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The author presents a theory for N-photon ionization in which two intermediate states can be in
resonance with the ground state over a narrow range of photon frequencies. The theory is applied to the
three-photon 6F resonance-state spin-orbit doublet in the four-photon ionization of Cs. The amplitude for
the process is the sum of two components, each containing a complex line-shape function. In the limit of
zero splitting, the previously studied isolated resonance result, in which the line shape is Lorentzian is
recovered. For the splitting in Cs (6F), the absorption profile is studied as a function of the splitting
parameters of the state, the 6S~6F three-photon Rabi rate, and the field-induced shift and width for the
6S~6F transition. This profile depends in a complicated way on the relative magnitudes of the shift and
the spacing between the fine-structure levels.

INTRODUCTION AND THEORY
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where E is the photon flux in em 's ', + is the
photon frequency in s ' corresponding to E atomic
units of energy, n is the fine-structure constant,
Qp is the Bohr radius, k is the ejected -e lectron
momentum in atomic units, 0 is the solid angle
into which the electron is ejected, and p is the
unit vector in the direction of polarization of the
photon; 41, 4"'„»', and X„2are, respectively, the
intermediate-state, final continuum-state, and
order N —2 perturbed-state wave functions. At
fluxes corresponding to intensities of about
& GW em, simple dimensional analysis of Eqs.
(1) shows that the inequality above is likely to be

In a recent paper' (I) a theory was presented for
resonant multiphoton ionization in which the infi-
nities of perturbation theory, which occur at the
(N —1)-photon excitation energies of the target,
were removed by solving an integral equation
[Eq. (10a) of I with the last term on the right-hand
side omitted]. This equation was solved approxi-
mately very near a resonance by representing the
singular Green's function by the eigenfunction 41
of the resonant intermediate state. This procedure
yields an analytic result which was later' (ll) identi-
fied with a limiting case of steady-state density-
matrix theory. In II it was pointed out that the theory
of I is valid for the inequality 2021 «-,'(Bz)2,
where Qq is the order N-1 Rabi rate for the
ground- to intermediate-state transition and R& is
the intermediate-state one-photon ioni. zation rate.
These are (for N ~2)

satisfied for N~ 4. There are an increasing num-
ber of experiments being performed for such
higher-order processes, and the result of I has
been applied to the interpretation of data' for the
four-photon ionization of Cs near the 6E reso-
nance.

It is the purpose of this paper to present the
resonant N-photon ionization rate in which two in-
termediate states can be in resonance over a nar-
row range of frequencies. To account exactly for
all states of the atomic spectrum would require
the numerical solution of the integral equation of
I. However, for two closely spaced levels the pro-
cess is dominated by two eigenstates of this spec-
trum. A case of special interest is that in which
the field-induced shifts and widths of the two tran-
sitions can be significant fractions of their spac-
ing. This result is applied to the spin-orbit doub-
let of the Cs 6E level. '

When the singular Green's function is repre-
sented by two eigenfunctions 4, and @„the inte-
gral equation of I can still be solved analytically
[see Eq. (14a) of I for the one-eigenfunction ana-
lytic solution]. When this solution is used to de-
rive the rate [see Eq. (5) of II or Eq. (2a) of Itef. 5
for the isolated resonance rate], we obtain

I~„=II,~g„(5„5,) ~' It,+~g„(5„5,) ~'
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where R, and R2 are the one-photon ionization
rates for intermediate levels one and two [Eq. (1b)
with I replaced by 1 or 2], corresponding to photo-
electric amplitudes f, and f„where dR&/dQ =E~f&~'
[see Eq. (1b)]. The complex line-shape function is
defined as
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where Q,. and Q,. are order N —I Rabi rates [see
Eq. (la) with I replaced by i or j]. The static de-
tuning from level i or j is 6,. or 6~. For example,

6 =((do —(() }+(N—I)(d»

where ~, and co,- are the ground and jth intermedi-
ate-state eigenfrequencies. The quantity f„isthe.
ratio of a complex shift function 2&,.',.' to the static
detuning 5, or f, , =2&,",..)/6, This complex shift"
is defined by

TABLE I. Atomic parameters in units of frequency
co (~/2x=c/A. ) at an intensity of 109 Wcm ~ or
F=0.5335xlp cm s ~ at 6=0 s, where 5 [see
Eqs. (4) and (8)] is zero for a three-photon excitation
energy of 3.51 eV.

This work

Q, =]..735x109 s-&

R~ —1.569x 10~0 s-~

=2.767x 10~i s-~

xg'")(r, r', 3(Z, +nz, ))(P v') e,(r'), (5)

where g&"' is the Green's function appropriate for
the atomic field, E, is the ground-level energy in
atomic units, and the prime on the summation
means that the n =N —1 term is omitted as parity
nonconserving (i and j are assumed to be states
having the same orbital angular momentum, and
the parity of n- and the l-wave components of g'"'
must be the same). The field-induced level shifts
and widths are proportional to the real and imag-
inary parts of the diagonal elements of the A~"
matrix, respectively. Note that the diagonal and

nondiagonal elements of ~ "are closely related to
the Rayleigh and Raman scattering amplitudes,
respectively, for states i and j [for example, see
Eq. (A6) of IIwhere, ouresonance, we relate adi-
agonal element of &"' to the frequency-dependent
polarizability of the intermediate state]. The cal-
culation of atomic parameters is described in the
Appendix.

