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Quasi-projection-operator calculation of inelastic resonances in He and Li
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Feshbach resonances of electrons incident on He and Li+ are calculated below the 3 S target threshold by
means of the inelastic quasi-projection-operator technique of Temkin and Bhatia. A configuration-
interaction-type wave function is employed with up to 46 configurations. The calculations reveal, with
reasonable accuracy, all presently observed Feshbach resonances. The method does not reveal shape
resonances, but, for isoelectronic systems with greater nuclear charge; it is argued that shape resonances
should become less important. This is already apparent in the case of Li, for which the authors calculate the
known resonances and also predict higher resonances for which there are as yet no experimental data.

I. INTRODUCTION

Recent experiments' with substantially im-
proved resolution have been carried out on the
autoionization states of He and Li. Brunt et gl.
have observed states by electron impact excitation
of metastable He up to the n =4 threshold with an
incident energy spread of 15 meV, to be compared
with previous transmission and metastable exci-
tation experiments' with resolution from 36 to 50
meV. For lithium McIlrath and Lucatorto ob-
served the first optical absorption for excited
states to core-excited (i.e., Feshbach) autoioni-
zing levels of even parity. They used a 1-MW
dye laser, tuned to the lowest resonance line, to
excite a dense Li vapor, thereby producing an
accurate far-uv absorption spectra of Li. Other
previous experiments were conducted by Bruch
et gl. ,

' who used an ion beam time-of-flight
method, and Ziem eI; gl. , who bombarded Li
vapor by H' and He'. Both experiments ob'served
the energy spectrum of electrons emitted from
the autoionizing states. Ederer et gl. observed
the P' transitions through photon absorption from
the Li ground state.

Theoretical work on the autoionization states of
He has been done by Nesbet, "who refined an
earlier variational calculation of Oberoi and Nes-
bet" by including n = 3 states and all energetically
allowed open channels. His results in the region
of the 2'S-3 S excitation threshold agree with
the experimental work in that range except for
the classification of the D resonance. Burke
et gl. ' dealt with resonances below the 33S state,
in a close-coupling scattering calculation.

The present calculations are based on an ex-
tension of the quasiprojection method of Temkin
et gl. ' The original method and calculations
were confined to resonances below the first ex-
cited (2 3S) threshold and were applied to He

(Ref. 13), Li (Refs. 14 and 15), and Be', B",C"
(Ref. 15). The method has now been generalized
to calculate resonances below any discrete thres-
hold, " and it is this extended method that is em-
ployed here for calculations below all five thres-
holds (up to 3'S) of the He and Li systems.

Before presenting the details of the calculation
and results, we should emphasize that the method
only reveals Feshbach resonances. However,
within this restriction it is both powerful and
accurate. Results for Feshbach resonances
below the 33S threshold for He and Li' are given
in Sec. III. We detail a specific case of an ap-
parent P' resonance in He which on more rigor-
ous testing turned out to disappear. This vanish-
ing was due to the use of more accurate target
wave functions in the projection operators. The
experience shows both the power and the caution
that must be exercised in applying the quasi-pro-
jection-operator formalism.

Our method does not reveal shape resonances.
However, we argue (we believe cogently) in Sec.
III that the importance of shape resonances rela-
tive to Feshbach resonances will diminish for any
isoelectronic series as the nuclear charge in-
creases.

II. CALCULATIONS

The essence of the quasiprojection method" is
the relaxation of the idempotency requirement
of the Feshbach projection-ope rator for malism, "
so that explicit (quasiprojection) operators Q can
be constructed which preserve the correspon-
dence of the eigenvalue spectrum. of Qffg with re-
sonant energies. One slight inconvience of the QHQ
spectrum is that it can cause spurious states (i.e.,
eigenvalues not associated with resonances). How-
ever, the nature of these spurious states can be
understood well, so that one can identify them in
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TABLE I. Number and designation of spurious states in the quasiprojection technique for
three-electron iona.

