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Feshbach resonances of electrons incident on He and Li* are calculated below the 3°S target threshold by
means of the inelastic quasi-projection-operator technique of Temkin and Bhatia. A configuration-
interaction-type wave function is employed with up to 46 configurations. The calculations reveal, with
reasonable accuracy, all presently observed Feshbach resonances. The method does not reveal shape
resonances, but, for isoelectronic systems with greater nuclear charge; it is argued that shape resonances
should become less important. This is already apparent in the case of Li, for which the authors calculate the
known resonances and also predict higher resonances for which there are as yet no experimental data.

I. INTRODUCTION

Recent experiments!'? with substantially im-
proved resolution have been carried out on the
autoionization states of He™ and Li. Brunt-ef al.!
have observed states by electron impact excitation
of metastable He up to the » =4 threshold with an
incident energy spread of 15 meV, to be compared
with previous transmission and metastable exci-
tation experiments®® with resolution from 36 to 50
meV. For lithium McIlrath and Lucatorto? ob-
served the first optical absorption for excited
states to core-excited (i.e., Feshbach) autoioni-
zing levels of even parity. They used a 1-MW
dye laser, tuned to the lowest resonance line, to
excite a dense Li vapor, thereby producing an
accurate far-uv absorption spectra of Li. Other
previous experiments were conducted by Bruch
et al.,” who used an ion beam time-of-flight
method, and Ziem et al.,® who bombarded Li
vapor by H* and He*. Both experiments observed
the energy spectrum of electrons emitted from
the autoionizing states. Ederer et al.’ observed
the 2P° transitions through photon absorption from
the Li ground state.

Theoretical work on the autoionization states of
He™ has been done by Nesbet,!® who refined an
earlier variational calculation of Oberoi and Nes-
bet!! by including » =3 states and all energetically
allowed open channels. His results in the region
of the 2'S—~33S excitation threshold agree with
the experimental work in that range except for
the classification of the 2D resonance. Burke
et al.!? dealt with resonances below the 33S state,
in a close-coupling scattering calculation.

The present calculations are based on an ex-
tension of the quasiprojection method of Temkin
et al.'* The original method and calculations
were confined to resonances below the first ex-
cited (239) threshold and were applied to He"

(Ref. 13), Li (Refs. 14 and 15), and Be*, B**, C%*
(Ref. 15). The method has now been generalized
to calculate resonances below any discrete thres-
hold,!® and it is this extended method that is em-
ployed here for calculations below all five thres-
holds (up to 3°S) of the He™ and Li systems.

Before presenting the details of the calculation
and results, we should emphasize that the method
only reveals Feshbach resonances. However,
within this restriction it is both powerful and
accurate. Results for Feshbach resonances
below the 33§ threshold for He and Li* are given
in Sec. III. We detail a specific case of an ap-
parent 2P° resonance in He™ which on more rigor-
ous testing turned out to disappear. This vanish-
ing was due to the use of more accurate target
wave functions in the projection operators. The
experience shows both the power and the caution
that must be exercised in applying the quasi-pro-
jection-operator formalism.

Our method does not reveal shape resonances.
However, we argue (we believe cogently) in Sec.
III that the importance of shape resonances rela-
tive to Feshbach resonances will diminish for any
isoelectronic series as the nuclear charge in-
creases.

II. CALCULATIONS

The essence of the quasiprojection method'® is
the relaxation of the idempotency requirement
of the Feshbach projection-operator formalism,'’
so that explicit (quasiprojection) operators é can
be constructed which preserve the correspon-
dence of the éigenvalue spectrum of §H{ with re-
sonant energies. One slight inconvience of the éHé
spectrum is thatit can cause spurious states (i.e.,
eigenvalues not associated with resonances). How-
ever, the nature of these spurious states can be
understood well, so that one can identify them in
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TABLE I. Number and designation of spurious states in the quasiprojection technique for

three-electron ions. ?