For linearly polarized light only the M J =+2 sub-
levels of the J =& or J =& components of the 6I'
state are accessible from the ground J= 2,
M~ = +-,' levels. In this case Eq. (3) takes a par-
ticularly simple form,

(6a)

(6b)

where, for LS states, Q, (Ta. ble I) is the three-
photon Rabi rate and &") (Table I) [Eq. (5) times
—,
' for i =j =6E] is the complex shift for the 6S -6E
transition. The constants c,. and c& are the
Clebsch-Gordan coefficients for the coupling of
the l =3 and s =2 states to give the ith (lower) state,

~

—',x&, and jth (upper) state,
~
tv&, respectively.

These are

0'(~ ——A~~/F = 2.942 x lp-
&~~' =2.720x 10-" cm'

The 6F-level photoelectric cross sections have been
calculated independently by Pindzola (unpublished) using
an iterative solution of the Hartree-Fock (static-
exchange) equations for the. e, Cs+ system. These are
found to be o ~~ ——2.94x 10 -~8 cm and o ~&~

——2.92 x lp
cm~. My static results are 08~~ = 2.578xlp "~ cm and
0.~ ——2.458x 10 — cm . Thus exchange has a fairly
small effect on this cross section at this energy g~
=0.0579 By) because it is dominated by the 6F
transition. The 6F &~ radial dipole amplitude is about
a factor of two larger with exchange but is still much
smaller than the 6F 4g radial dipole amplitude, on
which exchange has a negligible effect because of the
large centrifugal barrier in the g-wave equation. Also,
polarization forces could be expected to be relatively
unimportant in this cross section for this reason. Final-
ly, enforced orthogonality of the continuum waves to the
occupied bound orbitals of the neutral has been found to
be negligible for this cross section. Note that the above
parameters have been calculated only at 6= 0 s ~; thus
they have been assumed to be constant in energy over the
range of values of 6 displayed in the figures.

g,.(6) a.,(6) =-:Q./(5 —~"') (8)

The same result for g, ,(6, , 6,.) [Eq. (6)] obtains for
MJ = ——,

' states; thus there is no spin polarization
(Fano effect') for linearly polarized photons, as is
well known. In deriving Eq. (6) from Eqs. (3), (3),
and (5), 4; and 4',. of R; and R [Eq. (2)], of Q, and Q~

[Eq. (3)], and of &f;~ [Eq. (5) have beendefinedasthe
2 ~J 2 and'(I 2p ~J 2 states respe ctively

using c; and c& [Eqs. (I)], and Hartree-Fock LS states
(Appendix). There is cancellation of certain terms in
thenumeratorsanddenominatorsof f g~and fg„
leading to the simplified line-shape functions given
by Eq. (6).

RESULTS AND DISCUSSION

c.=&3O-'-'~ —"&=2/WV ~

(Va)

(Vb)

The position of an isolated resonance [see Eq.
(8)] occurs when 5 =&. From Eq. (6a) the reso-
nance positions for the doublet occur at the points

note that c', +c',. =l. Thus, when 6, =6,. =6 (zero
splitting), the previously studied' ' ' isolated res-
onance result is recovered,

—'((6, +&) —[(6,+&)' —46,&c', P 'j (9a)

r ) + [(5, n.)'+45,~c2,]'"]+5„(9b)
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FIG. 1. Ionization rates vs detuning 6& from the first
intermediate level for a laser intensity of 10~ VVcm 2,

vghere the shift 4 is much less than the fine-structure
spacing (5~; e1 and c2 are the Clebsch-Gordan coeffi-
cients defined in the text. Curves 1 and 3 are for the
spin-orbit doublet; curve 2 is for an isolated resonance
(no spin-orbit splitting).
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FIG. 3. Ionization rates vs detuning 6& from Ithe first
intermediate level for a laser intensity of 10~ Wcm"2,
where the shift ~ is much larger than the fine-structure
spacing 6~; c1 is a Clebsch-Gordan coefficient defined in
the text. Curve 1 is defined as in Fig. 1. The lower
curve 6 is curve 2, defined as in Fig. l.

