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The authors have calculated the electric dipole interaction energy of the ' Tl nucleus in T1F assuming a
nonzero electric dipole moment d on the proton. The result is used in the accompanying experimental paper
to obtain a new value of ( —1.4+6))& 10 "e cm for d .

INTRODUCTION

Since the discovery that time reversal 7' is not
an exact symmetry in the decay of long-lived Id'

particles, ' there have been many unsuccessful
efforts to observe 7' violation outside the kaon
system. In particular, the possible existence of
an electric dipole moment (edm) on elementary
particles, which would imply simultaneous viola-
tions of parity P and 7, has motivated experi-
ments on neutrons, ' electrons, ' and protons. ~ The
null results obtained in these experiments place
useful constraints on the theory of 7'-violating in-
teractions. In this work we are concerned with the
effect of a nonzero proton edm on the energy
levels of a thallium fluoride ('"TlF) molecule,
chosen because it is extremely sensitive to any
nuclear edm. The calculations which follow are
complementary to an experiment reported in the
accompanying paper and have been used to place a
new upper limit on the magnitude of a possible
proton edm.

A point nucleus in equilibrium with electrostatic
forces alone can have no edm interaction energy.
It was first noted by Schiff' that a nucleus may
have a nonvanishing edm interaction by virtue of
(i) its finite size and structure and (ii) its mag-
netic interactions which perturb the electrostatic
equilibrium. These mechanisms will henceforth
be called the volume effect and the magnetic ef-
fect. We will show that both mechanisms may be
described by an effective term in the Hamiltonian
of the form

H' =d'0eff &' ~

where d~ or d" characterizes the strength of the
edm interaction, g„is the spin operator for the
Tl nucleus, and X is a unit vector along the inter-
nuclear axis. If such an interaction is to be ob-
servable experimentally, the molecule must be
polarized in a large external electric field so that
molecular rotation does not average o~ ~ A. to zero.

In Secs. I-III we calculate the characteristic
interaction energy d~ associated with the volume

effect, while Sec. IV is devoted to a calculation of
d". Related discussions of the effects of nuclear
electric dipole moments in atoms have been given
by Khriplovich' and Feinberg. '

I. EFFECTIVE ELECTRIC DIPOLE OPERATOR:
VOLUME EFFECT

We will write the total wave function of the
molecule as

e = P„(r„)P, (r, )(t)„(r„,I),
where g„(r„)describes the motion of individual Tl
nucleons with respect to the centre of mass N of
the Tl nucleus, and g, (r, ) describes the motion
of the F nucleus and the electrons with respect to
N. Ps(r„,l) describes the spin and motion of the
Tl nucleus as a whole with respect to external
coordinates (see Fig. l). Throughout this section
we will make the Born-Oppenheimer separation
between the motion of individual nucleons with
respect to &and other motions in the molecule.
We will also separate the motion of the electrons
about the internuclear axis from the motion of the
molecule as a whole. Where convenient, we will
use the abbreviated notation (I)„,P„and (t)R. Atomic
units will be used throughout.

If we write the electric field at nucleon n due to
charge q, as E,„,the average electrostatic force
on the Tl nucleus is

In first-order perturbation theory, the edm inter-
action energy of the Tl nucleus is

(4)

On expanding E,
„

in spherical tensors' about the
center of mass of the "'Tl nucleus and making use
of the nuclear spherical symmetry, it can be shown
that
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/~i)„gd „)„=Do„p

Qd„e(r„r„)d„)=air p (r, ).
Pf

(10)

External Or191n

FIG. 1. Schematic diagram of the TIF molecule show-
ing our notation.

and

g„is a unit vector parallel to the nuclear spin I.
The contributions to (F„)and (H,~ ) associated

with the F nucleus are negligible because its wave
function is vanishingly small close to the Tl nu-
cleus. Henceforth, the sum over i will be con-
sidered to include only the electrons and q, will be
replaced by -1 a.u. The integral over r, space
vanishes except along the internuclear axis, the
orientation of which is specified by the unit vec-
tor X, allowing us to write

1

&a...) = e I d„',' [)-e(r„r.) I p),in

where

1 for ri( r„
0 fore )r

(P„)=z(41&[4)(d, Z ~' I) —p,(r )I d),

(H..A=-DQ I~-o 14)

x e &
1 —pa ri e ,(.12)

Integrating Eqs. (5) and (6) over x„space, we ob-
tain

1

&z„)=-z(d, 4 g ', ' [)—p,(r)]P4),
1

&a» ) e(44 p-» =Z. "'-I)-p»(i))d d)(). .
i i

where Ced& is the component of 0,' in the direction
of X.