Symmetry of v+1 1 2 3 4 5
autoionization Target state® 235(1s2s) 21!S(1s2s) 23P(1s2p) 21P(1s2p)  33S(1s3s)
state

2ge 0 2 2 3 3

Configurations (1s%2s) (1s%2s) (1s%2s) (1s%2s)
of spurious (1525%) (1s25%) (1s2s?) (1s2s?)
states (1s2p?) (1s2p%

ipo 0 0 0 3 3

Configurations (1s?2p) (1s?2p)
of spurious (1s23)3s(2p) (1523)38(2p)
states (1s25)18(2p) (1525)1S(2p)

2pe 0 0 0 1 1

Configurations (1321)2) (1s2p%)
of spurious .
states

2 Note that this table corrects Table I of Ref. 16, where the v+1=4,5 entries for 2p° were

erroneously given as 4 and 5.

advance, as we have done in Ref. 16. This is
shown again in Table I, correcting an error in the
number of spurious states of *P° symmetry and
also giving the (chief) configuration label of the
spurious states. (In Table VI we display a parti-
cular spectrum of He™ and see that the spurious-
state configurations are indeed those which we
were led to infer.'®)

The basic quasiprojector is the operator B de-
fined as

v N+l

S
n=0 i=

where v is the index of the highest energetically
allowable target threshold, N is the number of
target electrons, and » labels the target eigen-
functions. The P{™ are the respective target
projectors given by

PV = | p (6 )X a2 |,

where x'*) indicates the absence of the coordin-
ates (including spin) of particle ;. The above P
acting on the scattering function y preserves its
asymptotic form?:

(1)

lim Py=1limyp.

Ty~ Ty

®)

However, P?+P. The closed-space é operator is
defined as

év =1- ﬁu ’ 4)
and the computation of resonances reduces to a
Rayleigh-Ritz variational principle!s:

5((9,2,HQ,9)/(Q,2,Q,8) =0, (5)

where in this calculation ¢ is a bound configura-

 tion-interaction-type wave function for the three-

electron system:

1) R(Z) R(3) yL

nily"ngly~ nglyg (lilZ’lii)

ers=-2 3°C[R
>

+(1—2)[x*(12;3) ; (6)
@ is the antisymmetrization operator,

= (nyly,myly,m515), Y is the total angular eigenfunc-
tion, and x° is the total spin function. L and S

are the total orbital and spin quantum numbers of
the three-particle system. R",Wa;re the radial
orbitals and in this work are expanded as follows:

n
R,=7"! ﬁ aymie T,

These functions are constructed to be orthonor-
mal:

M

f P2 Ry Ry dv=0,,0,.- 8)

0
This requires n; =z — [ terms for each series
representation in Eq. (7). The integer m ; runs
from [+1 to n, 1+ 1 sm; <n, and the coefficients
a; are determined from the orthonormality condi-
tion (8). The nonlinear parameters z; are de}er-
mined by the optimization process of the QHQ ma-
trix. The configurations used for %3, 2p°, and
’D symmetries are listed in Table II. Tables III
and IV give the values of the coefficients a;, ex-
ponents m,, and optimized z, for the R,,.

The ¢,(x) in Eq. (2) are in principle supposed
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to be the exact eigenfunctions of He and Li*. In
most of our calculations we use approximations

of the target plus the incident electron, i.e., pro-
duct functions whose orbitals are optimized for
He™ and Li. Such a choice is not as rigorous as
that for orbitals optimized for the target wave
functions, because they are poorer approximations
of the exact eigenfunctions of He and Li*; thus
their effect is to lower the spectrum of the reson-

TABLE II. Configurations used ® for both He™ and Li.

