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Ionization and electron capture to the continuum in the H+ —hydrogen-atom collision
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The equivalence of the two-body interactions between the final particles of the ion-atom ionization process
is considered in the T-matrix formalism. This defines a final wave function which is product of Coulomb
waves and describes simultaneously the capture to the continuum and the direct ionization. The relation of
that approach with the wave equation for the three-particle system and the asymptotic behavior are
discussed. The doubly differential cross section for the ionization of hydrogen atoms by proton impact is

calculated, in first order, and compared with experimental values.

I. INTRODUCTION

Considerable theoretical progress has been made
for the calculation of the doubly differential cross
section (DDCS), in energy and angle, for electrons
ejected by atoms under light-ion impact. The
major theoretical methods used have been first-
order approximations' and binary-encounter theo-
ries. ' Early first-order calculations considered
that the final state of the electron was described
by a Coulomb plane wave centered at the residual
ion, neglectinp distortion due to the projectile.
These methods dealt with direct ionization (DI) and
were not able to explain the forward peaking in the
DDCS. This enhanced yield of electrons has been
interpreted as arising from charge exchange to
continuum states centered around the projectile
(CTC).' ' However, the symmetry of the final
system strongly suggests that the ejected electron
should be described by a two-center wave func-
tion. Furthermore, as has been pointed out by
Macek, ' there is no physical distinction between
DI and CTC. Then, the cross sections for DI and
for CTC should not be added. Macek proposed a
linear combination of Coulomb plane waves cen-
tered at the residual target and at the projectile
for the final-state wave function of the electron. "
With this description the amplitudes for both pro-
cesses are added. This approach allows for the
possible occurence of an interference pattern be-
tween both amplitudes. Recently, this interfer-
ence structure has been searched for experi-
mentally. '

From the exact final wave function, Dettman
et aL factor out the Coulomb wave centered at
the projectile, and give an analytic expression for
the forward cusp. As in charge exchange theories,
the second Born term is very important. ' In this
work we factor out a two-center wave function for
the electron in the scattering amplitude. In Sec.
III we recognize the equivalent status of the three
final Coulomb interactions, and we propose a final

state which is the product of functions centered at
the projectile and at the target. We have also
studied the influence of the interaction between
the protons in the final state. In Sec. IV we
discuss the meaning of the model starting from
the Schrodinger equation for the three-particle
system. We find that the approach used here is
an improvement of the Vainshtein, Presnyakov,
and Sobelman method. ' Numerical results for
proton-hydrogen-atom collisions are discussed in
Sec. VI.

II. KINEMATICS

We consider a system composed by an incoming
ion of mass M, and charge Z„colliding with a
hydrogenlike atom. The electron mass is called
m and the target nucleus has mass M, and charge
Z, . In the center of mass system, the problem
can be described by any one of the pairs of rela-
tive coordinates (r„R,), (r„R,), or (r, R), as
shown in Fig. 1. The coordinates R„R„Rrefer
each particle to the center of mass of the other
two. They are related by the following equations
(atomic units):

Zq, N)

FIG. 1. Coordinate system.
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r, = p, ,r, —R„r=(v/v, )r, —(v/p, ,)(1—p, ,)R, ,

R, =p, ,R, +(1 —p, ,V,,}r„R=R,+(1-p, ,)r, ,
(2.1)

The initial-state wave function, in which parti-
cles m and M, are bound together and M, is free,
1s

where

M, M2 I +M2M =, p. =

(M, +1)M, (M, +1)M, M, +M,

) —eiK2) 'R2 (r )

where

(e, +v,)li, K2i&=&li R &.

