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Elastic electron-hydrogen scattering in a modified approach to the Glauber approximation
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Recently a modified Glauber theory was proposed by one of the authors (S.R.). In this theory a finite

value of the mean excitation energy of the atom in its intermediate states is retained in each order (except
the first) of the Glauber series, in a consistent way. In the present paper this theory is examined by
analyzing the elastic electron-hydrogen scattering at 50, 100, and 200 eV. The excitation energy is
determined by the total cross section, and turns out to be essentially independent of the energy of the
incident particle. The exchange effect has been taken into account by. making use of the Glauber exchange
formulas of Forster and Williamson. The agreement of the theoretical results with the experimental data is

very good. The proof of the unitarity of the modified Glauber amplitude is also given.

I. INTRODUCTION

The study of particle-atom scattering of inter-
mediate energies by the Glauber impact-parameter
method' and other related methods has been with
us for some time. Although the Glauber amplitude
is of a relatively simple nature, the Glauber theory
takes into account the complex multiple-scattering
processes of the charged particle in the atom. It
was first introduced into the realm of electron-
atom scattering by Franco, ' and independently by
the present authors. '

The Glauber amplitude suffers from a number of
shortcomings both for elastic and inelastic colli-
sions. For elastic scattering the main problem
of the Glauber amplitude is the sharp peak and
logarithmic divergence at small angles. The di-
vergence appears in the second-order term of the
amplitude. This failure can be traced back' ' to
the neglect of the excitation energies of the atom
in its intermediate states in the derivation of the
Glauber amplitude.

Several methods have been proposed to remedy
this shortcoming. In one method' (the eikonal-
Born-series method) the Glauber series is trun-
cated after the third-order term and the second-
order Glauber term is replaced by the correspond-
ing Born term, which is calculated at some finite
excitation energy. Another method, closely re-
lated, in which the second-order Glauber term is
replaced by the corresponding Born term. but the
rest of the Glauber series is retained, has recent-
ly been proposed by Gien. '

Recently, a different approach has been put for-
ward by one of us. ' Earlier attempts to remedy the
divergence of Imf '"were ad hoc corrections. In
contrast, the derivation of the new amplitude,
valid for both elastic and inelastic collisions, is
a rigorous approach in which the value of the mean
excitation energy of the atom in its intermediate

states is kept finite in each order term (except
the first) of the scattering amplitude. Only the
leading term in inverse powers of the momentum
0 of the scattered particle is retained in each
order. Next, the usual eikonization process is
performed, and taking the axis of quantization
along the direction of the initial beam it is possi-
ble to sum over all orders. The amplitude obtained
resembles the conventional Glauber amplitude in
character but most of its shortcomings are absent.
In particular, for elastic scattering the scattering
amplitude is finite in the forward direction. We
shall refer to the new amplitude as the modified
Glauber amplitude. The Glauber theory has other
shortcomings: for instance, we get zero excitation
cross sections for states for which (Lz Mz)—

(L, -M,.) -is an. odd number, L&, M&, and L,, M,.
being the angular momentum quantum numbers of
the final and initial states, respectively. This
problem also is removed by our modified theory.
One shortcoming of the Glauber theory which is
not solved by the modified theory, is that the cross
section does not distinguish between scattering
of positive and negative particles. More details
concerning this point are given in Sec. II.

A different approach —that of introducing a finite
excitation energy into the theory, strictly in the
framework of the Glauber theory —has also been
communicated' recently by the authors.

The purpose of the present paper is to examine
the modified Glauber amplitude by analyzing the
experimental data for elastic scattering of elec-
trons by hydrogen in its ground state at 50, 100,
and 200 eV. In Sec. II a brief account concerning
the background of the theory as well as the ex-
pressions of the scattering amplitude and the ex-
change 'amplitude are given. The mean excitation
energy is determined via the optical theorem. In
Sec. III the comparison with experimental data is
represented and discussed.
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II. THEORETICAL BACKGROUND

As discussed above, the modified Glauber scat-
tering amplitude under consideration here is
similar in many respects to the conventional
Glauber amplitude. Like the latter, it is an im-
pact-parameter representation valid for energies
much above ionization threshold. However, it
differs from the Glauber theory in one important
respect: All terms in the amplitude of order
higher than 1 are evaluated by assuming a finite
value for the mean excitation energy E,„,of the
atom in its intermediate states. This fact does
away, with many shortcomings from which the
conventional Glauber theory suffers (as shown in
Ref. 8}. Taking the axis of quantization e along
the direction of the initial beam, it was shown in
the same reference that a close form of the scat-
tering amplitude can be obtained by summing over
all orders. This is true for elastic as well as in-
elastic processes.