i 2s 2po p
1 1s%2s 15221) 1s%3d
2 1s2s? 1s2s1s2p 1s2s°%53d
3 1525 °%53s 1s2s 3s2p 1s2s 1534
4 1s2s183s 1s2s153p 1s2s354d
5 1s2p? 1s2s383p 1s2s 1s4d
6 1s2p °P3p 1s2p 1P3s 1s2s3s5d
7 1s2p 1P3p 1s2p °P3s 1s2s 1854
8 252p? 1s2p P4s 1s2s°%s6d
9 1s3s? 1s2p 3p4s 1s2s1s6d
10 1s3p° 1s2s 1s4p 1s2p®
11 1s3d" 1525 354p 1s2p°P3p
12 1s4s? 1s2s 1S5p 1s2p1P3p
13 1s4p? 1525 °s5p 1s2p °P4p
14 1s2s 3545 1s2p 1P3d 1s2p 'P4p
15 1s3s 1s4s 1s2p °P3d 1s2p °P5p
16 25%3s 1s2p 'P4d 1s2p 'P5p
17 2535 1s2p 3P4d 1s3p °P5p
18 2p%3s 1s3s 1s3p 1s3p 'P5p
19 253p® 1s3s°s3p 1s4p 3P5p
20 2534d* 1s3p 'P4s 1s4p 1P5p
21 15253855 1s3p °P4s 1s3s353d
22 1s2s1s5s 1s3s 's4p 1s3s 1534
23 1s3p 3P4p 1s3s°s4p 1s3p?
24 1s3p ‘P4p 1s3p 'P3d 1s3d?
25 1s4s3S5s 1s3p °P3d 1s3d °p4s
26 1s4s's5s 1s3p 'P4d 1s3d 'D4s
27 1s4p °P5p 1s3p *P4d 1s3d °p4ad
28 1s4p 'P5p 1s3d 'D4f 1s3d 'D4d
29° 1s5s° 1s3d °D4f 1s4p?
30 1s5p° 1s4s354p 1s4d®
31 1s4d? 1s3s385p 1s3s3s4d
32 15452 1s3s !s5p 1s3s 1s4d
33 1s3d°D4d 1s4s%s5p 1s3s355d
34 1s3d 'p4d 1s4s155p 1s3s 554
35 1s3p *P5p 1s3p 3P5s 1s3s3s6d
36 1s3p'P5p 1s3p 'P5s 1s3s's6d
37 1s2s354s 1s3p 3P5d 1s3p°Pap
38 1s2s!s4s 1s3p 1P5d 1s3p lp4p
39 1s2s°s5s 1534 °D5f 1534 °D5d
40 1s2s!85s 1534 'D5f 1s3d 'D5d
41 1s3d 3p6d
42 1s3d 'Déd
43 1s5d%
44 15642
45 . 4 1s4s%s4d
46 1s4s1s4d

2 For He™ 30 of the above configurations were used for
all symmetries.

ance positions. Weiss and Krauss!® found it
necessary to use such orbitals in their calcula-
tions of autoionizing states in Li. We test both
types of orbitals by calculating the %S resonances
in He™ with the two forms of ¢,(x'?’) described
above. Using the He target orbitals, we obtain
-2.192 a.u. for the resonance below 23S and
-2.071 a.u, for the one below-33S. These two
positions became -2.193 and -2.077.a.u. when
projecting out with the He™ orbitals. This indi-
cates that the resonance positions do not seem
to be very sensitive to the aectual form of the tar-
get orbitals when used in our genevalized quasi-
projection formalism,'® whereas the projection
algebra is greatly simplified when one uses-the
orbitals of the N+ 1 electron system. However,
if an apparent resonant eigenvalue should lie
close to an unprojected (i.e., higher) threshold,
then even a small shift in energy may take it
above that threshold and thus negate its being a
resonance. Precisely such a situation arose in
the present calculation for a ?P° eigenvalue which
lay below the 2!S threshold of He. In such cases
it is essential to be as rigorous as possible in
carrying out the quasiprojection formalism.

TABLE III. Orbital parameters for He™.

m; a; Zj
1s 1 5.656 85 2.0
2s 1 0.82705 1.59047
2 -0.24349 0.528 61
3s 1 0.51170 1.68337
o2 -0.181 61 0.66346
3 0.00273 0.23507
4s 1 6.736 27 1.01184
2 ~11.754 88 1.194 07
3 2.404 28 1.13793
4/ -0.019 74 0.77793
5s 1 0.436 22 1.12478
2 -0.207 89 0.657 69
3 —0.030.03 0.03000
4 0.012 84 0.4000
5 —0.00029 0.4000
2p 2 0.18060 0.47610
3p 2 0.85516 0.96370
3 -0.008 57 0.346 58
4p 2 17.202 71 2.862171
3 —0.476 94 1.32920
4 0.000 27 0.36372
5p 2 1.626 29 1.08390
3 —1.87627 1.27780
4 . 0.02508 0.69970
) —0.00015 0.39540
3d 3 0.757 68 1.18230
4d 3 0.001 37 0.63338
4 —0.00003 0.16305
4f 4 0.0001 0.121 06
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TABLE IV. Orbital parameters for Li.