Symmetry of &+1 1 2 3 5
autoionization Target state 2 S(ls2s) 2 S(ls2s) 2 3P(ls2p) 2 p'(ls2p) 3 3S(ls3s)
state

2Se

Configurations
of spurious
states

0 2
(ls2 2s)
(ls2s )

2
(ls2 2s)
(ls2s )

3
(ls2 2s)
(ls2s')
(ls2p')

3
(ls 2s)
(ls2s )
(ls2p')

2p 0

Configurations
of spurious
states

3 3
(ls'2p) (ls'2p)
(ls2s) S(2p) (ls2s) S(2p)
(ls2s) S(2p) (ls2s) S(2p)

238

Configurations
of spurious
states

1
(1s2p2) (ls2p')

'Note that this table corrects Table I of Ref. 16, where the &+1=4,5 entries for P were
erroneously given as 4 and 5.

where v is the index of the highest energetically
allowable target threshold, N is the number of
target electrons, and n labels the target eigen-
functions. The P,'"' are the respective target
projectois given by

P(n)
~
y ( (B)&&y (&((&)

~

where x"' indicates the absence of the coordin-
ates (including spin) of particle i. The above P
acting on the scattering function g preserves its
asymptotic form":

limP|I) =lim g.
f']meO g]m OO

A2 A.

However, P gP. The closed-space Q operator is
defined as

Jh=1—P
and the computation of resonances reduces to a
Rayleigh-Ritz variational principle":

~(&~,~,III.~&/&~.c,~.~&) = o,

(4)

advance, as we have done in Ref. 16. This is
shown again in Table I, correcting an error in the
number of spurious states of P' symmetry and
also giving the (chief) configuration label of the
spurious states. (In Table VI we display a parti-
cular spectrum of He and see that the spurious-
state configurations are indeed those which we
were led to infer. ")

The basic quasiprojector is the operator P de-
fined as

N+1

P P(n)

where in this calculation 4 is a bound configura-
tion-interaction-type wave function for the three-
electron system:

+(I—2)JX'(I2;2);

8 is the antisymmetrization operator, i
= (n, l„n,l„n, l3), Y' is the total angular eigenfunc-
tion, and y' is the total spin function. I. and S
are the total orbital and spin quantum numbers of
the three-particle system. R„, are the radial
orbitals and in this work are expanded as follows:

n

g%)e, zJT
nl j (7)

These functions are constructed to be orthonor-
mal

l &'&ni @mr «= &nn &~& ~

G

This requires n, = n —l terms for each series
representation in E(I. (7). The integer m& runs
from l+1 to n, 'l+1 e& n, and the coefficients
g& are determined from the orthonormality condi-
tion (8). The nonlinear parameters z& are deter-
mined by the optimization process of the QHQ ma-
trix. The configurations used for S, P', and
'D symmetries are listed in Table II. Tables III
and IV give the values of the coefficients g~, ex-
ponents m&, and optimized z~ for the B„,.

The g„(x() in E(I. (2) are in principle supposed
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TABLE II. Configurations used ' for both He" and Li.

1
2
3

6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29'
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

2S

ls 2s2

ls2S
ls2s S3s
ls2s S3s
ls2p
ls2p 'P3p
ls2p P3p
2S2p
ls3s
ls3p
ls3d
ls4S
ls4p
ls2s S4s
ls3s'S4s
2s 3s
2s3s
2p 3s
2s3p
2s3d
ls2S SGS
ls2s .SGS

ls3p P4p
ls3p P4p
ls4s S5s
ls4s $5s
ls4p PGp
ls4p P5p
ls5S2
ls5p
ls4d
1s4f
ls3d D4d
ls3d 'D4d
ls3p 3PGp

ls3p P5p
ls2s S4s
ls2s i84s
ls2S SGs
ls2s SGs

ls 2p
ls2S 82p
ls2S S2p
ls2s S3p
ls2s S3p
ls2p P3S
ls2p P3s
ls2p P4s
ls2p P4s
ls2S $4p
1s2s 3$4p
ls2S $5p
ls2s S5p
ls2p 'P3d
ls2p 3P3d
ls2p P4d
ls2p P4d
ls3s 83p
ls3S $3p
ls3p P4s
ls3p P4s
ls3s S4p
ls3S S4p
1S3p ~P3d

