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Monte Carlo results are found for a simple fluid with a pair potential consisting of a hard-sphere core and
a Lennard-Jones attractive tail. They are compared with several of the most promising recent theoretical
treatments of simple fluids, all of which involve the decomposition of the pair potential into a hard-sphere-
core term and an attractive-tail term. This direct comparison avoids the use of a second perturbation
scheme associated with softening the core, which would introduce an ambiguity in the significance of the
differences found between the theoretical and Monte Carlo results. The study includes the optimized
random-phase approximation (ORPA) and exponential (EXP) approximations of Andersen and Chandler,
an extension of the latter approximation to nodal order three (the N3 approximation), the linear-plus-square
(LIN 4+ SQ) approximation of Hdye and Stell, the renormalized hypernetted chain (RHNC) approximation
of Lado, and the quadratic (QUAD) approximation suggested by second-order self-consistent I" ordering,
the lowest order of which is identical to the ORPA. As anticipated on the basis of earlier studies, it is
found that the EXP approximation yields radial distribution functions and structure factors of excellent
overall accuracy in the liquid state, where the RHNC results are also excellent and the EXP, QUAD, and
LIN + SQ results prove to be virtually indistinguishable from one another. For all the approximations,
however, the thermodynamics from the compressibility relation are poor and the virial-theorem results are
not uniformly reliable. Somewhat more surprisingly, it is found that the EXP results yield a negative
structure factor S(k) for very small k in the liquid state and poor radial distribution functions at low
densities. The RHNC results are nowhere worse than the EXP results and in some states (e.g., at low
densities) much better. In contrast, the N3 results are better in some respects than the EXP results but
worse in others. The authors briefly comment on the RHNC and EXP approximations applied to the full
Lennard-Jones potential, for which the EXP approximation appears somewhat improved in the liquid state
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as a result of the softening of the potential core.

I. INTRODUCTION

Over the past decade there have been substantial
new developments in the characterization of the
structure and thermodynamics of a classical mon-
atomic liquid at equilibrium.' The purpose of this
paper is to examine in quantitative detail how far
several of the most promising of these develop-
ments take us, and what they are still unable to do.
This has entailed both generating new Monte Carlo
results and extending existing theoretical work.

Almost all of the significant recent theoretical
progress has involved adding an interparticle at-
traction as a perturbation to a reference-system
potential that can most profitably be taken to be a
hard-sphere potential. Application to pair poten-
tials that do not already have a strictly hard core,
such as the Lennard-Jones potential, entails a sec-
ond perturbative scheme associated with softening

the core, which inevitably brings with it additional .

errors and uncertainties. In order to avoid these
difficulties, we have for the most part compared
the various theories to new Monte Carlo results
for a potential with a hard-sphere core and a Len-
nard-Jones tail.

Among the several different approaches we scrut-

" inize is a nodally ordered approximation scheme

applied to a cluster expansion developed by Ander-
sen and Chandler? and, independently, by one of
us.® Its lowest-order result, of nodal order 2, is
the well-known exponential (EXP) approximation
of Andersen and Chandler.? We consider here the
result of nodal order 3, which we call the N3 ap-
proximation. We further show that if one sums
the expansion to all orders but excludes the terms
represented by diagrams of basic (i.e., “bridge”
or “elementary”) topological type, one recovers
an approximation previously proposed by Lado,
which we call here the renormalized hypernetted
chain (RHNC) approximation.? We also consider an
approximation proposed very recently by Hdye and
Stell,® the linear-plus-square (LIN +SQ) approxi-
mation, which was suggested to them by the struc-
ture of the mean spherical approximation (MSA).
Finally we examine the results of the self-consis-
tent I'-ordered approach of Stell and co-workers '
It yields a readily computable lowest-order result,
which in fact is identical to the optimized random-
phase approximation (ORPA) result of Andersen
and Chandler in their optimized mode-expansion
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theory.'? For the pair potential under consider-
ation the higher-order results are difficult to han-
dle without quite drastic approximations that sim-
plify their functional form (in contrast to the case
of simple lattice models, the primitive model of
an electrolyte, or a simple dipolar fluid, where
they are tractable'!). We give an argument lead-
ing to a simplification that results in two slightly
different approximate second-order results. One
proves to be the LIN +SQ approximation. The oth-
er we call the quadratic (QUAD) approximation.
Quantitative evaluation of the radial distribution
function g (») and structure factor S(%) in all of the
approximations mentioned above has been made
for a variety of densities. Although all of the com-
parisons with our hard-core Monte Carlo results
are, strictly speaking, new, some of them only
confirm conclusions that have already been clear
from earlier work. For example, we find that the
hard-sphere, MSA, and ORPA g(»)’s are already
good approximations to the full g(7) in the liquid
state, while the EXP g(7) is even better and is
remarkably accurate. Similarly we find that the
LIN +S8Q g (7)’s are indistinguishable from the EXP
g(7)’s in the liquid state, which is an immediate
consequence of the very small differences there
between the hard-sphere and ORPA g(7)’s. These
expected results by and large only serve to fur-
ther document the success of thermodynamic per-
turbation theories and their recent extensions when
applied to simple fluids. However, other results
" are less satisfactory in somewhat unexpected ways.
For example, we find that the EXP g(7) is serious-
ly inaccurate at typical compressed-vapor densi-
ties despite its exactitude in the zero-density limit.
One must go to the RHNC to obtain a uniformly re-
liable approximation to g(7) over the full range of
fluid densities that includes the vapor and liquid
state. Finally, some of our results are quite dis-
appointing and surprising. For instance, the EXP,
QUAD, and LIN +3SQ structure factors become neg-
ative over a certain range of small 2, and although
S(0) is positive in these approximations, it yields
inaccurate thermodynamic results, as does even
the S(0) of the RHNC equation, the best of the ap-
proximations that we consider here. (The virial-

theorem result for the RHNC approximation is also’

inaccurate.) A second disappointment is that the
nodal-ordering scheme in which EXP and N3 are
embedded does not converge rapidly enough to
yield a three-node approximant that is uniformly
better than the EXP result whenever the EXP re-
sult is already good. :

Our work here suggests that the absence of neg-
ative S(&) values in previous EXP studies of a Len-
nard-Jones fluid may be the result of compensating
errors that tend to shrink the interval over which

S(k) is negative as the hard core of the reference-
system potential is softened. (By directly compar-
ing Monte Carlo and EXP g(7)’s for the full Len-
nard-Jones potential as well as for the repulsive
Lennard-Jones core, we find further evidence that
the core-softening scheme used by Andersen,
Chandler, and Weeks to apply the EXP approxi-
mation to a Lennard-Jones potential increases

the relative accuracy of that approximation through
fortuitous cancellation of errors.) Our work fur-
ther points up the fact that even the most success-
ful of the theories we consider are incapable of
yielding the equation of state of a simple fluid with
high accuracy via the compressibility relation or
virial theorem, and it confirms that we still do
not have sufficiently reliable insight into the equi-
librium state of simple fluids to be able to sys-
tematically and uniformly improve successful ap-
proximations such as the EXP by means of the
formalisms that have been used to derive or just-
ify them. In short, real progress still appears to
involve much trial and error, and its significance
is understood only with the aid of hindsight.