Defining the Green's functions

(2.10)

(2.11)

(2.2)

are the associated reduced masses. According
to the choice of the spatial coordinates, the sys-
tem is described in the momentum space by one
pair (k„R ), (k„K,), or (k, R), where k„k„and
k are the momentum of the electron relative to
M„M„or to the center of mass of M„M„re-
spectively. These pairs are related by

G,'=1/(Z-e, + fe), G', =1/(E.-a, —V, +fe),

G' = 1/(E —H + is), G', = 1/(E H, —-V, + is),
{2.12)

we can write the equation (2.8}, for the solution
which evolves into a three-particle free state, as
a Lippmann-Schwigner equation":

alt, K=(1 —G, W) 'lk, R) = [k, R)+G, W@q K,

k =V'ki-(1 —v, u.)R. k=k, —(1 —y,)R. ,

R, = P,R, +k„R=(v/v, )R, +(1 —p, ,)(v/p. ,)k, ,

(2.3)

with

$,, K& =[1/(2') ]e'&"'+K'~~

(2.13)

and the kinematical relation

k, ~ r, +K, ~ R, =k, ~ r, +R, R, =k r +R R (2.4)

follows from the equations above.
The mutual interactions between the particles

are Coulomb potentials:

ln this equation we have explicitly used the pair
of momentum coordinates (k, K), but anyone of the

pairs defined below Eq. (2.2) could be used to
write the integral equation.

HI. THEORY

V, =-Z,/r„V, = Z, /r„-V=Z, Z /R2, (2.5)

and we define V, = V, +V as the initial interaction,
Vf Vj + V as the final one, and W = V, + V, + V as
the total potential. Then the Hamiltonian operator
reads

Now we define two wave functions lk, R& and

lk, K ) by means of the equations:

K.&=(1+G V,)lk„K.&

= [k„R,&+G, V, lk„K,&, (3.1)

II =IIO +W =H] + Vg =Hf +.Vf, (2.6) and

where

H, = -(1/2 p, )v,', —(1/2v, )vs,
=-(1/2p, ,)V'„- (1/2v, )V'„,

= -(1/2g) v,' —(1/2v) V2s,

(2.7)

H4 =E4

has eigenvalue

E = Ifm )/2v2 + fi =Km/2 V2 + ki/2 g i

(2.8}

(2.9}=Z', /2v, +g/2p, ,=Z'/2v+n'/2p, ;

K, , is the momentum of the projectile relative to
the atom, e, is the ionization energy of the atom,
and the other quantities refer to the final state
with three particles in continuum states.

depending upon which set of independent variables
we choose. ln the ionization process that we are ..

considering the Schrbdinger equation

lk, , K, ) = (1 +G( V() lk„R,&

k„RQ +Go V, Ik„Ki&. (3 2)

(3.3)

(r„R,lk, , RQ =of„(r,) eK (R,) . (3.4)

%e write the continuum wave function for a Cou-
lomb interaction between two particles A and j9,

The first equation corresponds to a free wave for
the projectile and, in the unscreened limit, to a
Coulombian continuum state, with ingoing condi-
tions, for the e-M, systems, i.e. ,

(r„R,lk»R, &
=[1/(2v)'I']e'2 ~2$&(r,),

and Eq. (3.2) contains the interactions e-M, and

M, -M, . Because R-R, +6(1/M, ), we can assume
R, =R, =R for a heavy projectile. Then, Eq. (3.2}
is the wave equation with both particles, M, and

m, in continuum states centered around the in-
coming ion (in Sec. IV this point will deserve fur-
ther study using the Schrodinger equation), i.e.,
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with reduced mass p. and relative momentum k, in
the following way":

g~(r) =[1/(2v)'"]f(n),F,(-in, 1, ik-r —ik r)e'"'
=f(n)&r ~E(n) ~k&, (3.5)

and the second one is

T, =f*(a,)f*(a,)f*(a)

x (R„k2 IF(a)E(a2)

x [F(a,) V, G, —V, G,F(a,)]V, ~i, K„&. (3.12)
where

n =-Z„Zsp/k, f(n) =e'"" r(l +in).

The f(n) is the Coulomb factor, and F(n) is an
operator which defines the hypergeometric func-
tion in the r representation. Then, Eq. (3.4) can
be written

&r2 Rilk2 Ki&

=f(a2)f(a }&r R, IE(a,)E(a,)]k„R,&, (3 6)

where

ag Z~p ~/k~~ a2 = Z2p 2/k2) a = —Z~Z2v~/K~ .