1s3P,P3d
ls3p 'P4d
ls3p P4d
1S3d D4f
ls3d D4f
ls4s S4p
ls3s SGP

ls3s S5p
ls4s SGp
ls4s S5p
ls3p P5s
ls3p P5s
ls3p PGd
ls3p P5d
ls3d D5f
ls3d D5f

C

ls M
ls2s S3d
ls2s S3d
ls2s 84d
ls2s'84d
ls2s 85d
ls2s - S5d
ls2s 86d
ls2s 'S6d
ls2p
ls2p P3p
ls2p P3p
ls2p P4p
ls2p P4p
ls2p PGp
ls2p P5p
ls3p 3P5p
ls3p PGp
ls4p'PGp
ls4p 'PGp
ls3s S3d
ls3s 'S3d
ls3p
ls3d
ls3d D4s
ls3d D4S
ls3d D4d
ls3d'D4d
ls4p
ls4d
1S3s $4d
ls3s S4d
ls3s 85d
ls3s SGd

ls3s S6d
ls3s 86d
ls3p P4p
ls3p P4p
ls3d DGd
ls3d D-5d

ls3d D6d
ls3d D6d
lsGd
ls6d
ls4s 84d
ls4s $4d

For He 30 of the above configurations were used for
all symmetries.

to be the exact eigenfunctions of He and Li'. In
most of our calculations we use approximations
of the target plus the incident electron, i.e., pro-
duct functions whose orbitals are optimized for
He and Li. Such a choice is not as rigorous as
that for orbitals optimized for the target wave
functions, because they are poorer approximations
of the exact eigenfunctions of He and Li'; thus
their effect is to loner the spectrum of the reson-

TABLE III. Orbital parameters for He .

ls
2s

5s

2.
3

3

2
2

2

3
4

3

4
4,

$.656 85
0.827 05

-0.243 49
0.51170
0.183.61
0.002 73
6.736 27

-11.754 88
2.4P4 28

-0.01974
0.436 22

-0.207 89
-0.030.03

Q.012 84
-0.000 29

0,180 60
0.855 16

-0.008 57
17.202 71
-0.476 94

O, OQO 27
1.626 29

-1;876,27
, 0.02508
-0;000 15

D.757 68
0.001 37

' -0.000 03
0,000 1

2.0
1.590 47
0.528 61
1.68$ 3V

0.663 46
0.235 OV

1.Q11 84
1.2.94 OV

1.13793
0.777 93
1.12478
0.657 69
0.030 00
0.400 0
0.400 0
0.476 10
0.963 70
0.346 58
2.862 71
1.329 20
0.363 72
1.083 90
1.277 80
0.699 70
0.39540
1.182 30

: 0.633 38
0,16305
0.121 Q6

ance positions. Weigs and Krauss' found it
necessary to use such orbitals in their calcula-
tions of autoionizing states in J i. We test both
types of orbita1s by calculating the ~S resonances
in He with the two forms of Q„(x"') described
above. Using the He tg,rget.orbitals, we obtain
-2.I/3 a.u, for the resonance below 23S and
-2.071 a, .u. for the one below. Q 3S. These two
positions. became -2,193 antj. -2.077, a.n. when
projecting out.with the Efe, oppitals. This indi-,

cates that )he i gsonancg positions do nest see~
to be very sea.gifj.ve to the actual forrq-qf the tar-
get orbitKs guten used vari our gene~glized qgpsi-
proj ection formalism 's whex'@as the:projection
algebra is greatly simplifzpd when one use& e
orbital, s pf tQe Q+ 1 electron system. However,
if an apparent resonant eigenvalue should lie
close to an qnprojected (i.e., higher) threshold,
then even @ @mall shift in energy may take it
above that threshold and thus negate its being a
resonance. Precisely such a situation arose in
the present calculation for a P' eigenvalue which
lay below the 2'S threshold of He. In such cages
it is essential to be as rigorous as possible in
carrying out the quasiprojection formalism.
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'fASLR IV. Orbital parameters for Li.