II. NOTATION AND SOME FORMALISM

This section has the dual purpose of introducing
our notation and serving as a basis for our discus-
sion of the several cluster-integral formalisms
from which we derived the approximations we con-
sider. For a pair potential with a hard-sphere
(HS) core plus a softer part [v(r) = vy () +w (¥)] all
of these approximations can be regarded as having
two functions as their basic building blocks. The
first is just the hard-sphere radial distribution
function gys(#). The second is a “chain function”
we denote as €*(12), which is defined below [Eq.
(14)]. The lowest-order I' -ordered approximation
(LOGA) in the self-consistent T'-ordered scheme
of Stell and co-workers® ™ as well as the optimized
random-phase approximation of Andersen and
Chandler,'? which is identical to the LOGA, are
both given by the pair distribution function

g(12) =g, @) + ex(12) . (1)

For the same potential (v=vy +w) the mean spher-
ical approximation'® is given by the same expres-
sion, but with g, (¥) approximated by its MSA form
[i.e., the MSA approximation to g(12) when v =1y,
which is in turn identical to the Percus-Yevick'*
Eys ()], and €*(12), a functional of g, (»), likewise
approximated through the use of the MSA gy () in its
evaluation. Thus the MSA can itself be regarded
as a convenient approximation to the ORPA or
LOGA result, and for all but the most dense fluid
states it is a good approximation. [Globally, how-
ever, the ORPA and MSA results appear to be



crucially different, since it is to be anticipated
that use of the exact gHS(r) will in general lead to
a phase diagram that includes a solid-fluid transi-
tion, which is almost universally expected to oc-
cur even in the absence of attractive forces, i.e.,
in the absence of the €*(12) of (1). Use of the
Percus-Yevick (PY) gy(#), on the other hand,
will suppress any such transition, since the PY
gHs(r) itself shows no evidence of the hard-sphere
transition.’®] In our work here we always use the
best available'® assessments of the exact gys.
These are indistinguishable from the PY values
only for low densities.

We note that even the well-studied ORPA and
MSA results have heretofore been subjected to
little divect comparison with Monte Carlo (MC)
or molecular-dynamics results, since almost all
comparisons'”’ 8 involving the ORPA or MSA and
computer simulation for simple liquids have been
made for the Lennard-Jones potential, which does
not lend itself to immediate treatment by such ap-
proximation but instead requires the introduction
of a hard-core potential, adjusted to be as nearly
equivalent as possible to the Lennard-Jones poten-
tial. .

The main purpose of this paper is to give a divect
comparison between a number of theoretical re-
sults and MC results for a simple hard-core fluid,
defined by an interparticle potential that is espec-
ially suitable in this connection:

v(r) =vgs”) +w (r),

)= © for r<d,
U= 4 0 for r>d, (2

wr)y= 1 =€ for d<r<2Y¢q,
" 4el@/r)2 - @/r)] for r>2¥°d .,

The w (7) need not be prescribed for 7<d except by
the condition w (7)<,

For this potential the attractive w(#) can be
strictly regarded as a perturbation upon a hard-
sphere reference potential rather than upon a
reference potential that can only be related to
hard-sphere results by further perturbative or
variational treatment. We thus avoid having to
untangle the results of two separate approximations
that one faces in treating a Lennard-Jones system
in terms of a hard-sphere reference potential,
with the attendant ambiguities caused by compen-
sating errors and related complications.

For any v that is the sum of a repulsive refer-
ence term v, and an attractive perturbing term w,
the Andersen-Weeks-Chandler “high-temperature
approximation”¢:!° is based upon replacing the
radial distribution function g (») by e % yys(r/d),
where e™®® "y, (r/d) is gu(7), the hard-sphere
g (), and d is chosen so that
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[ 1) —ergir/araz=o. (3)

For the potential we treat here, this approximation
becomes simply

g =g, (1), @

which is also the lowest -order result for a straight-
forward expansion of g(») in 8.2° We find that the
EXP, ORPA, and LIN +SQ approximations are all
better than (4) over the full range of p and T that

" we have considered, as can be seen from our

tables and figures. The first-order result in 8,
in the notation developed below, is given by our
Eqgs. (7) and (36), with F'(12) given by

FL(12)=fd(3) d(4) F(13) &(34) F(42) .

We have not attempted the numerical evaluation
of this result here, because of its complexity.
We note in passing, however, that our represen-
tation has certainadvantages over the usual one?!* 22
for B expansions; in particular, it is valid as it
stands for both finite and infinite systems.

We turn now to some formal details relevant not
only to a potential given by (2) but more generally
to any pair potential v composed of a highly re-
pulsive core term v, (for simplicity we retain a
hard-core interaction) and a softer part w:

V=V W . (5)

Then the cluster-integral formalism of Lebowitz,
Stell, and Baer (LSB)® provides a decomposition
of the correlation functions into a long-range (L)
and a short-range (S) part, the contributions of
which are dominating at respectively large and
short separations of the particles. In particular,
for the two-particle Ursell function, related to

g(12) by
F(12) =p®g (12) — p*=p?n(12) (6)

(p is the average density of the system, assumed
homogeneous), we can write

F(12)=F5(12) +FX(12); (M

FS(12) is defined graphically®® as the subsum of all
cluster integrals in a @-bond, f,-bond representa-
tion of F(12) such that the points 1 and 2 are con-
nected by a path of f, bonds. Here .

= —Bw (8)
and
fo=e o1, (9)
Defining
F(12) =F(12) +p5(12) (10)

and F5(12) similarly, one can show® that £(12) is
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the sum of all irreducible graphs with ® bonds and
FS hypervertices?® having two white vertices la-
beled by 1 and 2.