The amplitude for scattering of charged particles
by atoms from the ground state o,. to the state o.„ is
given by

f (~)(k k ) = -z" "4k k e '""2-
ng n n i

b

dbms„„(bQ)(zr„e

'"2" liA,
0

n &n &t

+ a~, (e'" . zA, 1)la,.), (1)
/

where Q=k, —k„ is the momentum transfer and b

is the impact parameter. y, and y are the azi-
muthal angles of Q and b, respectively. The quan-
tity n&, is a measure of the deviation of our
amplitude from the Glauber amplitude. It is de-
fined by

A, -,A.-../A„ (2)

and the modified Glauber phase function A~~ is de-
fined by

V(b+ kz e; f)e '~2*de,dk N2k

the modified phase function is given by

2 2

A = — [K (beak) —ea o2K (7'teak)], (8)

(4/ 2 t2)1/2 ll 3'(4/ao+ t ) 1

the integration over f„ in Eq. (1) is easily per-
formed. %e thus remain with the three-dimen-
sional integral for the scattering amplitude:

OO

f(zzG) . b db J' (bQ}
nap

(8)

where g„and g~ are the components of the radius
vector of the bound electron along the initial beam
and perpendicular to it, respectively, and
r = lb —f, l. The functions K, are the modified
Bessel functions of the third kind. In the limit
&k =0, A~~ reduces to the Glauber phase

A, = (2e'p, /h 2k) In(~/b) . (I)
In the original version' Q„ the perpendicular
component of Q, appears in the expression of the
amplitude instead of Q. The modified Glauber
theory (like the conventional Glauber theory) is a
small-angle theory, therefore, it is quite alright
to use Q instead of Q, because Q, -Q for small
an'gles. It turns out, however, that our amplitude,
Eq. (1), reproduces the experimental data very
mell over essentially the whole angular range
provided Q is kept in Eq. (1), and not Q, . Al-
though there is no real theoretical justification
for this substitution, it is common practice among
authors in this field. Also, in Eq. (1), for rea-
sons of symmetry, we have replaced the unsatis-
factorily defined momentum k of the original ver-
sion by the factor 0'k„k, Our amplitude of Eq. (1)
satisfies the unitarity theorem. The proof is
given in the Appendix.

Making use of the integral

e -(2/g ) (x +@2) ~ jxte dx
~oo

where p, is the reduced mass of the system. ~»
reduces to the conventional Glauber phase function
~p when &k = 0. k is the mean momentum of the
scattered particle, which is related to the mean
excitation energy E,„,of the atom in the inter-
mediate state by where

x dy f df

gal%

+ p(e( o iAo I)

(9a)

k', -k'=2p, E,„,.
%hen k,.=k„=k, then n, ~ =1; in this case our

kn -k' ~

amplitude reduces to the conventional Glauber
amplitude.

For the interaction

v=-e'/r+ e'/lr

(4)
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The mean momentum k and with it the mean ex-
citation energy E,„,of the atom in its intermediate
states is an undetermined quantity in the theory
which leads to the amplitude, Eq. (1). To deter-
mine its value use has been made of the optical
theorem

(10)

In order to estimate the total cross section 0„,we
have taken the Bethe-Born (three-term) expression
of Kim and Inokuti'0

4 9.676 8
tr„, =wa„'~ ~, En(ka, )'+ ~' ~,

—
~

~, ) (11)

which describes" o.„,very well in the energy re-
gion under consideration in spite of the fact that
it is calculated in lowest-order perturbation
theory. To put it differently, Imfs'"'(0), n&2 con-
tributes very little to o„,. More specifically, fs'"
and f~4' contribute to the term k ', f~" and f~" to
k ', etc. In other words, the Bethe-Born formula
is dominantly determined by the lowest-order
amplitude f '". In short, Eq. (11) is well suited
for the numerical evaluation of &k. The contri-
bution of the exchange effect has been included
neither in the expression of a„, nor in f',", 'of Eq. . .