where 6, is the spacing between the levels (6,
=0.102 cm ' for the 6E doublet) and, from Table I,
A=1.468 cm ' a,t 1 0%'cm '. In Figs. 1-4 we study
the ionization for three ca.ses [see Eqs. (9)]: (i)
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FIG. 2. Ionization rates vs detuning 61 from the first
intermediate level for a laser intensity of 10 %cm 2,

where the shift 4 is nearly equal to the fine-structure
spacing 6~; c~ and c2 are the Clebsch-Gordan coeffi-
cients defined in the text. Curves 1, 2, and 3 are de-
fined in Fig. 1.
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FIG. 4. See Fig. 3 caption. Curves 2 and 3 are de-
fined as in Fig. 1.
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6, » &, at an intensity of 0.01 GW cm ', for which
5, = c',n, and 5, = c',n, +5„(ii)5, —n, at an intensity
of 0.1 GW cm ', for which 5, = 5,(l —c,) and 5,
= 5,(l +c,); and (iii) 5, «&, at an intensity of 1
GW cm ', for which 6, = c',6, and 5, = & +5,. %e
use the parameters of Table I, the calculation of
which is described in the Appendix, for all three
cases. For eases (i) and (ii) we simply scale &

and R,z (proportional to E) by the factors 10 ' and
10 ' and &, (proportional to E'i') the factors 10 '
and 10 3, respectively.

Note that in general the positions of the reso-
nances (points of maximum ionization) have a quite
complicated dependence on the relative magnitudes
of the shift and doublet spacing. The limiting
cases [(i) and (iii) show a, fairly simple dependence
on 5, and &. In (i) (5, » n) the two lines behave
like the isolated resonance lines (in the center),
but with their resonances positions 5, and 6, equal
to c', n. and c',& and c224, respectively (where 5,
=5, +5,). In (iii) (5, «~) one line loses its depen-
dence on the shift (5, = c',5,), while the other
(5, = &+5,) approaches &, the isolated resonance
position. It is hoped that this study will stimulate
further narrow-bandwidth experiments in which
the absorption profile is studied is a function of the
shift ~ relative to the fine-structure spaci. ng &,.
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APPENDIX

In this Appendix the calculation of the wave func-
tions needed to evaluate the atomic parameters
given by Eqs. (1) and (5) is described. All atomic
orbitals are calculated in the Hartree-Fock ap-
proximation, ' with excited orbitals being calculated
in the field of the ion; Rz =R,~ [Eq. (lb)] is the
imaginary part of Eq. (5) [see Kq. (Alb)] below.
All energies are the experimental energies from

the tables of Moore. " Orthogonalization of the
ejected electron d wave to the occupied d orbitals
of Cs was found to be negligible, as was the devia-
tion from orthonormality of the Cs' and Cs orbit-
als.

The atomic-field Green's functions g™are cal-
culated explicitly for energies nE above the ion-
ization continuum (n =4) by using

&& Q(2l +l)g'is'(r, r'; 2(E, +4E~))P, (r 'r'),
(A la)

(N) 1
ax~'

x [G,~'(kr&)F ~P'(kr() +iE~f '(kr)E &P'(kr')],

(A lb)

and by numerical solution for the regular and ir-
regular waves E',"' and 6',"', respectively, in an
effective atomic field V (the static potential plus
the semiclassical local exchange potential" appro-
priate for Cs'). For energies nE below the ioniza-
tion continuum (n =2) g'"' is found by defining the
function

X.'"'(r)

d r' g &N ) r, r'; 2 E6 +2Ep 2 p.v' e~ r',
(A2)

which obeys the differential equation

[V' - U(r) +2(E., +2E )]Xl"'(r) =2 P V4. (r), (AS)

where U=(2m, /k')K Here X, [Eq. (la) above] is
the second-order perturbative response of the 6S
state, and is calculated from the equation

[V' —U(r) +2(E„+2E~)]}(,(r) =2 p ~ VX,(r); (A4)

X„the first-order perturbative response, is cal-
culated from the equation

[V' —U(r) +2(E„+E~)]X,(r) =2 p ~ Vg„(r). (A5)

The radial parts of Eqs. (AS)-(A5) are integrated
numerically.

~B. Ritchie, Phys. Bev. A 17, 659 (1978).
B. Bitchie, Phys. Bev. A 20, 1734 (1979).

3J. L. F. de Meijere and J. H. Eberly, Phys. Rev. A 17,
1416 (1978).

4J. H. Eberly and S.V.O' Neil, Phys. Rev. A 19, 1161(1979).
B. Bitchie, Phys. Bev. Lett. 43, 1380 (1979).
J. Morellec, D. Normand, and G. Petite, Phys. Rev. A

14, 300 (1976).
VG. Petite, J. Morellec, and D. Normand, J. Phys.

(Paris) 40, 115 (1979). The spin-orbit doublet of the
6' shift has been resolved in the experiment described

in this paper. A comparison between theory and exper-
iment, however, would require treatment in the theory
of the space-time distribution of the laser pulse, as in
Ref. 5, for example.

U. Fano, Phys. Bev. 178, 131 (1969); 184, 250 (1969).
C. Froese, Phys. Rev. 4, 1417 (1966); C. Froese Fish-
er, Comput. Phys. Commun. 1, 151 (1969).

OC. E. Moore, Natl. Bur. Stand. (U.S.) Circ. No. 467
(U.S. GPO, Washington, D.C. 1949).
M. E. Riley and. D. G. Truhlar, J. Chem. Phys. 63,
2182 (1975).