2g 2po p
m; aj z; m; a; zj m;j a; zj
1s 1 ° 10.39230 3.0 1 10.39239 3.0 1 10.39230 3.0
2s 1 1.951 36 2.358 98 1 1.35664 1.95797 1 1.60107 1.51634
2  -0.99895 0.92097 2 —0.80952 0.84325 2 1.52660 1.02902
3s 1 0.76232  0.30259 1 0.546 87 '0.25975 1 11.38079 1.540 60
2 =1.86737 1.30761 2 —1.30222 1.27795 2 —-33.44012 1.21210
_ 3  -0.36307 0.88987 - 3 —0.28758 0.84177 3 33.10662 1.58000
4 1 0.09513 0.10092 1 0.38838 2.02874 1 3.33132 0.64397
2 -=8.03786 11.50641 2 0.27641 0.294 97 2 -7.64131 0.82008
3 =6.79015 5.13139 3 -0.91641 0.56138 .3 3.09136 0.72373
4 =0.01268 0,59254 4 0.49792 0.81934 4  —0.64847 0.79548
5s 1 0.09158 0.13751
2 0.02247 0.18119
3 -0.28144 0.459 30
4 0.11893 0.58505
5 =0.00329 0.54833
2 2 0.68213 .0.81014 2 0.87734 0.89594 2 0.76338 0.84744
3p 2 0.373 92 0.95041 2 0.34793 0.92980 2 0.23136 0.80032
3 -0.01052 0.34525 3 -0.01455 0.37629 3 - —0.01101 0.34607
49 2 1.08213 0.37359 2 0.03101 0.18171 2 1.48006 0.80780
3 -0.76082 0.71405 3 0.49935 2.14839 3  —0.49550 0.71405
4 —-0.04637 0.54919 4 -0.00831 0.49728 4 0.00111 0.38890
5p 2 6.61450 1.08390 2 0.17848 0.47922 2 6.42423 1.08390
3 ~5.11953 1.277 80 3 —=0.00510 0.21956 3 -5.11981 1.27780
4 0.03211  0.69970 4 —0.01970 " 0.473 66 4 0.03980 0.69970
5 0.00121  0.60000 - 5 0.00240 0.46729 5 —0.00161 0.60000
3d 3 1.64371 1.47511 3 0.00664 0.30539 3 0.01096 0.352 47
4d 3 0.13056 0.70709 3 0.14081 0.73092
4 -0.00043 0.39606 4 -0.00057 0.33476
4f 4 0.03088 0.75000
5d 3 0.44599 0.73760
4 -0.10820 " 0.764 99
5 0.00004 0.34032
6d 3 0.15331 0.736 06
4 —-0.04257 0.75078
5 -0.00001 0.23273
6 0.00003 0.455 95

Therefore when we replaced the projector orbi-
tals by optimized He (not He) orbitals, the eigen-
value was raised above the 2 'S threshold. We
discuss further detaﬂs of this speciﬁc calculanon

in Sec. 1.

“The optimization procedure used is that of
Powell19 convergence of some positions' vérsus

the in¢luded number of configuratlons is: 111us-

trated in Table V.

fi. RESULTS AND DISCUSSION

In Table VI we present the complete spectrum
of eigenvalues for the 30- conﬁguratlon calcula-
tion, including the spurious ones, for S symme-
try in He". The numbers of spurious states are
seen to conform to the entries in Table I, and in
most cases the largest configuration (also listed)

of each spurious state shows obviously that it
corresponds to an ordinary (nonresonant) scatter-
ing from a target state whose energy is lower
than the three-electron eigenvalue in question.
Note that for the %S states the spurious states
are fouiid to be the lowest that arise. As sus-
pected,'® however, we have found one case where
the ordering is violated. In Li 2P° below the
335 threshold (v=4) we find a spurious eigen-
value —4.803 a.u. with configuration (1s2s)'Ss;
2p[*P°), which is higher than one real resonance
(1s3s) 3S; 3p|2P°) at —4.806.