mg, j'

18 1 10.392 30
2g 1 1 95136

2 -0.998 95
3s 1 0.762 82

2 =1.887 37
3 -036307

4j 1 0 09813
2 -8.037 86
3 -6.790 15
4 -6.012' 68

5s 1 0091 58
2 0.022 4V

3 -0.28144
4 0.11893
5 -0.003 29

2p 2 0.682 13
3p 2 0.373 92

3 -0.010 52
4p 2 1.082 13

3 -0.760 82
4 -0.046 37

5p 2 6.614 50
3 -5.11953
4 0.032 11
5 0.00121I 3 1.643 71

4d

3.0
2.358 98
0.920 SV

0.302 59
1.30V 61
0.889 87
0.10092

11.506'41
5.13189
0,592 64
0.13751
0.18119
0.459 80
0.585 05
0.548 33.

- 0.81014
0.95041
0.345 25
0.3V3 59
0.714 05
0.549 1.9
1.083 90
1.277 80
0.699 70'
0.600 00
1.47511

1 10.392 39
3. 1.356 64
2 -0.809 52
1 0.546 8V

2 -1.302 22
3 -0.287 58
1 0.388 38
2 0.276 41
3 -0.91641
4 0.497 92

3.0
1.957 9V

0.843 25
0.259 V5

1.2VV 95
0.841 77
2.028 74
0.294 97
0.561 38
0.81S34

2 0.877 34
2 0.347 93
3 -0.014 55
2 0.03101
3 0.499 35
4 -0.008 31
2 0.17848
3 -0.005 10

0.895 S4
0.929 80
0.376 29
Q.18171
2.148 39
0.497 28
0.479 22
0.219 56

3 0.006 64
3 0.13056
4 -0.000 43
4 0.030 88

0.305 39
0.707 09
0.396 06
0.750 00

4 -0.01970 ' 0.473 66
5 0.002 40 0.467 29

2
3
2
3
4
2

3

5
3
3
4

0.763 38
0.231 36

-0.01101
1.480 06

-0.495 50
0.001 11
6.424 23

-5.11981
0.039 80

-0.001 61
0.010 96
0.140 81

-0.000 57

0.847 44
0.800 32
0.346 07
0.807 80
0.714 05
0.388 90
1.083 90
1.277 80
0.699 70
0.600 00
0.352 47
0.730 92
0.334 76

1 10.392 30 3.0
1 1.601 07 1.51634
2 1.526 60 1.029 02
1 11.380 79 1.540 60
2 -33.440 12 1.212 10
3 33.106 62 1.580 00
1 3.33132 0.643 97
2 -7.641 31 0.820 08
3 3.091 36 0.723 73
4 -0.648 47 0.795 48

3
4
5
3

5
6

0.445 99
-0.10820

0.000 04
0.15331

-0.042 57
-0;000 01

0.000 03

0.737 60
0.764 99
0.340 32
0.736 06
0.750 78
0.232 73
0.455 95

Therefore when we replaced the projector orbi-
tals by optiitnized He (not He ) orbitsls, the eigen-
value was r'aised above, thi 2 'S threshold, Vfe
discuis further details Of this speed'ie calculation
in Sec.' IH.

The optimi'sation pr'ocedure used ss tkati of
Po%611; conv8rge6ce of some positi'On8 "hei'sus
the inclu&ed number of configuratiohs is'iit'us-
trated jr, Table V.