(10). The results for &k and the corresponding
values of E,„,as function of the momentum k are
listed in Table I. The surprising result is that
the mean excitation energy E,„, is essentially in-
dependent of energy. Not only does it not increase
with energy, as we expected intuitively, if actually
den"eases slightly with increasing energy.

We are now in a position to evaluate the scatter-
ing amplitude of Eq. (1) numerically. It turns out
that the real part of the modified Glauber ampli-
tude is not very different from the real part of the
conventional Glauber amplitude. On the other
hand, the corresponding imaginary parts are sig-
nificantly different from each other. The main
difference between the two amplitudes is at small
angles: whereas our amplitude is finite when
8-0, the Glauber amplitude becomes infinite.
This, of course, was to be expected. However

10 L
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E = 50eV
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there is also a non-negligible difference between
the two amplitudes for the rest of the angular
range. For 8& 20' (E = 50 eV) the imaginary part
of our amplitude is always slightly higher than the
imaginary part of the Glauber amplitude, it reaches
16% in the neighborhood of 30'. In Fig. 1 the ima-
ginary parts of the two amplitudes for incident en-
ergy of 50 eV are plotted versus scattering angles.
The imaginary part of the amplitude suggested by
Gien7 is also shown. It is systematically lower
than our amplitude; at intermediate angles the
difference is up to 45%, pointing to the strong de-
pendence of Im f'"', n&2 on bk.

As already pointed out in the Introduction, the
absolute values of the conventional and modified
Glauber amplitudes do not depend on the sign of
the charge of the scattered particle. In Ref. 8 it
was shown that this is attributable to the neglect
of what is there called the "j,n, terms. " These
terms should be incorporated into each order term
of the amplitude. This is a rather complicated
problem, but if the mathematical difficulties in-
volved are solved, we shall be left with an ampli-
tude in which the phase function includes higher-
order terms, thus giving rise to cross sections
which distinguish between positive and negative

TABLE I. Excitation energy E«, and &4 as function of
incident energy E.

Z (eV) &k(ao ') E„,(By) 0.01
0

I I

20 40
I

60
I I

80 100
I

120 140

50
100
200
400

0.2800
0.1845
0.1270
0.0890

0.993
0.965
0.956
0.956

FIG. 1. Imaginary part of scattering amplitude at 50
eV. Solid line, modified Glauber amplitude; dashed line,
conventional Glauber amplitude; dash-dotted line, Gien's
amplitude.
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particles. In the meantime, we shall have to be
content with the correction of the second-order
term of the amplitude only. It is easy to see that
this correction is simply the real part of the

second-order Born amplitude f',.',.'(8). We have
thus to add to our modified Glauber amplitude f',",G'. .
the term

(,) 2 ~ [F,„(kg- q) —5,.„][F„,.(q k,.) 5„.]
()Tao)' ~ (E~- Q'(q' k„' iq)(q R,)'

where E,, is the form-factor of the atom. In order to evaluate the sum over the intermediate states, the
mean momentum k of the scattered particle is substituted instead of the actual intermediate momenta k„.
We then obtain

2 F, ,(Q) —F, ,(k) —q}—F,,(q —k,.) + 1

( )' (k -g}'( '-k - )(g-k. }' (12')

f(MG) + Ref (2) (13)

As to the exchange amplitude we have used the
"post" eikonal exchange amplitude proposed re-
cently by Forster and Williamson. " A similar
expression has been derived independently by
Madan. " It is given by the two-dimensional in-
tegral /

2 '~" o I'(I —i/ka )
a', 1(-ilka, )

oo 1
x dXA '/"'0

0 0 X

x —
2 i F(,)(1,0, 0, 0, 0)

d 't'

Qo dp )

P(,)(1,0, 0, 1,0)
1 d

(14a)

where
\

0(,)(1,0, 0, S, 0) = A.'(I —X)'(p( )+ ())(,))'i ~'o '

