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Landau's diamagnetism for a free point charge is shown to exist within classical electron theory with
classical electromagnetic zero-point radiation. The system considered is a nonrelativistic classical point charge
bound harmonically in three dimensions and situated in a magnetic field when random classical
electromagnetic zero-point radiation or thermal radiation is present, The average energy, angular
momentum, and magnetic moment are calculated at finite temperature, and then carried to the limit at
which the harmonic binding vanishes so as to obtain the behavior for a free particle. In the presence of the
Rayleigh-Jeans radiation spectrum one finds that all diamagnetic efFects vanish, in agreement with the
results of traditional classical statistical mechanics. In the Planck radiation spectrum one finds exactly the
results of quantum theory involving a Langevin function for the temperature dependence. In particular, the
average angular momentum and magnetic moment for a classical point charge in classical zero-point radiation
are (L,) = —R and (M,) = —P$/2mc, where the orientation of the z axis is given by the
magnetic field direction. Thus the classical results in the presence of classical zero-point radiation are
entirely different from those of traditional classical electron theory, and they suggest possible classical
explanations of the space quantization appearing in quantum theory. The results also suggest a derivation of
Planck's spectrum from traditional classical statistical mechanics by applying Boltzmann statistics to the
orientation of the average magnetic moment caused by the zero-point radiation.

INTRODUCTION

Traditional classical electron theory allows
no diamagnetic behavior. ' Van I euwen' in 1919
and Van Vleck' in 1932 showed that if one applies
the Boltzmann distribution of traditional classical
statistical mechanics to a system of classical
point charges, then the distribution of particle
positions and velocities is the same as in the
absence of a magnetic field. In the present work
classical electromagnetic zero-point radiation is
introduced into classical electron theory to ob-
tain the classical theory termed "random elec-
trodynamics. " Within random electrodynamics
traditional classical statistic mechanics is in-
valid. ' And random electrodynamics does indeed
show diamagnetic effects.

The existence of diamagnetism for classical
systems in the presence of classical electromag-
netic zero-point radiation was first pointed out by
Marshall' in 1963 for an isotropic harmonic-os-
cillator system in a weak magnetic field. How-
ever, Marshall did not treat the diamagnetism
of a free classical point charge. Braffort and
Taroni"" in1967 and Surdin '"' in 1970 considered
a free point charge in classical electromagnetic
zero-poi. nt radiation and noted that the kinetic
energy takes approximately the value —,'h~~,
where ~s = eB/mc is the cyclotron frequency in
terms of the particle charge e, mass nz, and the
magnetic field B. Very recently Saehidanandam'

mentioned that the average angular momentum
of a free particle in classical zero-point radia-
tion has the magnitude 5. However, none of these
authors discusses the temperature dependence
of the diamagnetism of a free particle and none
discusses the connection with the null result of
tradiational classical statistical mechanics. In
the present paper we first review some previous
work without making Marshall's weak-field ap-
proximation, we correct some slips and mis-
prints in the literature, and we then focus upon
the diamagnetism of a free classical point charge
in zero-point radiation and in thermal radiation.

Some of the results seem interesting. We find
that free classical charges in zero-point radia-
tion have an average angular momentum (g,,)= +5 along the direction of any external magnetic
field where the negative sign is taken by all posi-
tive charges and the positive sign by negative
charges. The magnitude

~
(L,)

~

= 5 holds indepen-
dently of the magnitudes of the magnetic field, of
the particle charge e, or of the particle mass
m. Ihus a free charge e acts as though it had
an angular momentum 5 and a permanent magne-
tic moment of magnitude it = ~e ~h/2mc which al-
ways aligns itself antiparallel to the magnetic
field. 'The system behaves in a manner reminis-
cent of what is termed "space quantization" in
that its angular momentum always assumes a
fixed average value relative to any direction of
space delineated by a magnetic field. In the pre-
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sence of thermal radiation given by the Planck
formula with zero-point radiation the value of
the angular momentum (L,) decreases with temp-
erature according to a Langevin function and
vanishes entirely in the Rayleigh- Jeans limit.
The expressions obtained for the particle kine-
tic energy and magnetic moment are just those
of Landau's' work of 1930 in connection with the
diamagnetism of free electrons in quantum theory.