Ignoring the small magnetic forces on the F
nucleus, we note that in equilibrium

It follows from Eqs. (11), (12), and (13) that

where the following shorthand notation has been
used:

(d. gp. P.)=z,

(p. Qpd)(ri r„)d) =zp, (r,),
(9)

(H.dg

gl
g e~'&ar r2 pzri &ari s e ~

i

By writing pi(r, ) and pn(r, ) explicitly, it is readily
shown that

q d't1 +n

&apa a(4d ZP Pz=o--e)„ll( d:E i'd. drild. d) (15)

For the present nonrelativistic calculation, it is
satisfactory to expand P, in the following way:

y, (r, }= g afr,'y'„(e„y,)
l

(16}
AXgkig+ge (17)

for small r, . The electronic integral in Eq. (15)
is then given by Qqq', a' r'„/iv 3, neglecting small
terms of order r'„and higher. The nuclear inte-
gral may be simplified by noting that, on the
shell model, only the unpaired Ss proton contri-
butes to the total spin and dipole moment. %riting
the edm of that proton as d~, we find, from Eq.
(15) that

d =-dpXR,

where

(16)

q, a,
3

(19)

Qn comparing Eqs. (1}and (1V}, we see that the
characteristic interaction energy of the volume
effect is
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TABLE I. Coefficients a~& 0 and g' ~ obtained by Rs and the corresponding values of X; de-
fined in Eq. (19). X& is a relativistic value of X& discussed in Sec. III.

Nominal atomic
Molecular orbital
orbital i Tl F X; X~/X,

2&

30
40
50
80'

90
110'
130'
140
160'
17(7

2s
2P
3s
3P
4s
4p
5s
5p

6s

2s
2P

-539.176
+0.047

+291.415
-0.139

-160.727
+0.406

+68.373
-1.229
-1.286
+6.710
-9.641

+0.89
+10306.76

-2.67
-726.57

+7.31
+2 979.35

-19.87
-1109.40

+40.77
-68.64

-113.37

-277.1
+279.7
-449.2
+459.6
-678.3
+698.4
-784.4
+787.2
-30.3

-265.9
+631.0

-2663
+2898
-2317
+2380
-2467
+2472

-98
-838

+1964

5.93
6.31
3.42
3.41
3.15
3.14
3.23
3.15
3.11

(20)

See Eqs. (23) and (24) for the definitions of r, and
+d'

II CALCULATION OF dv IN T1F

A. Evaluation of X

Richards and Scott' (henceforth, referred to as
RS) have calculated a restricted Hartree-Fock
wave function for the 'Z electronic ground state
of TlF in terms of a basic set of 33 Slater func-
tions using the AJ QHEMY program. The calcula-
tion assumes that each electron is in an orbital
state of definite angular momentum m, h about
the internuclear axis, as we have done in Sec. I,
and that the two electrons (m, =a-,') in each orbital
have the. same wave functions in coordinate space.
The aceuraey of this wave function is discussed in
Sec. IVA. Within the approximations of Sec. I, we
are concerned here with o (m, =0) orbitals, P,'(r, ),
of which there are seventeen. These are expres-
sed as linear combinations of the basis functions,
thus

yo(r) g i
~
r e-K(n ~ l)t'yl(e ~')

n ~ l
(21)

where n is an integer ~l. In four of the basis
states r, is measured with respect to the F nu-
cleus. %e find that these make a negligible con-
tribution to the electronic integral in Eq. (15) and
henceforth will be ignored. The contribution of the
remaining Tl-centered orbitals is P,r2a,';d, ,/~3,
when we neglect terms of order r'„and higher.
Table I shows the coefficients q', , and g', , obtained
by RS and the corresponding values of X, defined
in Eq. (19).

It will be seen that the orbitals up to 13o occur
in pairs (corresponding to ns, np in the Tl atom)
with opposite and almost equal values of X,. This

X=741 a.u.

%e repeated the calculation of X using wave
functions for various internuclear separations.
The results were:

(22)

Internuclear separation (a.u. )

4.13898

3.93898 [equilibrium, Eq. (22)]

3.73898

X (a.u.)