Bf. RESULTS AND DISCUSSION

In Table &I we present the complete spectrum
of eigenvalues for the 30-configuration calcula-
tion, including the spurious ones, for 29 Symme-
try in He . The numbei's of 'spurious states are
seen to conform tb the entries in Table I, and in
most cases the largest configuration (also listed)

of each spurious state shows obviously that it
Corresponds to an ordinary (nonresonant) scatter-
ing fiom a target state whose energy is lower
than the three-electron eigenvalue in question.
Note that for the '8 states the spurious states
are foOM to be the lowest that arise. As sus-
pected, '

.however, we have found one case where
the ordering is violated. In Li P' below the
3'8 threshold (v= 4) we find a spurious eigen-
value -4.803 a.6. with configuration (Is3s)'S;
2p~ P'), which is higher than one real resonance
(1s3s) '8; 3P i

2P') at -4.806.
Table VII contains a compilation of all our (real)

He resonances (in eV relative to the He ground
state). Without attempting to be complete, we
have also included in the table other salient re-
sults, both experimental and theoretical, which
give a good picture of the current situation. Re-
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TABLE V. Convergence of resonances below the first excitation (23$) threshold of tar-
get for various symmetries.

Symmetry System
Resonance

number

Number of configurations
10 20 30

Resonance positions (a.u. )

2Se

2D

Li

He

Ll

Ll

-5.4045
-5.1848
-5.1492
-5.1365

-2.1913

-5.2895
-5.2501
—5.1499
—5.1213
-5.1301

-5.2167
-5.1487
—5.1141

—5.4054
-5.1971
-5.1560
—5.1492
-5.1439

-2.1928

—5.3124
-5.2559
-5.1828
-5.1480
-5.1338

-5.2304
-5.1650
-5.1363

—5.4059
—5.1977
-5.1569
-5.1498
-5.1446

-2.1930

-5.3128
-5,2567
-5.1836
—5.1487
-5.1345

-5.2338
-5.1657
—5.1375

ferring first to the lowest 'S (Schulz) resonance,
we see that our present value is in satisfactory
accord with a previous calculation and experiment.
%'e do not consider our present value to be as
theoretically rigorous as our previous quasipro-
jection results, particularly the one (19.386 eV)
based on the open-shell target. The latter has
been gratifyingly supported by the recent beauti-
ful complex-rotation calculation of Junker and

Huang, even though the best present experimen-
tal value of Brunt et al. ' is closer to our pre-
vious'~ closed-shell result (19.363 eV). The dif-
ference between our previous results and' our
present one (19.34 eV) can be taken as a measure
of the effect of using He rather than He orbital
in our projectors, as explained above.

Above the 2 $ threshold there is a comparatively
broad shape resonance at 20.3 which shows up as
a feature about 0.6 eV wide in the experiment of
Brunt et al. ' Being a shape resonance (i.e.,
having the quantum numbers of the energetically
accessible 23S itself), this state cannot (and does
not) show up as a resonance in our quasiprojec-
tion formalism, whereas, in elaborate scattering
calculations, such as those in Ref. 11 or Ref. 21,
it does.

Beyond the broad shape resonance there is a
small but sharp feature in the data of Brunt
et gl. ' which has its onset at essentially the 2'$
threshold. They have attempted to fit this fea, —

ture by convoluting a linear combination of the
23$ cross section ~ and 2 $ cross section with
their experimental resolution profile. The re-

cognized resonantlike item in the theoretical
cross sections is an enhancement of the $
eigenphase above the 2'$ threshold, which first
appeared in the calculation of Burke et. gl." The
latter interpreted this enhancement as a, virtual
state of '$ symmetry just below the 2'$ thres-
hold. As alluded to in the Introduction and in
Sec. II, our own calculation originally showed a

TABLE VI. Lowest $ eigenvalues of QHQ for He 30-
configuration calculation. Results are in a. u.