The graphs appearing in F(12) can be ordered
according to a parameter y such that vl mea-
sures the range of w:

)

w(,y)=y3¢yr). (11)

As pointed out by LSB,° the orderings of the short-
and long-range functions must be considered sep-
arately. For FL(12) one obtains the following ex-
pansion:

FU(12) =p%ex(12) + 3 fd(s)- - - d(6) FS(134) e(35) €(46) F5(562)

+fd(3)- .- d(8) 75 (134) €(35) €(46) £ (567) € (78) 75 (82)

+1 f d(3)- - - d(10) £5 (13) e(34) £ (456) €(57) €(68) £5(789) €(9, 10) 5 (10, 2)

+higher-order terms,

where €(12) is the “chain sum”
e(12) =®(12) +fd(3) d(4) ®(13) 7S (34) @(42)

+ fd(s)- - d(6) B(13) £S5 (34) ®(45)

XFS(56) B(62) + -+ -, (13)
and €*(12) is defined by

p? e*(12) = f d(3) d(4) FS(13) e(34) £S5 (42). (14)

The FS(123) is obtained from the three-particle
Ursell function by

FS(123) =FS (123) +5(12) FS(13) +5(13) FS (12)
+6(23) FS(12) +p6(12) 5(13). (15)

The first term on the right-hand side (RHS) of (12)
" is of order ¥°, the next three terms are of order
¥®, and the neglected terms of order y°. Thus,
keeping only lowest-order terms in F*, we have

F(12) =FS (12) +p2e*(12). (16)

In the same way F5(12) can be y ordered, but
truncation of such an expansion would yield an
FS+F that would depend on the value of & inside
the core (because for v= v, +w such that v,=> for
r<d, w is not well defined for < d) and for arbi-
trary & would yield an 7(12) different from —1 in-
side the core. Instead one can determine FS in

a way that satisfies this core condition. To see
this, we define

¢(12) =¢(12) -5(12)/p, (17)

where ¢(12) is the familiar direct correlation func-
tion, so that the Ornstein-Zernike (OZ) equation
reads

_5(12) = [ ¢(13) F(23)d(3) . (18)

(12)

L]
The Fourier transform?* of (16) gives, using (14)
and (13),

F()=F°(&)/[1+F5(k) @(k)] , (19)
while (18) gives

F(k)=-1/2(%). (20)
Equating the RHS of (19) and (20), we get

c(k) =25 (k) +& (k) (21)
or, in real space,

c(12) =cS(12) +®(12) . (22)

If for » >=d we further approximate c5(12) by its
lowest-order y result ¢,(12), which is the direct
correlation function of a system of particles inter-
acting via v, only (i.e., of a hard-sphere system),
and impose the core condition %#(12) = -1 for r<d,
then ¢(12) is known for all # (via the OZ equation).
We then define, for all ¥, a c(12) given by

cS(12) =c(12) —3(12). (23)

With this choice, ¢(12) and %(12) are independent of
the value of ®(12)for » <d. Aparticularly conven-
ient choice of @ is the one that yields c®=¢, for
r<d as well as >d, and hence

FS=F,.. (24)
This choice,
®(12) =c(12) - c,(12), (25)

is identical with the “optimized” ® of Andersen
and Chandler? (i.e., chosen so that €*=0 for »<d)
and will be used throughout this paper.

The €*(12) defined by the lowest-order approxi-
mation

p?ex(12) =F(12) - F,(12) (26)
is quite close to the MSA result for F(12) - F,(12)
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[MSA assumes ¢,(12) =0 for »>d, already quite a
good approximation]. Note that Eqs. (26) and (1)
are the same, in slightly different notation. As
noted previously, this equation defines both the
LOGA' and ORPA™ results.

Several systematic means have been devised to
go beyond the MSA and LOGA/ORPA results. One
of them is based upon the %,-bond, €*-bond rep-
resentation of 7(12) given by Andersen and Chand-
ler? and, independently, by Stell.® If all graphs of
nodal order greater than 2 are neglected in this
expansion (where the nodal order of a graph is
simply the number of its vertices), one recovers
the EXP approximation of Andersen and Chandler®:

Sexe =g,e*. (27)

Retaining instead all graphs of nodal order up
through 3, we obtain an approximation that can
be written®: !¢

g=gEXP(1+2pS*3(:+ps *8), (28)
where

§=g,e® -1-¢*, (29a)

K=hy+€*=h (29b)

and we have used the convolution notation in (28):
A+B= [ a(3)A(13) B(23).

[In terms of 3¢ and 8 bonds the EXP approximation
is just n(12) =3 +8.] We refer to this as the N3
approximation for g(12). On the basis of the argu-
ments given in Refs. 2 and 3, one would expect the
N3 approximation to be an improvement over the
EXP approximation wherever one is considering

a state in which the EXP approximation is a good
one initially. And, on the basis of the same argu-
ments, one is led to expect that an even better ap-
proximation might result if one instead retained
all graphs in the h,-bond, €*-bond representation
of 1(12) except those that are of basic (elementary
or bridge) form, i.e., those that include at least
one subgraph with the topology

ra2)-= fd(s) A(4) A(13) A(14) A(23) A(24) A(34) .

(30)

We call the resulting approximation the renormal-
ized hypernetted chain approximation (RHNC), in
view of its inclusion of the same topological type
of cluster integral retained in the hypernetted
chain approximation,® but with a different set of
bond functions. Each graph omitted in either the
N3 or RHNC approximation for 7(12) represents a
cluster integral that involves two or more volume
integrations over at least one €* bond and further

C* bonds or %, bonds, with each integration ac-
companied by a factor of p. At liquid densities the
maximum amplitude of €* is small, while both e*
and z,are oscillatory about the value zero (see our
appendix for details); at suchdensities the cluster
integrals neglected in either approximation repre-
sent a relatively small contribution, because each
volume integration over a product of such oscillat-
ing functions is a smoothing operation tending to
yield a function of maximum amplitude smaller
than that of any of the bond functions. At lower
densities (at which €* is no longer small and oscil-
latory) the neglected integrals are still relatively
small, because they are all of second or higher
order in p. On the basis of this general argu-
ment—and in the absence of any further detailed
information concerning the relation between the
signs and magnitudes of the cluster integrals,
etc.—one concludes that the RHNC approximation
is likely to be somewhat better than the N3 approx-
imation, because it retains those graphs that make
the largest contribution to each nodal order rather
than simply neglecting all graphs beyond third or-
der. As we see in Sec. IIIA1, the N3 approxima-
tion only marginally fulfills the expectations en-
gendered by the above arguments, while the RHNC
approximation is indeed a clear improvement over
the EXP approximation.