BASIC MODEL

Random electrodynamics involves a fundamen-
tal change in the boundary conditions of classical
electron theory. Random classical electromagne-
tic radiation with a Lorentz-invariant" spectrum
classical electromagnetic zero- point radiation,
is introduced as the homogeneous solution of
Maxwell's equations which is present irrespec-
tive of the mechanical system involved. The
mechanical system we consider here is that of a
classical point charge e of mass m bound in a
three-dimensional isotropic harmonic potential
V =-,'m(d', r with a magnetic field 8 =KB along the
z direction. The system is treated nonrelativis-
tically in the dipole approximation. We solve the
system in the general case, and then take the
weak-field limit ~, » &u~, where ~~ = eB/2mc is
the Larmor frequency, in order to recover Mar-
shall's result' for the diamagnetic behavior of the
bound charge system. In the opposite limit ~~
» &, -0 of no binding, we obtain the behavior of
a free charge. The energy, angular momentum,
and magnetic moment for the system will be dis-
cussed for each case.

The nonrelativistic equation of motion for the
point charge is given by

~ ~ ~ 3 ~

mr =-m+3r+(e/c)r x 8+(2e'/3c )r

+ eK'"(0,t),
where -m(d', r is the harmonic restoring force,
(e/c)r x 8 is the magnetic part of the Lorentz
force,

(2e'/3c') r =mI'r

is the nonrelativistic radiation damping force,
and eE"(0,f) is the force due to the random
classical electromagnetic field taken in the di-
pole approximation. The random radiation field
can be written4 as a sum over plane waves with
random phases,

E"(r,t) =Q d3k e(k, &))(k, &)

x cos[k r —et —8(k, A.)],
where the random phase 8(k, &) is distributed

uniformly over (0, 2w) and is distributed indepen-
dently for each wave vector k and polarization &.
The energy per normal mode g(&u) in the electro-
magnetic field is given by

g(&u) =22(2(k, &), (3)

and the radiation spectrum p(&u) is obtained from
g(&u) as

p(~) = (u&'/w'c')g(~) . (4)

For the Planck spectrum with zero-point radia-
tion

g(&u) = w2)'(k, X) =-,'~k coth(5&v/2ECT) .
The vector equation (1) corresponds to three

first-order equations" for the components x, y,
and g~

(6)

x'+ &u2~ —(say' —I' x' = (e/m)E „"(0,f),
y'+ (u~+(u~ —I'y = (e/m)E';(O, f),
2 ++~ —1'~" = (e/m)E,'"(O, t),

where co~ is twice Larmor 's frequency

~, =2m), =ea/mc.

TWO METHODS OF SOLUTION

(6)

(7)

(8)

P(cIly 2PcI3yWlyZU2PBI )3
on phase space is given by

P(Ja & 27 3& ~l t 2$ M3)

(d J co J (d J
=constexp — ' '+ +

g(&, ) g(~2) g(~,)

wher«, =»J, and 3U, =8, /2m are the action and
angle variables of the multiply periodic mechani-

(10)

We can obtain the solutions for the three coupled
stochastic differential equations (6)-(8) by at
least two different approaches. One method in-
volving the explicit solutions for x and y was
presented" in 1975. The calculation given there
is suitable for the present analysis provided a
few minus signs are corrected" and provided we
do not make the weak-field approximation intro-
duced there. " The other method based upon
work" of 1978 involves the use of action-angle
variables for systems without harmonics. We
will follow this second method because we be-
lieve it is capable of general extension, and also
because the diamagnetism section of our work in
1978 contains all too many sloppy misprints. "

Our general analysis of 1978 involved nonrela-
tivistic charged systems with multiply periodic
orbits located in random classical electromag-
netic radiation. If the system involved only sim-
ple frequencies of oscillation with no harmonics,
then the distribution
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cal system and where g(&v) is the energy density
per normal mode in the random classical elec-
tromagnetic radiation. For Planck's spectrum
with zero-point radiation g(&u) is given by (5). In
the special case of zero temperature where only
zero-point radiation is present

g(1v) =-'2m(v,

the distribution takes the form

1& 2& 31~11~21~3)

(25)p, =HZ =-m(doC Sin+3,

where u „~„and u 3 are the angle variables

u)(=(d-t+ ~] t =1 2 3

with frequencies

(dl = (dL + (ds ~ . (d2 =- (dL + (ds p (d3 = (do ~

and arbitrary phase constants 6,

The motion is immediately separable in z so
that

(26)

(27)

= const exp[-2(J1 +J2+J,)/8] . (12)