Table VII contains a compilation of all our (real)
He~ resonances (in eV relative to the He ground
state). Without attempting to be complete, we
have also included in the table other salient re-
sults, both experimental and theoretical, which .
give a good picture of the current situation. Re-
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TABLE V. Convergence of resonances below the first excitation (23S) threshold of tar-

get for various symmetries.

Number of configurations

Resonance 10 20 30
Symmetry System number Resonance positions (a.u.)
2g¢ Li 1 —5.4045 —5.4054 ~5.4059
2 —5.1848 —5.1971 —5.1977
3 —5.1492 —5.1560 —5,1569 .
4 —5.1365 —5.1492 —5.1498
‘ —5.1439 —5.1446
He~ 1 -2.,1913 -2.1928 —2.1930
¢po Li 1 —5.2895 —5.3124 —~5.3128
2 —5.2501 —5.2559 —5.2567
3 —5.1499 —5.1828 —-5.1836
4 -5.1213 —5.1480 —5.1487
5 -5.1301 -5.1338 —5.1345
’p Li 1 —5.2167 —5.2304 —5.2338
2 —5.1487 —~5.1650 -5.1657
3 -5.1141 —5.1363 —5.1375

ferring first to the lowest s (Schulz) resonance,
we see that our present value is in satisfactory
accord with a previous calculation and experiment.
We do not consider our present value to be as
theoretically rigorous as our previous quasipro-
jection results,'® particularly the one (19.386 eV)
based on the open-shell target. The latter has
been gratifyingly supported by the recent beauti-
ful complex-rotation calculation of Junker and
Huang,20 even though the best present experimen-
tal value of Brunt et ql.! is closer to our pre-
vious!® closed-shell result (19.363 eV). The dif-
ference between our previous results and our
present one (19.34 eV) can be taken as a measure
of the effect of using He™ rather than He orbital
in our projectors, as explained above.

Above the 23S threshold there is a comparatively
broad shape resonance at 20.3 which shows up as
a feature about 0.6 eV wide in the experiment of
Brunt ef ql.! Being a shape resonance (i.e.,
having the quantum numbers of the energetically
accessible 23S itself), this state cannot (and does
not) show up as a resonance in our quasiprojec-
tion formalism, whereas, in elaborate scattering
calculations, such as those in Ref. 11 or Ref. 21,
it does.

Beyond the broad shape resonance there is a
small but sharp feature in the data of Brunt
et al.' which has its onset at essentially the 2'S
threshold. They! have attempted to fit this fea-
ture by convoluting a linear combination of the
238 cross section® and 21!S cross section!’ with
their experimental resolution profile. The re-

cognized resonantlike item in the theoretical
cross sections is an enhancement of the 2
eigenphase above the 2 'S threshold, which first
appeared in the calculation of Burke et ql.!? The
latter interpreted this enhancement as a virtual
state of S symmetry just below the 2!S thres-
hold. As alluded to in the Introduction and in
Sec. II, our own calculation originally showed a

TABLE VI. Lowest %S eigenvalues of éHé for He™ 30-
configuration calculation.® Results are in a.u.

%S autoionization states
Target state Chief
Symmetry Energy v Energy configuration Status

11s(1s®) -2.9037 0 -2.193 (1s2s?) real
235(1s2s) -2.1754 1 —2.698 (1s%25) spurious
-2.148 (1s2s?) spurious
215(1s2s) —2.1461 2 —2.147 (1s%25) spurious
—2.145 (1s2s%) spurious
2°p(1s2p) —2.1333 3 —2.1302 (1s%2s) spurious
—-2.1300 (1s2s%) spurious
-2.128 (1s2p?) spurious
21p(1s2p) —2.1250 4 -2.117 (1s%2s) spurious
—2.114 (1s2s?) spurious
-2.096 (1s2p?) spurious
—2.077 (1s3s%) real

3%5(1s3s) —2.0688

2 In order to be considered, the (N +1)-electron eigen-
value mustbe lower than the target threshold for the next
higher v. Only such eigenvalues are given here. Of those
eigenvectors, the (chief) configuration must not be a
spurious one, as given in Table I. Cf, also Ref. 16.
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13.605826 eV).