When one sums only the series-parallel diagrams
in the k-bond expansion of Ing (12) +Bv(12), the re-
sult is the original hypernetted chain (HNC) ap-
proximation?s: '

Ing (12) +Bv(12) =h(12) - c(12) . (31)

The motivation for the series-parallel summation
that yields (31) can be summarized by the same
argument that we applied to the %,-bond, €*-bond
expansion of %(12), except it is weaker: In the k-
bond expansion of Ing+pBv there is no €* bond in
each neglected basic graph that is guaranteed to be
small at liquid densities.

The RHNC approximation that results from ser-
ies-parallel summation of the %,-bond, €*-bond
expansion of 7(12) can also be expressed as a sim-
ple expression analogous to (31):

In[ g(12)/g,(12)]
=n(12) = Ry(12) = [c(12) — c,(12)] +8(12).  (32)

This proves to be identical to an approximation
suggested by Lado* if his v(12) - v,(12) (indeter-
minate inside our hard core) is identified with our
&(12). He arrived at his result by arguing that in-
stead of neglecting completely the sum of basic
graphs 5(12) in fhe %-bond expansion of lng(12)
+Bv(12), whose inclusion yields the exact expres-
sion
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Ing (12) +Bv(12) =h(12) — c(12) +(12), (33)

one might sensibly approximate the sum by 5,(12),
which is the function that 5(12) becomes when v(12)
is vy(12). For v=v, one has from (33)

Ing o(12) +Bry(12) =ho(12) — c,(12) +bo(12) . (34)

Letting 5(12) =5,(12) in (33) and subtracting (34)
from the result yields (32), if v(12) —v,(12) is
chosen to be ®(12) inside as well as outside the
hard-core region of the potential. To complete the
definition of the RHNC, the ¢(12) appearing in (32)
must be related to the #(12) and g(12) appearing
there via the OZ equation [our Eq. (18)].

Another approximation that we evaluate in this
paper was recently suggested by Hdye and Stell®
as a means of using the solution of the MSA to
generate an approximation with improved thermo-
dynamic self-consistency. They propose

g(12) =g () [1+e*(12)] + 3[e*(12)]2, (35)

with g, and €* evaluated in the MSA for analytic
simplicity (but here we evaluate g, and €* using
the best available hard-sphere results). We call
(35) the LIN +SQ approximation. It is clear that
in the liquid state of a simple fluid, where €*(12)
has a small amplitude, the LIN +3Q approximation
will be quite similar to the EXP approximation
(except possibly for » immediately outside the
hard-core diameter d, where g, can be quite
large). What is not clear a priori is just how sim-
ilar it is quantitatively, and how it differs from
the EXP compared to the N3 and RHNC results.
We consider these equations in Sec. III.

In considering dipolar liquids, Verlet and Weis?®
were led to an even simpler LIN approximation,

g(12) =gy(r)[1+ex(12)]

dictated by the special symmetries of a dipolar
potential, for which it proved far superior to the
EXP approximation. Preliminary results also
suggested to them that the LIN approximation would
likewise prove superior in a'simple Lennard-Jones
liquid; our results here do not bear out that con-
clusion, however.

The final set of approximations we cons1der be-
fore turning to our numerical results are those
generated by the self-consistent second-order
T -ordered result, in which [cf. Eq. (2.15) of Ref.
6]

5°F,(12)

s = 3| =
F(12)=F(12) + 2 | 5 ey

FL(34)d(3) d(4)

(36)

and FL(12) is given by the four terms exhibited in
(12). [ FY(12) it is appropriate to use the lowest-
order results for #5(12), e(12, ), and FS(123),
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namely, F,(12), e(12,F,), and F,(123).] This re-
sult, involving as it does three-body and four-
body correlation functions, is intractably difficult
to evaluate as it stands. One direction in which
simplification lies was already discussed by Hem-
mer? in his pioneering y-expansion study; if one
further y-expands the RHS of Eq. (36), one obtains

1 9 F°(12)
ap®

FS(12) =F,(12) + FL(12)

+higher-order terms in . (37)

One can similarly y-expand the terms shown in
Eq. (12) to eliminate all the three- and four-body
correlation functions there in favor of thermo-
dynamic factors plus higher-order terms in y.

As one of us has discussed at length in Ref, 11,
the resulting “nodally contracted” expressions
are probably accurate enough to be useful in mak-
ing order-of-magnitude comparisons among the
original cluster integrals in (12) under liquid-state
conditions. We have concluded, however, that they
are not likely to be accurate enough to yield quan-
titatively satisfactory approximations as they
stand, for the following reason: Only if functions
such as F¥(12), €(12), and €*(12) were weak,
long-ranged, nonoscillatory functions [as they
would be, for example, if w(12) were weak, long
ranged, and nonoscillatory], would the lowest-
order terms in the resulting y-expanded results
be quantitatively accurate. But the F¥, ¢, and e*
although weak, are oscillatory under liquid-state
conditions. Therefore the arguments most rele-
vant to further simplification of expressions such
as (36) and (12) are instead those that we have al-
ready discussed in considering the motivation for
the N3 and RHNC approximations. Rewriting the
integral of (36) to get

FS(12) —=F(12)

=ny(12) F*(12) +2p f%#(szm(s)

6h0(12)
+3p° f 5p(3) 5p(@)

F'(34)a(3)d(4),  (38)
we see that under liquid-state conditions, where
FU(ij) is expected to be small in amplitude and
spatially oscillatory, and 674(12)/6p(3) and
8%n,(12)/[8p(3) 8p(4)] are also expected to be os-
cillatory, the last two terms on the RHS of (38)
can be expected to be small compared to the first
term. At low densities this must also be true,
since the last two terms are of higher order in p
than the first. This leaves us, for both low and
liquid-state densities,

FS(12) = Fo(12) +74(12) F(12) . (39)



21 STRUCTURE AND THERMODYNAMICS OF A SIMPLE FLUID ‘ 651

Similar arguments applied to the terms in (12) in-
dicate that the first integral on the RHS there dom-
inates the last two for both low and high p. Having
gotten this far, we are still left with a term com-
ing from (12),

3 f d(3)- - -d(6) F,(134) ©(35) €(46) #,(562),  (40)

that is essentially unmanageable, largely because
of the two three-body F,’s that remain in the inte-
grand, but also because it is ©* [rather than the
appearing in (40)] that is a readily available func-
tion from the first-order results. However, since
F(123) has an h,-bond expansion and €*(ij) itself
can be reexpressed in terms of € bonds and 7,
bonds, we can write the difference between expres-
sion (40) and 3[@*(12)]2 as an k,-bond, € -bond ex-
pansion to get