+ 721

This consistency is encouraging, but it gives no

effect may be explained qualitatively in the follow-
ing way. Since the ground-state configurations of
Tl and F are 6s'6P and 2P', respectively, one
may crudely say that the 6P electron of Tl moves
over to the F atom to form a closed P' shell,
thereby binding the molecule. The result is a
considerable distortion of the atoms and in par-
ticular a mixing of s and p functions. However,
the distortion does not significantly raise the de-
generacy between pairs of orbitals ns, nP except
for the pairs 6s, 6P of Tl and 2s, 2P of F which
are directly involved with the migrating electron.
Any p admixture into the ns orbital requires an
equal and opposite s admixture into the nP orbital
in order to preserve their orthogonality. This is
equivalent to saying that both orbitals are slightly
shifted with respect to the. Tl nucleus, on which
they are nominally centered, with a corresponding
change in the representation. Because the admix-
tures are equal and opposite, so are the Xq to which
they give rise. The same argument is not applica-
ble to the outer orbitals since the 6p electron of
Tl is degenerate with neither the 6s or the 2s of F
but has a thoroughly distorted orbit. It is these
outer electrons which contribute to X for the most
part. Summing over all the electrons (two per
orbital), we find
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real indication of the error in our result. Schwen-
zer et a/. "have examined the reliability of results
obtained from minimal basis-set wave functions
for heavy atoms. They conclude that the accuracy
in comparable with that of similar calculations
for light atoms. Thus we may expect that our
result for X is a reasonable first approximation
to the true value.

B. Evaluation of R for the T1205 nucleus

Using semiempirical methods, Green et al."
have calculated values of (r~g for nuclei up to A
=250. Using their results, we find that

xl('

(28)

!
, |'R.(,)) (-./. 2/. .V(.)) (R„(,))
dr! Q„(r)f (nV(r) K P ) tQ„(r))

= P (f, m„-'„m,!gI &V'.,(~, , y, )X. ,
m)e ms

is a single-electron spin function, and K

=t(f 1)-(~ —,')'.
The functions Rgr) and Qgr) must satisfy the

radial Dirac equation for a central field. At the
small radii of interest, this may be written in
atomic units as

2 '

q r2 33 F2

Here R, defined in Eq. (20) is found to be

(23)

(24)
where we have neglected the eigenvalue of the
electron compared with the electrostatic potential
V(r). Expanding V(r) in a power series,

g=1.8x 10 ' a.u.
v(r} =v(0}+v,r+. . . , (30)

Because of the large cancellation between the first
and second terms in R, the accuracy of Eq. (25)
is questionable. At present, however, these ap-
pear to be the most reliable numbers available.
The value for R in Eq. (25) agrees with that quoted

by Khriplovich, ' br2/r2O =0.12, obtained by V. B.
Telitsyn using a Saxon-Woods potential.

C. Conclusion

Collecting together Eqs. (18), (22), and (25), we

see that the characteristic edm energy of the
volume effect is

[ d»! = d~ XR = 1.3 x 10 'd& a.u. (26)

III. RELATIVISTIC CORRECTION TO d~

A. Relativistic expression for L

In the Tl atom, where gn =0.6, -relativistic ef-
fects cannot be ignored because we are concerned
with precisely the region where they are largest,
namely, near the nucleus. Moreover, the radial
integral in Eq. (15) is rather sensitive in the rela-
tivistic case to the exact form of the electron wave
function inside the Tl nucleon. Following the pro-
cedure of Sec. I, we expand the electron wave func-
tion, but this time use relativistic functions [com-
pare with Eq. (16}].

As we will S.how in Sec. III, it is necessary to make
a large relativistic correction to Eq. (26}.

Q„(r)=b„r+higher-order terms.

If K&0,

R„(r)=b„r "+higher-order terms,

(31)

(32)

Q„(r}=1 b„r' "+ higher-order terms. (34)
n v(0)
1-2K

We have considered the higher-order terms and
find that their contribution to the electronic inte-
gral in Eq. (15) is negligibly small, henceforth
they will be ignored. Table II summarizes the
appropriate forms of the radial functions inside
the Tl nucleus. With the help of Table II, it wil1,

be seen that the electronic integral consists of the
following terms to lowest order in r„:
p f f (())-,x"- )'+'())„x)„).