Because 5' and V,. are diagonal operators in the r
representation

F(a,) V;G, —V, G,F(a,) = V;[E(a,), G,]. (3.13)

When k, is very large, so that a, =Z, p, ,/k, «1,
then E(a,) -1 and the commutator bracket will be
small [6(a,}]. Furthermore, if V, is a small per-
turbation (a, small) the first order given by Eq.
(3.11), should provide a good description of the
ionization amplitude.

In complete analogy we can start from the am-
plitude in the rearranged coordinates'

7„=(K„k,~v,.(i+Gv,.) ~i, R„.&, (3.3)

(3.7)

Those wave functions are substituted in the matrix
element'

7 « = &K„k;~(1+v, G) v, ~i, R„.),
to obtain

T~; =fla, )f(a)f(a, )(R„k,~F(a)F(a,)(1 —V~GO)

x E(a,) (1+V, G) V,. ~i, R„.&.

(3.14)

(3.iS)

to give the transition amplitude for the ionization
process. From Eqs. (3.1), (3.3}, and (2.4) we

get

T~; =f*(a,)(K„k,~F(a, ) V; (1+G V&) ~i, K,~&,

and introducing the wave function defined by Eq.
(3.2):

Tg; =f *(a,)(K, , k2 ~(1 —V, G,)F(a,)(l+ V;G) V, ~i, K„&.

(3.9)

(3.10)

The relation between the total and free Green's
functions

G = Go+GOWG

allows for a perturbative expansion of Eq. (3.10).
The first term in this expansion is

With the assumption of a heavy projectile Eq.
(3.4) gives an explicit form for the bracket and an
approximate form for the amplitude:

Tf, =f*(a,)f*(a}f*(a2)

x (R„k,~F(a)F(a, )(1 —V;G, )

x F(a,)(i+ v, G) v,. ~i, R„&.

The first order of a perturbative expansion T, is
given by Eq. (3.11). Meanwhile, for the second
order we have

T, =f*(a,)f*(a)f*(a,)(K» k2 ~F(a)F(a, ) V&

x [F(a,), Go]v( ~x, K, (&, (3.16)

which should be small for large 0„ i.e. , a2

=Z, p, ,/k, «1.
%'e can relate the formalism described here with

that proposed by Dettmann et aL' We have es-
tablished a complete symmetry between the three
final Coulomb interactions. Then, to get the am-
plitude used in Ref. 4 [Eq. (4.14a)] we must switch
off the interaction between the ions and between
the electron and the residual target ion in the
final state. This is achieved by setting a= Ql 0
and V=O in Eq. (3.15).

(4.1)

IV. WAVE FUNCTION

The transition amplitude for the ionization pro-
cess can be written

T, =f*(a,)f*(a,)f*(a)

~ (R„k,~E(a}E(~}E(.,) v,. ~i, K„.&, (3.11)
I

where Q K is a solution of Eq. (2.13). Our
first-order expression in Eq. (3.11) is equivalent
to writing an approximate value for + that is,k, Ky

- -$~(R»r, )=f(a,)f(a)f(a, )e . , ', . ~ »E, [-ia»1, —i(k,r, +k ~ r )]
2o

x, E [ ia„ 1, —i (k r, +-k, r )],E [ ia, 1, —i (K, R, +K, ~-R,)](2s). ', (4.2)
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A discussion of the meaning of such an approxi-
mation will be given in what follows. We con-
sider the wave equation for the three-particle
system and see which terms are neglected by us-
ing the approximate function. To perform this
task we write

-, =y(R„r,) q (r,). (4.3)
2s 1

Now we substitute this wave function into the
Schrodinger equation [Eq. (2.8)] to obtain an equa-
tion for the $(R„r,)." After some algebra we ob-
tain

[ —(1/2q, )V„' -(1/2v, )V„' +Z, Z, /8, -Z, /r, -Z+ k;/2p, ] $(R„r,)