3 [a(3)- - d(6) F,(134) e(35) e(46) F(562)
= Hex(12)]*+p/f () €*(13) o(23)

+3p? f d(3) d(4) g(13) C2(34) 1,(42) + - - - . (41)

Applying the by now familiar arguments that we
have invoked several times before in this section
leads us to expect that the integrals on the RHS of
(41) will be small compared to 3[€*(12)]2, so we
expect a reasonable approximation will be given by

FL(12) =p?e*(12) + 3p?[ €*(12)]2. (42)
Combining (39) and (42), we get the approximation
gQUAD=gO(1+(‘3*+%e*2) . (43)

[This approximation will be called QUAD (quad-
ratic). ]

If only the lowest-order term p2€* in F* is re-
tained in calculating F® from (39), i.e., if we let

FS=F,+h,p?e*, (44)

then we recover the structurally simpler LIN +SQ
approximation discussed earlier,

81IN+sQ =g (1+e¥) +3ex, : (45)

Thus the second-order y-ordered result does not
suggest approximations that are different in any
fundamental way from those already discussed.
The QUAD and LIN +SQ bear the hallmark of
“second orderness” in y ordering by being in-
trinsically quadratic rather than exponential (in
¥%, and therefore in €*); this proves not to be a
handicap in the liquid region (where they are in-
distinguishable from EXP). In the low-density
region, where they are inferior to EXP for small
7, EXP proves poor enough for larger 7 to be of

only limited use in the first place.

The main advantage that LIN +SQ has over EXP
is analytic simplicity. A Lennard-Jones potential
can be very well approximated by either its positive
part, or its repulsive part, plus a linear combin-
ation of two Yukawa potentials; the positive (or
repulsive) part can in turn be treated by means of
either the Andersen-Chandler-Weeks'” or the
Barker-Henderson® perturbation procedures, re-
spectively, which perturb off the hard-sphere re-
sult. But €*(12) for a potential given by a linear
combination of two Yukawas plus a hard-sphere
core can be treated wholly analytically®®:2°; as a
result, for this potential the LIN +SQ approxima-
tion can be solved in essentially closed analytic
form for the structure factor and for its thermo-
dynamics as well as for g(12) itself. This is true
neither for the EXP nor the QUAD approximations.

III. NUMERICAL RESULTS
A. Hard-sphere potential with attractive Lennard-Jones tail

To test the accuracy of the approximations we
have discussed, we performed MC calculations
[864 particles, (1-2)X10° configurations] and at
low density solved the PY equation for a hypothet-
ical fluid where the particles interact through the
potential v given by (2). Numerical computations
for this interaction (rather than for a Lennard-
Jones interaction) avoid the further approximations
necessary to take into account the finite steepness
of the repulsive part of the Lennard-Jones interac-
tion, and thus allow for a more stringent test in the
region immediately outside the hard core. For the
Lennard-Jones interaction, differences in g ()
near the core tend to be suppressed to some ex-
tent by the e % factor in g(r). -

C* was calculated by minimizing the ring-dia-
gram contribution to the free energy with respect
to a variation of ® inside the core, as explained
in the work of Andersen and Chandler.? For the
pure hard-sphere g, (r), we used the phenomen-
ological expressions of Ref. 16 for pd3>0.5 and
the PY solution for pd®<0.5.

Typical gaseous and liquid densities for the po-
tential given by Eq. (2) are much the same as those
for a Lennard-Jones potential. [To be more pre-
cise, the liquid-state density range is shifted to
slightly higher density values compared to the Len-
nard-Jones (LJ) case. A typical liquid point for an
LJ system is the point po®=0.84, kT /€ =0.75. The
correspondong hard-sphere diameter, according
to the Weeks-Chandler-Andersen recipe,’®*!7 is
d =1.022. This gives an “equivalent” density for
our potential of pd®=0.897.] In all our tables,
figures, and discussion of the potential given by
Eq. (2) we take d =1 and 2/e=1.
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In describing our results, we are faced with a
problem familiar to all who wish to present and
analyze many data points representing functions
that have considerable structure. On the one hand,
a figure can convey at a glance key features and
significant trends that a table cannot; on the other
hand, as source material a figure is frustrating
and often virtually useless compared to a table
because of the relatively low accuracy of the in-
formation that can be read from it. Because of
the role as reference material that most of our
numerical output is likely to assume, we have
chosen to give most of it as tables rather than
figures, supplemented by the brief verbal de-
scriptions below. These descriptions are, how-
ever, highly subjective—what we characterize

as a “barely adequate” approximation may be the
next man’s “nearly exact” result. The problem
here is not simply a matter of differing opinion
either, but involves the fact that the adequacy of
an approximation is a function of how one intends
to use it. So we warn readers nof to take too
seriously the verbal descriptions below and urge
them instead to consult our tabulated data when-
ever a precise comparison of relative accuracies
is needed. In the interest of brevity we reproduce
in the main body of the text only tables and figures
that we single out for special comment in our dis-
cussion below. An appendix consisting of a full set
of supplementary tables for the eight thermodyn-
amic states we have investigated is available upon
request from either author.

TABLE I. Various approximations and Monte Carlo values for g(») of a system of particles
interacting through a hard-core term plus the attractive part of a Lennard-Jones potential
[cf. Eq. (2)]. Notations are explained in text. This table is for p=0.1 and 7=1.20.