(1 Ry

TABLE VIIL (Continued.)

2 These positions are calculated relative to the Li ground state at —14.956 05 Ry.

b Results of Bhatia (Ref. 15).
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2p° resonance at 20.564 eV. This was thought

to be associated with the blip feature observed!

at 20.16 eV. However, after conversations with
Professor F. H. Read and Dr. G. C. King and careful
inspection of the predicted cross section of Berring-
tonetal.,? it was clear that this feature mustbe due
primarily to the virtual 2S state associated with
the 2 'S threshold which had arisen in the previous
calculations.!>2% % gince our original calculations
were based on optimized He™ rather than He orbi-
tals in our quasiprojection operator, the reality

of this ostensible *P° resonance became an im-
portant issue. Therefore we redid the calculations
with optimized He (i.e., target) orbitals. In addi-
tion we included up to 60 configurations in the
total wave function and made further variations

in the nonlinear parameters. The effect of these
changes was dramatic: use of He orbitals im-

" mediately shifted the eigenvalue above the 2'S
threshold, and even with our most elaborate wave
function the eigenvalue never descended below
20.67 eV! We conclude that there is no ’P° re-
sonance; but the experience taught us to use cau-
tion in inferring resonances from nonoptimized
target projectors. It is nevertheless gratifying
that the quasi-projection-operator formalism
allows such a more rigorous calculation to be
carried out.

There are no resonances between the 2'S and
23P thresholds, but above the latter we do find
three Feshbach resonances which are clearly
revealed in experimental data as well as the 1978
calculation of Nesbet.!

Another shape resonance, 2D, shows up above the
2 1S threshold in the data of Brunt et al.! (else-
where as wellzz) and also comes out of the calcula-
tion of Oberoi and Nesbet!! but is (by definition)
excluded from our calculation.

The inability of our formalism to deal with
shape resonances shows that the quasi-projection-
operator formalism is by itself not tantamount to
a full scattering calculation. However, the follow-
ing argument cogently indicates that for a given
isoelectronic system the importance of shape
(relative to Feshbach) resonances must decrease

[Ref. 12. Their energy scale is with respect to the Morse- Young-Haurwitz ground-state energy (—7.2225 a.u.), which is 1.56 eV above the ex-

R. Bruch, and P. Bisgaard, J. Phys. B 12, 2413 (1979).
! Our classification disagrees with other theoretical classifications of Refs. c and j above.

¢ Results of Weiss (quoted in Ref. 2).

-

]

8

g

12}

Q

. Q
ey =]
2 g as the charge Z on the nucleus increases. This
© 2 occurs because shape resonances, which arise
= = by virtue of potential barriers, depend ultimatel
8 . ) —_ p y
§ & . _§ 8 on the centrifugal or electron-electron repulsion.
sSgCar 4‘5 But these repulsive potentials are independent of
Ll
& ] Z = Z, whereas Feshbach resonances, which depend
g R S '% 3 § strongly on the interaction with the core, also
~
e N :’:)s’ T w0 depend strongly on Z. Since our main interest
sg 3 2 § 8 is dominantly in (strongly) ionic targets,* we
= % §x™ ] ) A
039 .. g9 feel that the neglect of shape resonances in our
SESS88SE & P
- :Jf] oo - 'g formalism is not an important practical omis-
2 sion.
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The domination of Feshbach resonances for
higher Z is already evident in the cleaner-cut
resonant structure exhibited by lithium. Not
only does the larger nuclear charge emphasize
Feshbach resonances, but it lowers resonances
relative to their parent (target) threshold. How-
ever, this greater separation has the one nega-
tive effect of exacerbating the question of the
optimum energy relative to which one chooses
to refer one’s calculated results. We have con-
sistently favored referring all eigenvalues to the
exact (i.e., experimental) target energies.’* The
results in the second and third columns of Table
VIII, which also include those of Bhatia,'® are de-
termined in this way. (The calculation of Bhatia
is only for resonances below the 23S thres-
hold.) The results of Weiss (quoted in Refs. 2 and
9) refer the energy scale to the Hartree-Fock
energies of the target excited states. (Those
energies are also given in Table VIII.) This will
have the effect of lowering the resonant energies
relative to the exact target ground state; our re-
sults so determined are given in column 5 of
Table VIII and compared to those of Weiss, which
are in column 6. One sees that our results so
normalized are indeed lower (with one or two ex-
ceptions) than Weiss’s. It would also seem that
the results of columns 5 and 6 are closer to the
experiment; however, on closer examination one
sees that the higher states and higher symmetries
are actually foo low compared to experiment.
[Compare for example the D resonances below
the (1s2s) 'S level.] In addition, the sparseness
of the alternately computed spectrum, compared
to our own and the experimental spectrum, rein-
forces our opinion that the full quasiprojection
formalism'® plus normalization of results rela-
tive to exact threshold energies provides a su-
perior framework for calculating resonances in
the inelastic regime. .