= [Z,Z, /B, -Z, Z, /R + (1/p. ,)V, , in+& (r„) ~ V„ in/(R„r, )]p(R„r,) . (4.4)

This is the starting equation for the Vainshtein,
Presnyakov, and Sobelman (VPS) approximation.
This approach neglects the right-hand side in Eq.
(4.4) and the solution has the form shown at Eq. (3.4).
MeanwhQe, in our formalism the function
$(R„r,) is already defined. From the Eqs. (4.2}
and (3.5)

g~(R„r,)

(4.2), we are assuming

iI „(R„r,)

= e '"~" i (: (r,)g= (R,)(2v)'~' .
k2 K

Recalling that by definition

(4.6)

=e '""~+ (r )4=(R)g (r )(»)"'
k

(4.5)

By comparison with Eq. (4.3) we see that, in Eq.

(4.7)

we applied the Hamiltonian operator to $„(R„r,)
and, after some algebraic work, we conclude that

[-(1/2p, )V2 —(I/2v, )Vz' + Z,Z, /R, —Z, /r, —E+ k', /2p. ,] P„(R„r,)

= [ (1/p, ,) V„ ln(e'" ~' ~) ~ V„ in/„] $~(R„r,), (4.8)

showing that the approximate wave function, given
by Eq. (4.2), is an improvement of the VPS ap-
proximation. In fact, the right-hand side of Eq.
(4.4) is partially considered. For large k„ the
plane wave appearing in Eq. (4.8) gives a good
approximation for the fk (r, ) and our function,
C'„(R„r,), will be an appropriate description of
the exact Q(R„r,), defined by the Eq. (4.3). This
is related with the Lippmann-Schwinger approach
described in Sec. II. In fact, from Eq. (3.13)
we see that the second perturbative corrections
would be small for large k„justifying the Born
approximation used in our calculations.

Now we must regard the behavior of $„(R„r,)
for large separation between the particles. Using
the asymptotic expression for the hypergeometric
function, "we find, for large R„r„and r„

iik2 r 2+K~. Rx& eiD

(4.9)

where

is the divergent phase of the Coulomb potentials.
Some cases have particular interest. First, let

us consider

k, k, »K, /v, ,

meaning that the electron moves faster than the
two heavy particles and travels far away from
both. We could assume r, -x„ then

D - (a, + a, ) ln(k, r, + k, ' r, )

+ a In(K,R, + K, R, ) . (4.11)

So, the logaritmic divergent phase is defined by
the sum of the projectile plus target, i.e. ,

a, +a, —(Z, + Z, )v, /k, . Second, we assume k, —0,
which corre sponds to the capture into the continuum
state of the projectile. 'Then,

k, -K,/v„r, -5, ,

The phase is defined by

and we get
D = (a, + a) ln(k, r, + k, ' r, ) + a, ln(k, r, +%, ' r, ) . (4.12)

D=a, ln(k, r, +k, r,)+a, ln(k, r, +k, r,} a, +a- —Z, (Z, —1)v,/K, . (4.13)

+ a ln(K, 8, + K,.R,) (4.10)
The charge of the projectile is screened by the
electron. Analogous results are attained when
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0, in which case the electron sc reens the
charge of the target. r, =, —

S
' d (a)f (a, ) fdsg(a, k, ) fdr

V. CALCULATION FOR PROTON HYDROGEN-ATOM
COLLISIONS

T dr d 2 g Rg I2 g ry
2

«@"~2m,(r )(»)-"'.
Introducing the function

g(s, k, )=fdr, g( (r, ) &g(r, ) a' a',s

(5.1)

(5.2)

we obtain

To evaluate the first-order scattering amplitude
as given by Eq. (4.1) we must perform some ap-
proximations. In this paper we will accept the
Wick argument and neglect the matrix element of
the interaction potential V, between the cores."
However, the contribution of the V is considered in
the initial- and final-state wave function in order
to keep the correct asymptotic behaviors. Then,

d, e @ ~&' '
2,E,* ia„ l, ik,y, +i 2 r,

x kE*, (ia, l, iK,R, +iK, g, ) (5.3)

where

5= Kkq —K, . (5.4)