r/d HS e* EXP N3 RHNC LIN+SQ QUAD PY
1.000 1.143  0.730  2.372  2.144 2.500 2.244 2.282 2,490
1.040 1131  0.729 2.344  2.120 2.462 2.221 2.256 2.453
1.080 1120  0.728  2.319  2.099 2.430 2.200 2.232 2.420
1120 1.110  0.728 - 2.297  2.081 2.401 2.182 2.211 2.390
1160  1.099  0.702  2.217  2.016 2.313 2.117 2.141 2.302
1.200 1.089  0.639  2.064  1.892 2.150 1.989 2.008 2.138
1.240 1.080 0.563  1.896  1.756 1.975 1.846 1.859 1.963
1.280 1.071  0.486  1.742  1.628 1.813 1.710 1.719 1.802
1.320 1.063  0.415 1.609  1.518 1.675 1.589 1.595 1.663
1.360  1.055  0.351  1.498 1,425 1.559 1.486 1.490 1.549
1.400 1,047 0.295 1.407  1.349 1.465 1.400 1.402 1.455
1.440 1,040  0.248 1,332  1.286 1.389 1.328 1.330 1.379
1.480  1.034  0.207 1.272  1.235 1.327 1.270 1.270 1.318
1,520  1.028  0.174  1.223  1.193 1.278 1.221 1.222 1.268
1560  1.022  0.146 1,183  1.160 1.238 1.182 1.182 1.229
1.600 1.017 0.123 1,151  1.133 1.207 1.150 1.150 1.198
1.640 1,013  0.105 1.125 1,111 1.182 1.125 1.125 1.173
1.680  1.009  0.090 1.104  1.095 1.162 1.104 1.104 1.154
1.720 1,005  0.079  1.088  1.081 1.148 1.087 1.087 1.140
1.760  1.002  0.070 1,075  1.072 1.137 1.075 1.075 1.129
1.800  1.000  0.063  1.065  1.065 1.130 1.065 1.065 1.122
1.840  0.998  0.059  1.058  1.060 1.125 1.058 1.058 1.117
1.880  0.997  0.056  1.054  1.058 1.124 1.054 1.054 1.115
1.920  0.996  0.054  1.051 = 1.058 1.125 1.051 1,051 1.116
1.960  0.996  0.054 1,051  1.060 1.127 1.051 1.051 1.118
2.000 0.996  0.055 1.052  1.063 1.132 1.052 1.052 1.122
2.040  0.997  0.056 1,054  1.067 1,137 1.054 1.054 1.126
2,080 0998  0.056 1.055  1.069 1.140 1.055 1.055 1.129
2,120 0998 0.057 1.056  1.070 1.141 1.056 1.056 1.129
2.160  0.998  0.057 1,057 1,070 1.140 1.056 1.056 1.128
2.200  0.999  0.056  1.056  1.069 1.137 1.056 1.056 1.125
2.240 0,999  0.054  1.055  1.067 1.133 1.055 1.055 1.121
2.280  0.999  0.053  1.053  1.064 1.128 1.053 1.053 1.116
2.320  1.000  0.050  1.051  1.060 1.122 1.051 1.051 1.110
2.360  1.000 0.048  1.049  1.056 1.115 1.049 1.049 1.104
2.400 1.000 0.045 1.046 1,052 1,109 1,046 1.046 1.098
2.440  1.000  0.043  1.044  1.049 1.102 1.044 1.044 1.092




1. Results for g(r)

Results for eight thermodynamic states covering
the whole density region were obtained by us. Be-
sides the LIN +SQ, QUAD, EXP, and RHNC re-
sults for all states, the results give the pure hard-
sphere pair correlation function g, €* and es-
sentially exact results, either MC or PY, depend-

ing upon the density. (At p=0.1the PY results can

be regarded as exact; at p=0.2 the MC and PY re-
sults are roughly of the same degree of reliability
and we give them both.) The LOGA/ORPA result
is simply obtained from our results as g 4+ C*,
We also give N3 results.*®

Briefly, we find that the EXP, QUAD, and LIN
+SQ approximations are all of essentially equal
accuracy in the liquid state. They are all of some-
what greater overall accuracy than the LOGA/ORPA
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results, which are already of satisfactory accur-
acy for many purposes in the liquid region. On the
face of it, one of the attractive features of the EXP
approximation lacking in the ORPA, QUAD, and
LIN +SQ results is that the EXP g(12) goes to the
exact limiting result, e #*'® when p~0. This
would suggest that the EXP approximation might
be usefully accurate all the way from typical liquid
densities to zero density, in contrast to the ORPA,
QUAD, and LIN +SQ approximations, which one
has no reason to expect to remain accurate as
p—-0. Our results show, however, that the EXP
breaks down badly at low density (o0 =0.1) and rel-
atively low temperature (e.g., at T=1.2) for »>1.5,
as do the ORPA, QUAD, and LIN+S5Q g’s. The
fact that the EXP approximation becomes exact as
p—0 is reflected at p=0.1 in the behavior of gy, ,
mainly in the interval 1<#<1.5, where g, is

TABLE II. As Table I, with p=0.1 and T=1.35.

r/d HS c* EXP N3 RHNC LIN +8SQ QUAD PY
1.000 1.143 0.633 2.151 2.401 2.163 2.066 2.094 2.181
1.040 1.131 0.632 2.128 2.371 2.138 2.046 2.072 2.153
1.080 1.120 0.632 2.107 2.345 2.115 2.028 2.052 2.128
1.120 1.110 0.632 2.088 2.322 2.095 2.011 2.033 2.106
1.160 1.099 0.610 2.023 2.242 2.029 1.956 1.974 2.038
1.200 1.089 0.555 1.897 2.087 1.903 1.847 1.861 1.909
1.240 1.080 0.488 1.759 1.919 1.765 1.726 1.735 1.769
1.280 1.071 0.420 1.630 1.764 1.636 1.609 1.616 1.639
1.320 1.063 0.357 1.518 1.631 1.525 1.506 1.510 1.527
1.360 1.055 0.300 1.424 1.520 1.432 1.417 1.419 1.433
1.400 1.047 0.251 1.346 1.429 1.354 1.342 1.343 1.355
1.440 1.040 0.209 1.282 1.355 1.291 1.280 1.281 1.291
1.480 1.034 0.174 1.230 1.296 1.240 1.228 1.229 1.240
1.520 1.028 0.144 1.187 1.248 1.199 1.186 1.186 1.198
1.560 1.022 0.120 1.152 1.209 1.165 1.151 1.152 1.164
1.600 1.017 0.100 1.124 1.178 1.138 1.123 1.123 1.138
1.640 1.013 0.083 1.101 1.153 1.116 1.100 1.100 1.116
1.680 1.009 0.070 1.082 1.134 1.100 1.082 1.082 1.099
1.720 1.005 0.060 1.067 1.119 1.087 1.067 1.067 1.087
1.760 1.002 0.052 1.056 1.108 1.077 1.056 1.056 1.077
1.800 1.000 0.047 1.048 1.101 1.070 1.048 1.048 1.071
1.840 0.998 0.043 1.042 1.096 1.066 1.042 1.042 1.066
1.880 0.997 0.040 1.038 1.094 1.064 1.038 1.038 1.064
1.920 0.996 0.039 1.036 1.094 1.064 1.036 1.036 1.064
1.960 0.996 0.039 1.035 1.096 1.065 1.035 1.035 1.066
2.000 0.996 0.040 1.036 1.099 1.069 1.036 1.036 1.069
2.040 0.997 0.041 1.038 1.103 1.072 1.038 1.038 1.072
2.080 0.998 0.041 1.040 1.106 1.074 1.040 1.040 1.074
2.120 0.998 0.042 1.041 1.106 1.076 1.041 1.041 1.075
2.160 0.998 0.042 1.041 1.106 1.076 1.041 1.041 1.075
2.200 0.999 0.041 1.041 1.103 1.074 1.041 1.041 1.074
2.240 0.999 0.040 1.040 1.099 1.072 1.040 1.040 1.071
2.280 0.999 0.039 1.039 1.095 1.069 1.039 1.039 1.068
2.320 1.000 0.037 1.038 1.089 1.065 1.038 1.038 1.065
2.360 1.000 = 0.036 1.036 1.084 1.061 1.036 1.036 1.061 -
2.400 1.000 0.034 1.034 1.078 1.058 1.034 1.034 1.057
2.440 1.000 0.032 1.032 1.072 1.054 1.032 1.032 1.053
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TABLE III. Various approximations and Monte Carlo
values for S(k) of a system with potential given by Eq.
(2). See text for notations; this table is for p=0.90 and
T=0.75.
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TABLE IV. Same as Table I, with p=0.91and T