Since the probability density (12) is a function of
only the adiabatic invariants Jl J2 and J3 of 'tile

mechanical system, the average values of the
adiabatic invariants (J;), and (J3) remain adiaba-
tic invariants in the presence of classical elec-
tromagnetic zero- point radiation. "

OBTAINING THE ACTION-ANGLE VARIABLES

The equations of motion for the mechanical
system corresponding to (6)—(8) for the charged
system are found by omitting the radiation damp-
ing and the random radiation field,

1 1 '~ ~zJ = —pdz= — dzv p =~2&8
277 ~ 2m g egg0 3

(28)

For multiply periodic systems which are not im-
mediately separable we can obtain the action
variables as"

(29)
1 2g

~i= — dgiZP2 -' ~

0 y ~Kg

In the present case the substitution of the solu-
tions (20), (21), (23), and (24) for x, y, p„, and

p, leads to

Jl = fRCO~C ~ J2 = Pl ~, (30)

g+ (d~ —(d&g = 0
~

y + (dog + (d~ g = 0
q

z +(doz =0 ~

The Hamiltonian for this system is

a=[p-( /. )A]'/2 +-,' ', P
= (p„'+p'„+p', )/2m + 1',(p, y —p1,x)

+-,'muP, (x'+y')+ —,'m ~2z2,

where we have chosen the vector potential
A

A =-2(iy —j x)B,
and have used I armor's frequency (dL,

&d/ = 2 &vs = eB/2m c,
and the frequency (d, ,

—(1v2 + 1v2 )1/2
S 0 L

The solution to the motion is given by

~ = 0', cosujl +S cosu)2,

y =-8 sinu)l+ sinmj2,

z =+ cosgg»

p, =mx+ (e/c)A„= m (x —&u~ y)

=-m+3(a sing, +(Bsing2),

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Thus solving for 8, S, and t- in terms of Jl J2,
and J„and then substituting back into (20)- (25),
we have x, y, z, P„, p„and P, expressed as func-
tions of the action-angle variables Jl j J2$ J3 gal,
zj2, and A@3.

SOLUTION IN TERMS OF ACTION-ANGLE VARIABLES

Next we express the particle energy, angular
momentum, and distance squared from the z
axis as functions of the action-angle variables.
From Eqs. (20)-(25), (28), (30), we find

P =('d J +(d J +('d J (31)

L„=m (ye —zy')

= [&v,(J,J3)'/' sin2v, singv3 —tu, (J2J3)'/' sin2v2 sing3

+ &, (J,J',)'/' cos2v, cos3v3

-~2(J2J3)'/2 cosg2 cosg3](2/~, 1v, )'/2, (32)

—1v, (J,J3)'/2 sin2v, cosg3

—1v2(J2J3) slllgv2 cos2v3](2/&3&3) (33)

L, = m (xy' —yx)

= f- &v,J, + 1v2J2 —2&v~(J,J2)'/'

L„=m(zx- xz)

= [1v,(J,J3)'/2 cos3v, sing, + ~,(J2J3)'/2 cosgv2 sing3

p„=my'+ (e/c)A =m(y'+ (v~x)

=-m 1vs(8 coszv, —63 cosg2), (24)

&& cos(2v, +3v, )]/&v, , (34)
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x'+y'= [J +J + (J J )'~'

x cos(w, +w, )]/(m(d~) .
AVERAGE VALUES FOR THE GENERAL CASE

(35)

OD oo po

(H) = dJ'~ dJ2 dJp dw~
0 0 0 0

21r

ZU2 6403

In order to evaluate the average values of
these quantities for the charged system (6)-(8)
in the presence of random classical radiation,
we merely average over phase space using the
distribution (10); for example, the average
energy is cothx = 1/x + —',x- —,', x'+ ' ' ' (46)

so that the leading term in (L,) involves

HIGH-TEMPERATURE (TRADITIONAL CLASSICAL) LIMIT

In the high-temperature limit KT» —,'k~ the
Planck spectrum goes over to the Rayleigh-
Jeans law which is compatible with the traditional
statistical mechanics of nonrelativistic parti-
cles." And within traditional statistical mechan-
ics there is no diamagnetic behavior whatso-
ever. " Thus for T -~, h(d/2KT «1, and we ex-
pand cothg for small x as

x HP(J„J„J„w„w„w,) . (36) ( )
(di KT (d2 KT
(dS (dl (dS Ctr2

(47)

In the case of Planck s spectrum with zero-point
radiation (5), the averages are

3

(H) =p (d, ,'Scot.—h(k(d,/2KT),

«„)=(LP=0, (38)

(L,) =-
( ') -'. Stoth(2 ') (- )-', lfcoth( '),

(39)

;h coth (R(d, /2KT) + -, 5 coth(5(d, /2KT)
+y

mes

(40)

(41)

Hence from Eqs. (38) and (39}we see that the
average value has only a z component.