( p (y) ZQ(y)g) (14b)

which has been calculated by the Feynman tech-
nique in the usual way. We have k =k —4k, where
4k was taken to be equal to the previously found
values given in Table I. The reason for chosing
the same k in f(Mo) and Ref'" is as follows: In
Ref. 8 it is shown that the value of k is defined
by a certain sum over the intermediate states
[Eqs. (5.7) and (5.9)]. Now it turns out that if one
performs the same kind of analysis for Ref'" one
finds that k is defined by exactly the same expres-
sion (this material is still unpublished). It is
worth pointing out that Ref',.',.' depends significantly
on the value of ~k. For instance, for 50-eV elec-
trons in the forward direction we get Ref(,.2)(hk
= 0.28) = 1.858 and Ref(2)(i) k = 0) = 0.38'l. This strong
dependence on hk is due to the fact that Ref',.',.' at
&k = 0 has a discontinuity equal to v/k.

The direct amplitude is thus given by

P(+) ~(+)+ 1/ao i

~(.) = x'(1 —x)'+ u'x+ k'x(1 —x)

(14c)

(14d)

(14e)

-2iXX(1 —X)k cos8,

Q(,) =k,. —xk~ —ix(l —x)g .
The z direction was taken along k,. in compliance
with the direct amplitude where the same direc-
tion was chosen.

The differential cross section is calculated ac-
cording to

d(T 3, 1
dg 4- D E +

4 D+ E ~

III. RESULTS AND DISCUSSION

The differential cross section for elastic e-H
scattering was calculated numerically for 50, 100,
and 200 eV and scattering angles from 0.001' to
140' according to Eq. (15}. The direct amplitude
is given by Eqs. (9}, (12), and (13) with r)k given
by Table I. The exchange amplitude is given by
Eqs. (14).

In Table II the differential cross sections calcu-
lated with and without the exchange effect, as well
as the experimental data by Williams, "are pre-
sented. In Figs. 2-4, the differential cross sec-
tions including exchange are plotted, along with the
experimental data of Ref. 13. For comparison,
the first Born approximation cross section and the
conventional Glauber cross section, both without
exchange, are also plotted. The latter was calcu-
lated according to the analytic expression of Tho-
mas and Gerjuoy. " At 50 eV the agreement of the
modified Glauber cross section with the experi-
mental data is extremely good. For 100 and 200
eV the agreement is also very satisfactory but less
good than for 50 eV. In order to put this on a more
quantitative basis, use has been made of the well-
known X' test. Let X, be the theoretical expectation
of the cross section, and x,. and 0,. the experimen-
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TABLE II. Differential cross sections of elastic e-H scattering in ao sr units for 50, 100 and 200 eV. The numbers
in parentheses are the standard deviations in the last significant digits.

50 eV 100 eV 200 eV
Angles Without With Expt. data Without With Expt. data Without With Expt. data

(deg) exchange exchange (Williams) exchange exchange (Williams) exchange exchange (Williams)

10
10
15
20
30
40
50
60
70
80
90

100
110
120
130
140

10.75
5.03
3.21
2.07
0.95
0.50
0.299
0.190
0.129
0.0909
0.0667
0.0505
0.0400
0.0326
0.0273
0.0238

12.05
5.83
3.82
2.51
1.17
0.598
0.333
0.200
0.130
0.0897
0.0658
0.0504
0.0407
0.0339
0.0291
0.0259

~ ~ ~

5.O4(51)
3.i8(3V)
2.17(23)
1.12(12)
0.551(59)
0.308(27)
0.205(19)
0.146(14)
0.0993(121)
0.0716(82)
0.0558 (66)
O.O421(43)
O.0349(33)
0.0288(30)
0.0273(2 6)

7.419
2.123
1.236
0.786
0.363
0.186
0.103
0.061
0.038
0.025 5
0.017 9
0.0133
0.010 3
0.008 3
0.007 0
0.005 88

8 ~ 044
2.436
1.464
0.946
0.430
0.211
0.111
0.063
0.039
0.025 6
0.017 9
0.0133
0.010 3
0.008 4
0.007 1
0.006 03

~ ~ ~

1.10(10)
O.5O9(49)
0.288(27)
O.132(i2)
o.ov2(v)
0.049(5)
o.o295(3o)
0.0209(20)
O.O155(15)
0.0115(12)
0.0092(9)
0.0078(7)
o.oo65(v)