In Table IX we give our additional calculated
resonances (and their configurations) for Li.
These are predicted results which have not as yet
been observed; note that states lie between the
2'p and 33 states of Li* and that there are no
autoionization states between the 23P and 2'P
thresholds; it will be of interest to see if these
predictions are borne out by future experiments.

Particular attention should be given to those
resonances marked by % and a in the last column of
Tables VII and IX, respectively. The configuration
of those resonances shows that they fall below atar-
get-state threshold even lower than the target state
of which they are chiefly composed. Taking for
example the (1s2s) 1S(3s); S resonance at (cal-
culated) energy 63.159 eV, one sees that its pa-
rent target state is clearly the 2 !S(1s2s) level of

WAKID, A. K. BHATIA, AND A. TEMKIN

TABLE IX. Additional predicted autoionization states
for Li.

Position relative to

Li* target the exact ground state,
levels this calculation Classification
1s2p°P  (66.706)
1s2p'P  (67.642)
1 70.615 1s3s?
2 61.839  1s3p®+1s342°
3 72.220  (1s3s39)(4s)
4 25 72,330 (1s3slS)(4s)?
5 73.173  (1s)(3p4p3S) ?
6 73.390  (1s)(3p4pls)®
7 73.445 (1535 °5)(5s)
8 73.690 (1s3sls)(5s)?
1 72.708  1s(3s3p °P)
2 73.119  1s(3s3plpP)?
3 2po  73.333 1s(3pnd’p)?
4 73.663  1s(3pnd 'P)?
5 73.803  1s(3s4p°P)
6 73.900 1s(3s4p'P)?
1 71.431  1s3p2°
2 71.731  1s(3s3d D)
3 D 71.839 1s(3s3d!D)?
4 72.111  1s34%2°
5 72.601  (1s3s) °S(4d)
6 72.685  (1s3s) 1S(4d) ?
7 73.118  (1s3p) 3P(4p) ?
8 73.200  (1s3p) 'P(4p) ?
9 73.445  1s(3d4d °D)
10 73.581  (1s3s) *snd
11 73.744  1s(3d4d D) ?
12 73.799  (1s3s)lSpd ?

2 Cf. discussion in text. .

Li*; nevertheless it falls below the 235(1s2s)
state. An essential point that we have tried to
make previously '®* is that'in a close-coupling
calculation, one would have to include this
215 state explicitly in the close-coupling total
wave function in order to get that resonance. In
contrast, in a quasiprojection calculation one
does not include the v=1 state in §H§. In fact,
by including v =1, the resonance (although it
would still occur) would be less accurately given,
because the true resonance necessarily contains
some (1s2s) *S(3s) %S component which would be
excluded in the v =1 calculation. (We should add
that all such resonances occuring in a particular
@, calculation that have already been accounted
for in v <v’ calculations are not counted again;
they are discarded along with spurious states, as
listed in Table I, for example.)

In conclusion, we believe that these calculations
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have shown that the concept of inelastic quasipro-
jector operators!® is viable and a useful technique,
even at the practical calculational level. Itis

our next intention to calculate widths of these
resonances, since the width is also an indispensi-
ble item for astrophysical and plasma diagnos-
tics.16:23
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