weineri, J. Math. Phys. 20, 2339 (1979).
8E. W. McDaniel and E. A. Mason, The Mobility and

Diffusion of Ions in Gases {Wiley, New York, 1973).
~G. H. Wannier, Bell Syst. Tech. J. 32, 170 {1953).

F. L. Eisele, M. G. Thackston, W. M. Pope, H. W.
Ellis, and E. W. McDaniel, J. Chem. Phys. 70, 5918
(1979), and previous papers.