We will evaluate this integral by using a peaking
approximation. Since we have two hypergeometric
functions, it is not a simple matter to find which
range of values of s will dominate the integral.
To get some hint, we first discuss the case a-0,
so that, E,(ia, 1, iK,R, + iK, ' 0,)

- 1 and f(a) - 1.
That means, either that the velocity of the pro-
jectile is very large, or that we switch off the
interactions between the ions. Then, replacing
the coordinates (r„5,) by (r„5,) in Eq. (5.3), we
have a simpler expression for the scattering
amplitude

T, (a=0)

',f'(a, ) fdsg(sk)f dr, , ,

- exp(i5, (g,X'- s) —ir, [ is(+ (1 —i(, , i),,)i P]Jx dR, ,E,*(ia„1, ik2r, + ik, ' r, .
y2

We see that only the point s = i(, ,T contributes to the
first integral; then

T,(a=0}

= —(,'),f*(.} ( P, , )

QeP

kE,*(ia„1,ik,r, + ik, r, ) . (5.5)y 1 2 2 2 2 2

The Nordsieck method gives an explicit form for
this integral" [see also Eq. (A14) in the Appendix]:

T, (a = 0)

I

particular, a first-order approximation for
T, (a=0) is obtained when we replace (1)~ (r, ) by a
plane wave in Eq. (5.2)."

For moderate velocities for the projectile the
quantity a is not small. However, from the dis-
cussion above, we will assume that the most im-
portant contribution to the integral, Eq. (5.3),
comes from a neighborhood of the point s= p, ,T.
With this assumption the s integral can be carried
out and the amplitude becomes

'); fa(a)fa(s, Ig(a, pk, ) fdr, '

',f*(a,)g(p, ,T, Tr, ) —,1—,'- . (5.6)

We can recall the first Born approximation for the
ionization process, "

e jQ'I, 2
x dR, ,E,*(ia„l,ik,r, +ik2 r,)

2

x,F,*(ia, 1,iK,R, + i K, R,) ~ 6( r, ) . (5 9)

Ts = (Z,/2s'P'}g(p-, P, k,), ,

and write
(5.7) These integrals are uncoupled, and using Eq. (2.1)

we have

T, (a = 0) =f"(a,)[1—(25 ' )t2/P')) "'Ts . (5.8)

As P')2T X„ the differential cross sections
calculated from T, (a = 0) and Ts will only differ
by the factor if(a, ) i'. This factor gives rise to
the cusp for electron capture to the continuum. In

~ ~e-jP r2
X

y2

x,E,*[ia, l, i p,,(K,r, -K, r,}].
$Ek (ia2s 1 +2r2+ i k2 ra)

(5.10)

Ti= —
(2 '}.f*(a)f*(a.)g(u, I', k,)
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In the Appendix we have evaluated this integral.
From Eq's. (A8), (A13), and (5.7) we have

T, = f*(a)f*(a,)T [I+(2p, K, ~ P/P')] "
x [1 —(2ke P/P')] "e,E,(ia„ia, 1,x),

10-20

I I I I

~ Mev H+/H2

20 eV-

where

2(P k,)(P K,)-P'(Z, k, +K, I,)
(P'+2m. K, 5)(P'-2&e 0)

(5.11)

(5.12)

O
E

10
E

"1024

100 eV.

We note that, when a —0 Eq. (5.11) reduces to Eq.
(5.8). Furthermore, for physical values of the
momenta, we found always ~x~& 1 and it is unneces-
sary to do analytical continuation of the hypergeo-
metric function.