S autoionization states
Target state Chief

Symmetry Energy & Energy configuration Status

] 1S(1 2)

2 'S(1s2s)
-2.9037
-2.1754

2'S(1s2s) -2.1461

2 P(ls2p) -2.1333

2 P(1s2p) -2.3.250

3 S(1s3s) -2.0688

0 -2.193
1 -2.698

-2,148
2 -2.147

-2.145
3 -2.1302

-2.1300
-2.128

4 -2.117
-2.114
-2.096
-2.077

(1s2s2)
(1s 2s)
(1s2s )
(1s22s)
(1s2s')
(1s 2s)
(1s2s')
(1s2p')
(1s22s)
(1s2s')
{1s2p2)
(1s3s )

real
spux'loUs

spur loUs
SPUX'lOUS

spurious
spurious
SPUX'ious

SPUX' lOllS

spux'ious
8pux'ious
spurious
real

' In order to be considered, the (N+1)-electron eigen-
value mustbe lower than the target threshold for the next
higher &. Only such eigenvalues are given here. Of those
eigenvectors, the (chief) configuration must not be a
spurious one, as given in Table I. Cf. also Ref. 16.
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'P' resonance at 20.564 eV. This was thought
to be associated with the blip feature observed'
at 20.16 eV. However, after conversations with
Professor F. H. Read and Dr. G. C. King and careful
inspectionof thepredicted cross sectionof Berring-
ton etal. , 'it was clear that this featuremustbedue
primarily to the virtual $ state associated with
the 2 S threshold which had arisen in the previous
calculations. ' '"' ' Since our original calculations
were based on optimized He rather than He orbi-
tals in our quasiprojection operator, the reality
of this ostensible 'P' resonance became an im-
portant issue. Therefore we redid the calculations
with optimized He (i.e., target) orbitals. In addi-
tion we included up to 60 configurations in the
total wave function and made further variations
in the nonlinear parameters. The effect of these
changes was dramatic: use of He orbitals im-
mediately shifted the eigenvalue above the 2'S
threshold, and even with our most elaborate wave
function the eigenvalue never descended below
20.67 eVt We conclude that there is no P' re-
sonance; but the experience taught us to use cau-
tion in inferring resonances from nonoptimized
target projectors. It is nevertheless gratifying
that the quasi-projection-operator formalism
allows such a more rigorous calculation to be
carried out.

There are no resonances between the 2'S and
2'P thresholds, but above the latter we do find
three Feshbach resonances which are clearly
revealed in experimental data as well as the 1978
calculation of Nesbet. '

Another shape resonance, 'D, shows up above the
2 S threshold in the data of Brunt et al. ' (else-
where as well" ) and also comes out of the calcula-
tion of Oberoi and Nesbet" but is (by.definition)
excluded from our calculation.

The inability of our formalism to deal with
shape resonances shows that the quasi-projection-
operator formalism is by itself not tantamount to
a full scattering calculation. However, the follow-
ing argument cogently indicates that for a given
isoelectronic system the importance of shape
(relative to Feshbach) resonances must decrease
as the charge Z on the nucleus increases. This
occurs because shape resonances, which arise
by virtue of potential barriers, depend ultimately
on the centrifugal or electron-electron repulsion.
But these repulsive potentials are independent of
Z, whereas Feshbach resonances, which depend
strongly on the interaction with the core, also
depend strongly on Z. Since our main interest
is dominantly in (strongly) ionic targets, ' we
feel that the neglect of shape resonances in our
formalism is not an important practical omis-
sion.
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The domination of Feshbach resonances for
higher Z is already evident in the cleaner-cut
resonant structure exhibited by lithium. Not
only does the larger nuclear charge emphasize
Feshbach resonances, but it lowers resonances
relative to their parent (target) threshold. How-
ever, this greater separation has the one nega-
tive effect of exacerbating thy question of the
optimum energy relative to which one chooses
to refer one's calculated results. VYe have con-
sistently favored referring all eigenvalues to the
exact (i.e., experimental) target energies. " The
results in the second and third columns of Table
VIII, which also include those of Bhatia, "are de-
termined in this way. (The calculation of Bhatia
is only for resonances below the 2 ~ thres-
hold. ) The results of Weiss (quoted in Refs. 2 and
9) refer the energy scale to the Hartree-Fock
energies of the target excited states. (Those
energies are also given in TaMe &III.) This will
have the effect of lowering the resonant energies
relative to the exact target ground state; our re-
sults so determined are given in column 5 of
Table VIII and compared to those of gneiss, which
are in column 6. One sees that our results so
normalized s.re indeed lower (with one or two ex-
ceptions) than Weiss's. It would also seem that
the results of columns 5 and 6 are closer to the
experiment; however, on closer examination one
sees that the higher states and higher symmetries
are actually to0 loze compared to experiment.
[Compare for example the 'D resonances below
the (ls2s) 'S level. ] In addition, the sparseness
of the alternately computed spectrum, compared
to our own and the experimental spectrum, rein-
forces our opinion that the full quasiprojection
formalism'3 plus normalization of results rela-
tive to exact threshold energies provides a su-
perior framework for calculating resonances in
the inelastic regime.