5.15
1.02
0.607
0.374
0.149
0.065 0
0.032
0.0174
0.0104
0.006 8
0.004 7
0.003 45
0.002 68
0.002 14
0.001 79
0.001 61

5 4
1.132
0.679
0;416
0.161
0.068 5
0.033 0
0.017 8
0.010 5
0.006 8
0.004 7
0.003 46
0.002 68
0.002 15
0.001 80
0.001 62

~ ~ ~

0.419(40)
0.172(17)
0.070 6(68)
O.O314(32)
0.018 7(19)
O.O12 5(14)
0.008 6(9)
0.005 8(6)
O.004 12(41)
0.003 23(31)
o.oo2 v2(35)
o.ooi 99(25)
0.001 78(26)

tal value of the cross section and the correspond-
ing standard deviation for the same energy and
scattering angle, then

100

(16)

where n is the number of measurements for given
energy. Obviously, the smaller X', the better the
fit. In the literature" the values of the function
P„,(& y') are given, which expresses the proba-

E = 50eV 10

1.0

coo 10
C$

1
O

0.1

0.01

0.01
0

I

20
I I

60 80
I I

100 120 140

FIG. 2. Differential cross sections of e-H elastic
scattering at 50 eV. Solid line, modified Glauber with
Glauber exchange; dashed line, conventional Glauber
without exchange; dash-dotted line, first Born without
exchange. Data by Williams.

0.001
0

I

20
I

40
I I

60 80
8

I I

100 120 140

FIG. 3. Same as Fig. 2 at 100 eV.
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E = 200eV

1.0

ao 01
U

b&
D

0.01—

0.001
0

I

20
I

40
I

60
I

SO
I I

100 120 140

FIG. 4. Same as Fig. 2 at 200 eV.

bility of obtaining any value worse than X'. In
Table III are listed the values of y' and the corre-
sponding probability function P y for different
energies based on the modified Glauber theory.
Similarly, the values calculated according to the
eikonal-Born-series amplitude' and Gien's ampli-
tude, ' both including exchange have also been
given whenever the numerical values were available
in the literature. All these calculations are based
on the experimental data of Williams. '~ As can be

seen the agreement with the experimental data of
50 eV is really very good. At 200 eV, and even
more so at 100 eV, the results of the modified
Glauber theory as well as the eikonal-Born-series
theory are less satisfactory, though acceptable.
But even at 50 eV there is still room for improve-
ment. Whether the fault is with the theoretical
prediction or with the experimental data is difficult
to say. Probably both are in need of amendment.
A possible amendment of the modified Glauber
theory has already been pointed out in Sec. II,
namely, inclusion of higher-order terms of the
phase function in the expression of the amplitude.
As to the measurements at 100 and 200 eV, more
recent data by Van Wingerden et al.' do not im-
prove the fit. On the contrary, their data of the
differential cross section are systematically
higher than those by Williams, thus increasing
the gap between theory and experiment even fur-
ther.

For 50 eV, we also checked the sensitivity of the
results to changes of &k. We have found the fol-
lowing: (i) Increasing ak by 10% to 0.308 gives
X'=19.94, thus making the agreement worse con-
siderably. (ii) Decreasing &k by 10% to 0.252
gives y'=12.66, thus improving the results only
slightly. In other words, the value of &0 found via
the optical theorem seems to yield results which
cannot be considerably improved upon by changing
the value of ~k arbitrarily. This is an indication
of the internal consistency of the theory.

APPENDIX

We here prove the unitarity of the modified
Glauber amplitude of Eq. (1). Making use of the
integral representation of the Bessel function
[see Ref. 8, Eq. (2.21)j the amplitude becomes

. 4u u.f~Mo«(g g ) = i " & e &+nss d ~ «f«e &'t&s &;« 'b &+ns(o e &+ns lfp + (y (e&~o f«i. I) Io )nj n& n ( knk ~ 0 [
0 ~

TABLE GI. X values and probability function Pn ~(&X ).