Co+(Q- x l.)*—,. (Q"x"- }

one can readily show that the radial functions have
the following forms for sufficiently small r:

If K&0,

2/&y —o' V 0),+ „R„(r)= 1 2
b„r""+higher-order terms,

e irk + complex conj ugates dQ dr, (35)

where

ll
„

l ) 1 X)()), e; )

)r~ ~a&/« ~xgQ~, 4&)
(27) where the notation has been simplified in an ob-

vious way for convenience. Evaluating Eq. (35),
we obtain
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Angular state- Q, (r)

Sg(g

Pgi2

P3

b(r
[2-o.'V(0)/3n]b )r

b 2r2

&~G. V(0)b, r'
b,gr

&~G. V(0)b, rs

TABLE II. Appropriate forms of the radial functions
inside the Tl nucleus.

at once by the condition that the wave function be
continuous. However, the nonrelativistic molecu-
lar wave function of HS is clearly invalid close
to the nucleus, and such a matching cannot be car-
ried out. The problem is overcome by extending
our relativistic wave function into a region suf-
ficiently far from the nucleus for the RS wave
function to be reliable. The two are then matched
to determine the b'„.

x„g[(&2/3}b',b', —(4p, /9n)b', b', ,]=r'„X", (36)

B. Evaluation Of X in TlF

So far we have been concerned with the wave
function inside the Tl nucleus which has been ex-
pressed in terms of normalization constants 5'„.
If we knew the wave function immediately outside
the nucleus, these constants could be determined

where X is the relativistic equivalent of X. The
angular integrals have been evaluated with the
phase convention of Edmonds. " Conveniently,
the lowest-order radial dependence is r'„,and the
remaining analysis therefore proceeds as in Sec.
I. Thus, the appropriate relativistic correction
factor for d» is X"/X.

l. Extending the relativistic functions

Outside the Tl nucleus, it is no longer satis-
factory to use the approximate radial functions
given in Table II. %e have obtained suitable radial
functions over the range r, ~ 0.2 a.u. by numerical
integration of Eq. (29), with a realistic electro-
static potential V(r) (see Fig. 2}. In this region
the potential is that of atomic Tl to a good approxi-
mation. In the absence of any suitable data on the
Tl potential, we made use of a relativistic self-
consistent field calculation" for Hg. The potential
given by Cohen was scaled by a factor ~ to obtain
an approximate Tl potential outside the nucleus of
sufficient accuracy for our purposes. The poten-
tial inside the nucleus was inferred from calcula-
tions by Green et al."of the charge distribution in
various nuclei. Thus we are able to extend all the

I I I I I I I I I I I

-3
I I I I I I I I I I

8

. 3

FIG. 2. Approximate
atomic Tl potential V(r) used
in Eq. (29).

5--
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are found to have antinodes at 0.12 and 0.13 a.u. ,
respectively. These were matched in the same
way to -(2g/~3Rt and +(2/3)'I'R~.

Having found the normalization coefficients b'„
of interest, we substitute them into Eqs. (36),
yielding the values of X", shown in Table L A

problem arises in matching the inner orbitals;
the relativistic functions B„differonly in nor-
malization because the eigenvalue was neglected
in Eq. (29). It follows that the matching process
breaks down for the inner. orbitals which have
principal antinodes close to or inside the match-
ing radius. A convenient way to check the eigen-
value dependence of the RS wave functions inside
0.13 a.u. is to consider the ratio X, /X, . If the
radial functions of different orbitals differ only in
normalization (are independent of eigenvalue},
then Xsq/X, is constant. Table I shows that this is
indeed the case for the outer orbitals. The 80 and
9g orbitals show a slight eigenvalue dependence be-
cause the principal antinodes are adjacent to the
matching antinodes. The matching of 4o and 50
functions at their principal antinodes is clearly
wrong. It seems reasonable to assume that the
correct ratio X";/X, for the inner orbitals is ap-
proximately the same as that for the outer orbi-
tals, namely, 3.15. Since electrons in the orbitals
up to 5v contribute less than 3% to X, this approxi-
mation is not expected to introduce an error great-
er than 3% in our value of X". We conclude that the
relativistic correction factor for d~ is:

X /X=3. 15. (39)

Equation (39} is considerably more reliable than
our value of d~ because it is simply the result of
comparing the shape of relativistic and nonrela-
tivistic radial functions in a region where the po-
tential is atomic. As we have already noted, there
is an error of +3% or less due to the difficulty of
matching inner orbitals. An additional uncertainty
is due to the approximate potential (Fig. 2} used
in Eq. (29). By making reasonable variations in
that potential, we estimate the additional error to
be less than +3%. Thus the relativistic correction
factor given in Eq. (39) is expected to be correct
within 10%.