LOW-TEMPERATURE LIMIT

In the limit of low temperature T-o, we have
coth(h(d/2KT) -1, and so

(H) = 2 5(dz + 2 5(d2 + 2 8(dp,

(L ) = ((d~ —(d )5/2((d~ = —(d~K((dp+ (d~)

(M,) =-(e/2mc)'BR((d2p+ uP~) '~',

(42)

(43)

(44}

The magnetic moment M differs from the angular
Lby simply the factor e/2mc,

M = (e/2mc)L.

and hence vanishes leaving

(Lg =-((d', —(d', )5 j(12(deKT) -0 for T-~ . (48)

Thus we recapture the traditional classical re-
sult with no diamagnetism.

Our calculation shows the mechanism for the
vanishing of the diamagnetic behavior. In the
Rayleigh-Jeans spectrum, and only in this spec-
trum, the contributions to the average angular
momentum for the opposite directions of rota-
tion give an exact cancellation no matter what
the strength of the magnetic field relative to the
binding potential. This corresponds to the fami-
liar mechanical mechanism which is presented
in the literature and in particular in VanVleck s
monograph. "

LIMIT OF WEAK MAGNETIC FIELD
COMPARED TO BINDING

(49)

(50)(d2 = —(d&+ ((dp+ (d&) = (dp —(d&,
2 2 1/2

(d = ((d +(d )ii = (dg 0 I 0

and the average angular momentum, which has
only the e component in (39), becomes

(51)

If the magnetic field 8 is small compared to the
binding due to the potential ~eB/2mc

~

=
~

(d~
~
«(d»

then we find the diamagnetic situation considered
by Marshall. ' In this case

(dz = (d& + ((dp+ (d&) = (dp + (0&,

(x'+y') = ff/m(d, = K((d'p+ (d2~) '~'. (45)
(L ) ~(d th

S(dp s[coth(h(dp/2KT)]
Q Co

2
—40L@

We note that (Mg in Eq. (44) involves the square
of the charge e and always points in a direction
opposite to the magnetic field. The sign of (L,)
can be traced back and can be seen to depend
upon the sign of e. %e see that when the charge
e changes sign, the roles of (d, and ~2 as larger
and smaller frequency are interchanged; this
reverses the sign of (L,) but not of (M,).

with (M,) = (e/2mc)(L, ). This result for (M,)
agrees with that of Marshall' and also with that
obtained from quantum theory. "

FREE-PARTICLE LIMIT

For the opposite limit of a free particle, we
allow the binding potential to become negligibly
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weak compared to the magnetic field trapping,
~, «j(u j

= jeB/mc j. ln this case

(53)

(54)

(55)

where we have assumed &~ =eB/mc is positive;
if ~ is negative, the roles of ~, and ~, are in-
terchanged. Thus for a free particle &,-0, and
we apply the expansion for cothx given in (46) Ito

obtain

(II) = w~ —,'8 coth(hes/2KT) + 2KT, (56)

(L,) =-5[coth(h~~/2KT) —2KT/@&u~j. (57)

The additive contributions 2KT in (H) and 2KT/&u~

in (L,) actually reflect the fact that the particle
was bound at temperature T befoxe the no-binding
limit was taken.

In the high-temperature limit we again apply
the expansion of cothx given in (46) and obtain

(60)

where the sign of (L,) is reversed if the charge
is negative. In this limit there is no effect of
the arbitrary weak binding, ~, -0. Now we find
that the charged particle assumes an average an-
gular momentum in a direction antiparallel to
the applied magnetic field, and this angular mo-
mentum has the value 5, where 5 is the constant
appearing as the scale factor in the classical
electromagnetic zero-point radiation. The value
for (L,) at zero temperature is independent of the
particle charge and mass, and is independent of
the magnetic field strength. Moreover no matter
what direction is chosen for the applied magnetic
field the angular momentum always has the com-
ponent 5 relative to this direction.