E (eV)

Number
of points X

(Present work)
&„g(&x )

(Present work)
X

(Others)
&n-g(&X )

(Others)

50
100
200

15

10d

13.02
31.33
16.13

0.53
0.0011
0.065

20.15
34.33
13.80

0.13
0.0004
0.13

~ Reference 7.
Without the point at 140 .
Reference 6.
Without the points at 120, 130,140'.
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Similarly,

(f(MG)(b b )) f f«. e-((i(g-i(«««d(2&b e-i(ice-1«) b-((i(p-i(«)«(o e-i&«« I
fn f& n n [ kf-kn

+ n, , ', (e-' 0+iA, —1)~o~e-'"&"), (A2)

since && k and nk k are Hermitian. Now the only dependence of Ak k on y~ and q, the azimuthal angles
2 ky-k2

of g and b, respectively, is through ~, where

7' = b'+ f~ —2b f, cos(p& —y) .
Thus, the integral over yz is of the form

J (N„&(~)'(y(--y ) ( (+ ))d+
0

(A3)

(A4)

This integral does not depend on the sign of (M„-Mz), and therefore the two states in the matrix element
of (Al) are interchangeable.

Hence we have

d(2&b d(a)b r dfl e ((Ky-1&-«) b-((lr„-f (&
b' e-((&y-&(«&«-ii(««', (o e-i&(&«i I

(2 )'

+ n, , (e '~o+i A, —1)
~

o-„e '"«")(o„e '"""
~i A, , + n, , (e' ' —i&, —1)

~

o',) ~ (A5)-
n

Now the present theory is a high-energy, small-angle theory; we can therefore, according to Qlauber, ' as long
as k,. and kf lie close together in direction, replace the integration over the sphere by an integration over
the plane in k„space which is tangent to the sphere at k„=k, In other words, we may put dQ„=d(2&b„/b„',
With this in mind, the angular integration becomes a two-dimensional 5 function of b-b . We therefore
get

(f~ '(k„k„))'f„'M"(k„,k,.)dn„
f i

' f" Of e ' f" - i~k k + ~k k
e-"o+~A, - 1 O e-~"n~

x&o.e '""'lfA..-., + n„„,,(e'"- fA, - I)~o,.). (A6)

Next, by introducing the mean momentum b the sum over all intermediate states o„can be performed [see
Ref. 8, E(ls. (5.V) and (5.9)]. We obtain

g i„J(q'"O'(i„k„&)'&™D)(k„,B««„
f i an

=e ' f"& d' 'be "
&

"' '" ' f" O'f~ ' f" -&~ -+&k g 8 ' +&+0 —& &~k-k. ++5-k ~ —&~0 —~
f

(A'I)

By the definition of n, «, E(I. (2), we have
1 2

f k ~"ki kf ki o~ kf ~ ~ki kf k k"ki kf k' 0

Thus the r.h.s. of E(I. (AV) becomes

k -5 k-k ~ k -k ~
'f i f i

i@f(t's d Q e i ~f ~i b i+f& o e™f+2~ j cosp o-i (AB)

On the other hand, by E(ls. (Al) and (A2) we have

(A9)f&M '(k&, k.) —(f'M '(k&, k,.)) =i ' e ' &"«d'"be ""~~(' ' &"(o&e ' x" ~2n«, .(1 —cosAo)~a, ). .
71' f . kf-ki

In conclusion, we have verified that the modified Glauber amplitude indeed satisfies the unitarity theorem
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[f'"~'(»» ) (f' '"(.k, »)I ]= —Q ).'„f(f'q" '(„k(k ,)) „f
'". '„(k,. k „),d» ., . „(AIO)f f

n

Finally, we show that the limitation imposed on the angles and relative directions of k,. and kf is not neces-
sary for the verification of unitarity. Making use of the connection between the Bessel function and spheri-
cal harmonics, and replacing the integral over the impact parameter b by a summation over angular mo-
mentum l [Ref. 8, Eqs. (3.1V) and (3 ~ 18)], we obtain, for the modified Glauber amplitude,
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Similarly we have
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(A11)

(A12)

if k„were in the g direction. However k„ is not in the z direction. We, therefore, perform a rotation of
the coordinate system so that k,. will be along the new z axis. Hence

(A13)

where D'„"„.is the rotation matrix. As

F,""(0„,.) = [(f+—,')/2rr]'r'D"„)*, (q„,, e„„o),
we obtain

(A14)

kf,k„„,. k„k,. dQ„i
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After making use of the orthogonality relation of the rotation matrix, (A15) becomes the analogous ex-
pression of (A6). The remaining part of the proof follows the same lines as above.
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