VI. RESULTS AND DISCUSSION

Using the first-order scattering amplitude Eq.
(3.11) we have evaluated the DDCS,

do' do' peak&ve K&(2 w)

4 & dQ& lTj.
l

e e 1 2i

(5.1)

for proton-hydrogen ionization. The E, and 0,
refer to the ejected electron relative to M, and the
integration runs over the whole angular distribution
of the proton. We will call 8 the angle between the
initial velocity of the proton v,. and the final vel-
ocity of the electron v, . Since the experimental
data available for the comparison are for the ion-
ization of the H, molecule, we assume it to be
composed of two independent atoms. In this case
the DDCS is twice the value calculated from Eq.
(6.1) with a hydrogenic Is state (Z, =1) as the
initial state. The only correction considered is in
the ionization energy, by taking q,.= 15.4 eV in Eq.
(2.9). The correlation effects between the H,
electrons could be important and responsible for
some of the deviation between theoretical and ex-
perimental results and deserve further study.

The scattering amplitude given by Eq. (3.11)
contains the distortion of the electronic final state
due to the interaction between the protons. We
have also calculated the DDCS by dropping this
distortion. That means a=0 in Eq. (3.11). In Figs.
2 and 3 we compare the experimental angular dis-
tribution"" with those obtained in our formalism.
For large angle, the DDCS evaluated with nonzero
value of a is close to the experimental values. In
fact, for large angles and large velocities of the
proton and electron, the Coulomb factor f(a) com-
pensates the f(a, ) and our results agree with the
simple Born approximation of Bates and Griffing. '

For small angles the DDCS obtained without the in-
terproton distortion is better than when it is con-
sidered. The wave function given by Eq. (4.2) in-
cludes the Coulomb interaction between each pair
of particles, but polarization effects are not in-
cluded. We could think that, when vy & v,. and 8 is
small, the electron traVels between the two pro-
tons and those effects will be larger. That could
account for the discrepancies but requires the

300keV H+/H2
10 c~ ~ ~0

10eV

o 10-20

1022

40 eV

eV

0 1

10-24
OeV

0-2

400eV x 10'
I I I l I

0 30 60 90 120 150

EMlSSION ANGLE (deg)

FIG. 3. Same as Fig. 2, except here the proton-
energy is 300 keV and the dots are from the experiment
of Budd et ul. (Ref. 17).

1000 eV(x 10')

1026 t I i I I

0 30 50 90 120 150
E MLSS lON ANGL E C degas

FIG. 2. Angular distributions of electrons ejected
from Hz'.

,by 1-MeV protons. Full curves: present calcu-
lations; broken curves: present calculations neglecting
the proton-proton distorsion (a= 0); dots: experiment of
Toburen and Wilson (Ref. 16). The numbers associated
with the various curves indicate the energy of the ejected
electron.
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evaluation of the second-order perturbative terms.
For v, » v, , the electron travels away from the
two protons, it is not available to set an attractive
polarization, and the interactions included in the
theory should be accurate enough to give a descrip-
tion of the process. For the largest angles the
theoretical values run below the experimental
points. Manson et al. ,

"studying H'-He ioniza-
tion, found that to explain that kind of behavior it
is necessary to use an improved Hartree-Fock
function for the initial and final state of the helium.
We suppose that the discrepancies in H-H, ioniza-
tion could also be overcome using a better wave
function for the H, molecule.

In Fig. 4 we display the DDCS for 8=0, as a
function of the electron energy, for 300-keV inci-
dent protons. The formalism described in this
paper gives the CTC peak for any values of a
(curves A and B). The cusp is given by the
Coulomb factor f(a2)~2, which does not appear in
the simple Born approximation (curve C). How-

ever, second-order terms are necessary to ex-
plain asymmetries on the peak. '

A point which merits particular attention is the
possibility of CTC effects in the ionization of atoms
by negative ion impact. Curve D, at Fig. 4, shows
the theoretical DDCS at 0, for the antiproton-H,
ionization process (with a=0). We note an anti-
capture phenomenon when v, -v, It appears as a
depression in the DDCS. This behavior is also de-
scribed by the f(a2) factor

~y(&,)I'=(2vZ, /u, )(1 —e '"""2)',
„„-,27iZ2/u„z, &0, (6.2a)