POSSIBLE CLASSICAL DERIVATION OF

PLANCK'S SPECTRUM

Q) =3KT,

(L,) —= —5'~~/6KT - 0 as T -~ .
(58)

(59)
The magnetic moment differs from the angular

momentum by the simple proportionality e/2mc,
so that

The first expression corresponds to the high-
temperature limit of a particle bound harmonically
in three dimensions. Furthermore the vanishing
of (L,) depends crucially on the contribution
2KT/&u~ in (57). Both these results show the re-
sidual effects of the binding of the particle, no
matter how weak the binding is. This agrees
with the emphasis in the literature" that the van-
ishing of diamagnetism within traditional classi-
cal statistical mechanics depends crucially upon
the existence of finite binding no matter how

weak.
In the opposite limit of zero temperature we

see the effects of the zero-point radiation alone.
In this case

(63)

then the average magnetic moment at tempera-
ture T is

(M,) = —je jh/2mc, (62)

where the absolute value of the charge je j
ap-

pears so that (Pl,) always points in a direction
opposite to that of the applied magnetic field B.
If we apply" Boltzmann statistics to this zero-
point magnetic moment regarding it as subject to
thermal fluctuations in orientation with an asso-
ciated additional energy relative to the antialigned
configuration

e =+(M).B=-(je j@B/2mc) cos8,

fo'dp f,'d8 sin8(- I e lb/2mc) cos8 exp(+ I e I hB cos8/2mcKT)
f, 'dp f;d8 sin8exp(+ le I KB cos8/2mcKT)

=- ( I e I b/2mc) [coth(k~s/2KT) —2KT/g(u~],

with ~~ = je jB/mc, which agrees exactly with the
result from (57) arising from the Planck spec-
trum. If one can justify this use of traditional
classical statistical mechanics for this system,
then this procedure will provide a derivation of
Planck's radiation spectrum within classical
electron theory with classical electromagnetic
zero-point radiation.

It should be emphasized how entirely foreign
to traditional classical electron theory are the

results appearing here. The angular momentum
(61) and the magnetic moment (62) of a free clas-
sical point charge are fixed values independent of
the strength of the magnetic field yet always have
a fixed component in the direction of the applied
magnetic field. Moreover the angular momentum
always has the magnitude 5, where h =2m5 is
Planck's constant chosen as the scale factor in
classical electromagnetic zero- point radiation.
All of these results have the flavor of quantum
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theory. Yet they are results of classical elec-
tron theory in which we have merely changed the
boundary condition to correspond to random
classical electromagnetic radiation with a
Lorentz-invariant spectrum, classical electro-
magnetic zero-point radiation.

CONNECTIONS WITH QUANTUM THEORY

The results found here for diamagnetism in
classical electrodynamics with classical elec-
tromagnetic zero-point radiation correspond to
Landau's diamagnetism of free electrons within
quantum theory. The quantum calculations look
entirely different from our classical ones but
the results for the average energy, angular mo-
mentum, and magnetic moment agree exactly.
The general connection between the classical and

quantum theories for this case follows along the
lines given earlier" for harmonic-oscillator sys-
tems in classical and quantum theories.

The diamagnetism of a free charged particle
in quantum theory was noted by Landau in 1930,
and can be obtained by solving the Schrodinger
equation in cylindrical polar coordinates

Bg 19$ 1 8$ 8(
8 =H =,+ ——+ —»+— --'.: ... , .' .:)

work though not introduced in terms of the har-
monic- oscillator binding used here.

CLOSING SUMMARY

The existence of diamagnetism within classical
electron theory depends crucially upon the spec-
trum of random radiation which is present at the
charged system. In order to interact with the
magnetic field, the particle must be charged.
However, a charged particle which is not im-
mersed in random radiation will radiate away
all its energy and come to rest. If random radia-
tion is present, then the particle will be put into
a fluctuating motion due to the random electro-
magnetic forces and in general there will be
residual magnetic effects. Two radiation spectra
play special roles. If the Rayleigh-Jeans spec-
trum of radiation is present, then diamagnetism
is not present because of cancelling of the an-
gular momentum contributions from particle mo-
tion associated with arbitrarily weak binding of
the charged particle. If the Lorentz-invariant
spectrum of classical electromagnetic zero-point
radiation is present, then for a nonrelativistic
free particle the average energy, average angu-
lar momentum, and average magnetic moment
agree exactly with the diamagnetism of quantum
theory.

~ ——+~mug p (+—,m&a, z g
e( 1 2 2 1 2 2'i 8&

(65}
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