=1.35.

kd HS MC RHNC ORPA EXP

kd HS MC RHNC ORPA EXP

0.400 0.024  0.089 0.043 0.045 0.158
0.800 0.025  0.075 0.041 0.043 0.067

1.200 0.027 0.064 0.039 0.040 -0.007
1.600 0.029 0.056 0.037 0.039 —0.045
2.000 0.032 0.052 0.037 0.039 -0.049
2.400 0.035 0.050 0.039 0.041 -0.032
2.800 0.041 0.051 0.042 0.044 -0.004

3.200 0.049 0.055 0.049 0.050 0.029
3.600 0.062 0.063 0.059 0.061 0.065
4.000 0.082 0.077 0.076 0.078 0.102
4.400 0.115 0.102 0.104 0.108 0.145
4.800 0.170 0.147 0.153 0.158 0.202
5.200 0.270 0.232 0.242 0.249 0.292
5.600 0.462 0.405 0.420 0.429 0.465
6.000 0.861 0.793 0.813 0.819 0.842

6.400 1.662 1.669 1.687 1.667 1.672
6.800 2.549 2.796 2.755 2.698 2.686
7.200 2.292  2.433 2.364 2.360 2.334
7.600 1.566 1.545 1.522 1.540 1.506

8.000 1.094 1.032 1.037 1.054 1.018
8.400 0.837 0.773  0.790 0.802 0.772

8.800 0.698 0.644 0.662 0.672 0.652
9.200 0.628 0.587 0.602 0.610 0.601
9.600 0.604 0.577 0.585 0.592 0.595

reasonably accurate at such densities and tem-
peratures, whereas g ..., Eouap’ and 8Lin+sg 2T
not. However, at p=0.1and T=1.2, guyp, Zoreas
8ouaps 20d gy 5o 211 give identical (and unsatis-
factory) results for somewhat larger ». The
RHNC approximation, on the other hand, is es-
sentially exact for all » at this state. At p=0.1
and T =1.35, gy, remains unsatisfactory for larg-
er 7, whereas RENC remains satisfactory for all
7. At p=0.2 and T =1.6, the RHNC and EXP re-
sults are of comparable overall accuracy (and the
EXP and QUAD results have become virtually in-
distinguishable). See Tables I and II.

At intermediate density (p=0.6) and T'=1.6 [con-
vergence difficulties in the MC process seemed to
indicate that for the potential (2) the state with
T =1.35 was already in the metastable region],
€* is small, especially in the core region, so that
8ouap® Siin+so? and g . give virtually identical
answers which are, moreover, in excellent agree-
ment with gp, - and the “exact” MC result.

As the density is increased, €* becomes neg-
ative for 7 close to the core and the different
g(r)’s are smaller than g in this region, in »
agreement with MC calculations. However, gi..,
Zouap’ and gj |y +sq, Which are practically identical,
differ from the “exact” result by as much as 0.15

0.400 0.023 0.124 0.030 0.031 0.072
0.800 0.024 0.106 0.030 0.031 0.025

1.200 0.025 0.088 0.030 0.031 -0.011
1.600 0.027 0.073 0.031 0.032 -0.026
2.000 0.030 0.062 0.033 0.033 -0.023
2.400 0.034 0.055 0.035 0.036 -0.008

2.800 0.039 0.052 0.039 0.040 0.014
3.200  0.047 0.052 0.046 0.047 0.038
3.600  0.058 0.057 0.057 0.058 0.064
4.000 0.077 0.068 0.074 0.076 0.094
4.400 0.109 0.089 0.103 0.105 0.130
4.800 0.161 0.129 0.152 0.155 0.182
5.200 0.255 0.210 0.241 0.245 0.270
5.600 0.438 0.383 0.416 0.421 0.441
6.000 0.821 0.788 0.795 0.799 0.810
6.400 1.615 1.698 1.626 1.617 1.617
6.800 2.581 2.758 2.694 2.663 2.653
7.200 2.367 2.396 2.410 2.406 2.388
7.600 1.599 1.577 1.573 1.584 = 1.562
8.000 1.102 1.073 1.069 1.079 1.058
8.400 0.835 0.803 0.809 0.816 0.799
8.800 0.693 0.662 0.673 0.678 0.668
9.200 0.621 0.595 0.606 0.611 0.608
9.600 0.595 0.579 0.585 0.589 0.593

in the region immediately outside the core. We
note also that for this low temperature (T'=0.75)
the pair correlation function still differs notice-
ably from the pure hard-sphere value (high-tem-
perature limit).

At high densities the RHNC and EXP results for
g () are of comparable accuracy, so the superi-
ority of the RHNC results for low densities, as
well as its high-density superiority in terms of
S(%) that we discuss below, give it an overall ad-
vantage. The N3 approximation, on the other
hand, does not seem globally superior to the EXP
approximation. At lower and intermediate densi-
ties (through p =0.6), N3 is superior to the EXP
for larger 7, but a bit worse in the region close to
the core. For p=0.9,7=0.75, close to the core the
N3 approximation becomes superior to the EXP,
but its long-range oscillations are somewhat less
accurate.

2. Results for S(k)

The structure factor S(&) is the three-dimension-
al Fourier transform of ph(») +6(#):

s = [ e[ onr) vo(r)az. (46)

For the S(k) associated with the potential given by
Eq. (2) we compare various results in our tables.
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TABLE V. Internal energy per particle, compressibility factor, and contact values of g() for the system with po-
tential given by Eq. (2). RHNC and EXP approximations are compared with Percus-Yevick values for p=0.1 (essential-

ly exact at this density) and Monte Carlo values for higher densities.