=o2ii~Z, ~/b e" 2 i 2, Z, (0.
The case Z, &0 was studied by Dettmann et al. ,
and Inokuti et al."suggested that an anticapture
process could happen when massive p. and w par-
ticles are used as projectiles. From E(l. (6.2b)
we see that this effect should produce a large drop
in the DDCS.
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APPENDIX

In this Appendix we will be concerned with the
evaluation of the integral which appears in Eq.
(5.10). We introduce a screening parameter )(

and write

I~ = dr e'~'yFy sbyp 1& L pyf py r

&,F,[ib„1,i(p2~+ p, ~ r)]. (A1)

1
f ibi-l(i 1 )-ibie i ti (it& r )t) 'r )

2mi
C

(A2)

,F,(iB„1,ip22. + 2p2 ~ r)

We will follow a mixed integration technique using
a contour integral representation for one of the
hypergeometric functions and a real representa-
tion for the other"'"

,F,( ib„ l, iP-,r —ip, ~ r)

10-19,'

I
'

t
'

I
'

I

300keV H /H2
r(1)

r(iB,)r(1 —iB,)
1

iiB2-1(] i )-iB2eit2(22r+))2 r )
2 1 2

0
(AS)

o 10-20
E
L

2)i 10 21

The C contour encircles the points t =0 and t =1
once in the positive direction, and we choose
iB, =ib, +c, with e a small positive number, so
that

1
f22

~ 10
0 200 400 600 800

ELECTRON ENERGY (eV)

1 & Re(iB,) & 0 . (A4)

We now substitute (A2) and (A3) in (Al) to obtain

1
1 (iB,)I'(1 —iB,) 2xi

FIG. 4. Energy distribution of electrons ejected at
0 from H2 by 300-keV protons. Curve A: present ca1-
culations, neglecting the proton-proton distortion (a= 0);
curve 8: present calculations with the proton. -proton
distortion included; curve C: Born approximation; Curve
D: energy distribution of electrons ejected at 0 from H&

by 300-keV antiprotons.

1
X di, i,"2-'(1 —i,)-*'21,(t,),

0

where

t (t ) Pdt, tt'(t—1)"1 (t,=, t, ),,',
C

(A6)

(A6)
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with

f,(t„t, )

= a-'-p-x-" --'t. p,.-p, -
+i,t, (P,r+p, ~ r)]. (A7)

According to Nordsieck, we introduce the follow-
ing notation":

geometric function with two variables~; then

f =(»/~)(-y/b)*"

x,y, (t'B„1+tb„ib„-1;—p/n, -&/y) . (A12)

We can use the following relation between two and
one variable hypergeometxic functions":

n = (q'+ x') /2, p = p, q - imp, ,

a '~+~~~a 0' ~ p p +

The integral l,(t„t, ) has a simple analytic ex-
pression"

(A8) ,E,(o. , p, p', p+ p', u, v)

=(1 ~) .&,b, p;p+p';(I &/-1 ~)]

to get a simpler expression

f(t„t,)=-2m(t, [t,( p+ b)+( n+y)]- n - pt,]-'. (A9)

From this equation, Nordsieck found that

f,(t, ) =4~'t[&+ Pt, ]-'~-'[-y —bt, ]"~,

and our integral remains

(A10)

where

(A12)

I= ——— 2F~ iB2, -iraq,'1;x

X ].+ —t (A11)

~l 1+i b

2w(-y) +~

o'""r(tB,)r(1 —tB,)
1

p ) ib~ 1--
x dt, t,' 2-'(1 —t,)-'s2 1+ —t, ~

0

.=(p -«)/y(
The analytical continuation of Eil. (A13) when e -0
(B2=b,), and X-O, is well defined for ~x ~(1, and
we obtain Eil. (5.11). Some particular limiting
cases are interesting: when we consider b, =0 we
obtain'4

For B„sothat the condition (A4) is true, Eq.
(A11) is the integral representation of the hyper-

&=(2~/~)[(~+P)/~] *'~ .
An analogous result is obtained for b, =0.

(A14)
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