In Table Ix we give our additional calculated
resonances (and their configurations) for Li.
These are predicted results which have not as yet
been observed; note that states lie between the
2 P and 3 9 states of Li' and that there are no
autoionization states between the 2'P and 2 'P
thresholds; it will be of interest to see if these
predictions are borne out by future experiments.

Particular attention should be given to those
resonances marked by h and a in the last column of
Tables VIII and IX, respectively. The configuration
of those resonances shows that they fall below a tar-
get-state threshold even lower than the target state
of which they are chiefly composed. Taking for
example the (1s2s) S(3s); 2S resonance at (cal-
culated) energy 63.159 eV, one sees that its pa-
rent target state is clearly the 2 'S(ls2s) level of

TABLE IX. Additional predicted autoionization states
for Li.

Position relative to
Li target the exact ground state,

levels this calculation Class if ication

1s2p P
1s2p ~P

(66.706)
(67.642)
1
2
3
4
5
6
7
8

2$

70.615
61.839
72.220
72.330
73 ~ 173
73.390
73.445
73.690

ls3s
1s3p +1s3d
(1s3s S)(4s)
(1s3s S)(4s)
(1s)(3p4p 3$) '
(1s)(3p4p 'S)
(1s3s 'S)(5s) '
(1s3s s)(5s) '

72.708
73.119

P 73.333
73.663
73.803
73.900

1s(3s3p 3P)

1s(3s3p 'P) '
1s(3pnd 'P) '
1s(3p~d 'P)
1s(3s4p 3P)
1s(3s4p 'P) '

1
2
3

5
6
7
8
9

10
11
12

2D

71.431
71.731
71.839
72.111
72.601
72.685
73.118
73.200
73.445
73.581
73.744
73.799

1s3p
1s(3s3d 3D)

1s(3s3d D)
1s3d
(1s3s) S(4d)
(1s3s) 'S(4d) '
(1s3p)'P(4p) '
(1s3p)'P(4p) '
1s(3d4d D)
(1s3s) 'S d

. 1s(3d4d D)
(1s3s) 'S d'

' Cf. discussion in text.

Li'; nevertheless it falls below the 2'S(ls2s)
state. An essential point that we have tried to
make previously ' is that in a close-coupling
calculation, one would have to include this
2 $ state explicitly in the close-coupling total
wave function in order to get that resonance. In
contrast, in a quasiprojection calculation one
does not include the v= 1 state in QHQ. In fact,
by including v = 1, the resonance (although it
would still occur) would be less accurately given,
because the true resonance necessarily contains
some (1s2s) ~S(3s) 'S component which would be
excluded in the v = 1 calculation. (We should add
that all such resonances occuring in a particular
Q„, calculation that have already been accounted
for in v & v' calculations are not counted again;
they are discarded along with spurious states, as
listed in Table I, for example. )

In conclusion, we believe that these calculations
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have shown that the concept of inelastic quasi'pro-
jector operators is viable and a useful technique,
even at the practical calculational level. It is
our next intention to calculate widths of these
resonances, since the width is also an indispensi-
ble item for astrophysical and plasma diagnos-
hcs. '6'2'
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