Bu Z=p/pkT g(1)

P T MC RHNC EXP MC RHNC EXP MC RHNC EXP
0.1 1.20 -0.785 -0.790 -0.755 0.628 0.624 0.637 2.490 2.500 2.372
0.1 1.35 -0.638 -0.638 -~0.632 0.716 0.711 0.716 2.181 2.163 2.151
0.2 1.60 -0.96 ~0.964 -0.974 0.67 0.651 0.665 1.94 1.903 1.949
0.3 1.35 ~1.762 -1.774 0.278 0.313 2.106 2.151
0.5 1.35 ~2.766 -2.827 0.06 0.126 2.112 2.209
0.6 1.60 ~0.284 +£0.01 -2.825 ~2.858 1.12 1.045 1.089 2.57 +£0.02 2.507 2.560
0.85 0.85 -7.89 +0.01 ~7.876 ~7.842 0.41 0.1 0.71 0.24 3.94 + 0,04 4.086 3.860
0.9 0.75 -9.,561 +0.01 -~9.502 -9.414 0.54+0.1 0.96 0.16 4.44 + 0.04 4.65 4.29
0.91 1.35 ~5.32 +£0.01 -5.33 -5.29 5.41+0.1 5.64 5.15 4.90 +0.04 5.01 4.77
0.91 2.74 -2.62 +0.01 -2.62 -2.61 8.75+0.1 8.42 ~8.16 5.15 +0.05 5.16 5.03
0.94 1.35 -5.52 —5.47 6.21 6.79 5.47 5.19

For all densities represented except p=0.1, Monte
Carlo results are shown. At p=0.1 the PY results
can be regarded as essentially exact, except per-
haps for £=0.2, 0.4, and 0.6, where the disparity
between the PY and RHNC results [both of which
coincide through O(p?) and are therefore expected
to be of comparable accuracy in this regime] be-
comes non-negligible, All MC S(k)’s were obtained
by Fourier-transforming the MC g(7)’s (extended
beyond 7 =2.5d by the procedure described by
Verlet®'),

For all &, including the first peak and beyond
(i.e., £=>5.0), the EXP and RHNC results are both
highly accurate, with the ORPA already more than
adequate for many purposes and even the HS re-
sult remarkably similar to the MC curve at liquid
densities, However, striking differences emerge
among the HS, ORPA, EXP, and RHNC results,
and between each of them and the MC results, for
smaller k. Since

1ims(k)=1+pfh(r)dhk:r(—a—p—)T, (47)

k>0 ap
this means in particular that in these approxi-
mations there will be large differences between,
and errors in, the thermodynamics computed ac-
cording to (47). (We have not tabulated QUAD and
LIN +8Q results for S(k), because they are so
similar in all essential respects to the EXP re-
sults.) The most unexpected and disquieting fea-
ture of these small-Z results is that EXP takes
on negative values at liquid-state densities and
temperatures. See Tables III and IV.

3. Thermodynamic results

The S(2) tabulation, along with Eq. (47), already
provides one route to thermodynamics, via the
isothermal compressibility. As we have just seen

in Sec. IIT A 3, it is not an accurate route when
used with even the best of the approximations we
are considering. The virial theorem

)
o dt (48)

B8
z=%—’=1—?p [rgo

provides another route, which is more satisfac-
tory but still poor in the low-temperature liquid
regime (p =0.85, T=0.85; and p=0.9, T =0.75), as
shown in Table V. Still a third route is via the
internal energy, computed from the equation for

1 1 i 1
1.0 20 r7d

FIG. 1. Radial distribution function gy(7) for the re-
pulsive partv,(7) of the Lennard-Jones potential vy
=4el(o/7) 1% (6/7)%], where vy(7)=vp5(7)+e for »<2!/5,
and v(7) =0 for 7>21/8:. Monte Carlo values (open cir-
cles) are compared with Andersen-Chandler-Weeks val-
ues (solid line) given by Eq. (50), as described in Ref.
17; po®=0.84, kT/€=0.75.
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10 ' 2.0 r/d

FIG. 2. Radial distribution function for the full Len-
nard-Jones potential v;; compared with Monte Carlo
(MC) values (open circles) for po®=0.84, £T/e=0.75.
For vy the EXP values (solid line) are computed as dis-
cussed in Ref. 17; RHNC values (triangles) are computed
using the MC values for g((7), as discussed in text.

the configurational energy per particle, i.e.,
u=%p j 2(r) vlr)dF. (49)

As shown in Table V, the EXP and RHNC approxi-
mations both yield highly accurate results for the
energy over a wide range of thermodynamic states:

B. Lennard-Jones potential

The use of the potential given by Eq. (2) has en-
abled us to avoid the problem of introducing a sec-
ond set of approximations associated with soften-
ing a hard core to obtain the repulsive core of the
LJ potential. Here we wish to address that ques-

tion for one typical liquid-state LJ point (p =0.84,
T =0.75). We plot in Fig. 1 a comparison of the
Monte Carlo g,(#) and the Andersen-Chandler-
Weeks (ACW)'" g (7) for the repulsive part v,(7)
of the LJ potential v, [i.e., v,(#)=vy,(r)+€ for
7<2%%g and zero for »>2"%s]. The ACW g(7) is

go(r)=e B0y (r/d), (50)

where y ¢ is the hard-sphere y function and

d =1.0222¢. The approximation is adequate but
not good. In Fig. 2 we compare on the same scale
g (r)’s for the full Lennard-Jones potential at
p=0.84,T =0.75, showing MC, EXP, and RHNC
points, using the g,(7) of (50) in the EXP approxi-
mation, as prescribed in Ref, 17, and the MC
go() of Fig. 1 in the RHNC equation (32), with
®=-B(y,, —v,). We see that the EXP approxima-
tion is excellent and that the RHNC result is not
appreciably better despite our use of exact g,’s

in computing it. If we had used exact g,’s in the
computation of the EXP g (), however, it would
have been a somewhat inferior approximation,
especially in the vicinity of the first minimum
(r=1.50). Our conclusion is that there is a ser-
endipitous cancellation of errors involved in the
application of the EXP approximation to v via
Eq. (50). The result is a highly accurate approxi-
mation for a Lennard-Jones liquid that is not sur-
passed by any of the other approximations con-
sidered here. For lower-density states, however,
the RHNC approximation is appreciably better; as
a result, we would expect it to yield a slightly
more accurate approximation globally for a Len-
nard-Jones fluid.
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