IV. MAGNETIC EFFECT
A. Effective electric dipole operator

In this section we treat the Tl nucleus as a point
particle having charge Z, spin ~ 8, magnetic mo-
ment p, „a„andedm d~cr„. Using a result given by
Salpeter, "we write the Dirac Hamiltonian of the
Tl nucleus as
H=t c'+n„cp +Zp25~-d~p(o„. EN+in„~B~) 2

(40}

where E„andB„arethe electric and magnetic
fields at the nucleus and the remaining notation
is standard. By means of the Foldy-Wouthuysen
transformation, it can be shown that the nonrela-
tivistic limit of Eq. (40), correct to order v„/c, is

+dp 0'~- p~, cr~. B~ —
N

~ E~ .2M' )
(41)

where terms involving d~2 have been neglected.
Assuming the center of mass of the molecule to

be at rest, we may conveniently replace the opera-
tor p„byP, -p„where the sum over i includes
the electrons and the F nucleus. Equation (41) then
gives the. following operator for the edm interac-
tion energy due to the magnetic effect:

5

edm p +g pi y N Bfg pf N~ 2Mc

where P,B,„=B„.Schiff (1963) has derived an
operator equivalent to Hd~a„.E„.Substituting that
operator into Eq. (42), we find that

Hedm= 'Id' + ~(~~' p) 5 ~N B)N) ~

Z 2M'

The commutator in Eq. (43) may be written as

(43)

ZVN ~ (pl BEN (N pf)

plus terms independent of cr„which will be ignored
because they are not observable in nuclear-reso-
nance experiments such as the one described in the
accompanying experimental paper. We will also
ignore the F nucleus in future summations over i
because it contributes negligibly to H, d . With the
appropriate operator for B,„,Eq. (43) becomes

1
Bd~ = d~ +2MZ Mc

(r x n) (r x n))(Z pX 3
—

3 Xpr f
(44)

B. Evaluation of d~

For simplicity we write the electronic operator
in Eq. (45) as Y. If we expand the electronic wave
function ~P,) as shown in Eq. (27), the expectation
value of F may be written, with obvious simplifi-

After some tedious manipulation, one can show
.that the electronic operator is equivalent to
2+&(n x 1/r')&, where 1 = r x p. Using that fact
and the spherical tensor identity n x I = -iv 2 {nl}',
we write equation (44) as

Il., = —2&2id, ( +2 }ir„g(. }. (55)
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-2 -1r R Q

~

0 3 1

1

~ 4

FIG. 5. Graph showing
2 P fp IR pQ )/T(1 dr-~ as a
function of x. It is clear
that the upper limit of in-
tegration in Eq. (48) need
not be extended beyond 0.1
a.u.

-3

log r (a.u. )

-2

cation of the notation,

=&z g f f 0).x))' .'()Q. x"-. )
0 0

+(ig„y,"„)*,'(R„y"„)dAdr, (46)

where (nl)~ is the component of (nj}' along X. It
is readily shown that the angular part of the first
integral is

(-1)' " I[8(2i+ I)(2i'+ I))'"-V0V

(P, IVI(,) = 5.9lix a.u. (49)

When we substitute this result into Eq. (45) with

the numerical values of the other constants and
compare with Eq. (1), we find that

Here we have reinstated the labels i which were
omitted in Eq. (46). We have investigated the con-
tribution to (y) from functions having I) 2 and find
it to be negligible. The integral in Eq. (48) was
evaluated numerically as far out as x =0.1 a.u.
with the extended radial functions developed in Sec.
IIIB. The result of that integration is shown in

Fig. 5. It will be seen that there is a negligible
contribution to the integral outside 0.1 a.u. We
find that

2 2

d"=6.79x 10 7d& a.u. (50)

x, I z' 1 (-,'IVII-,')(zllillr'), (47)

1.
where l is the orbital angular momentum associa-
ted with the small component Q„y",,. Unless l = I,
the reduced matrix element vanishes, and when

l ' = l, the 9-j symbol vanishes unless j =j '. An
exactly similar argument applies to the angular
part of the second integral iri Eq. (46). Of the func-
tions having l=0, 1, only B,XF', and Q,y~„satisfy
these angular conditions, leaving just two terms
in the sum over z, x' [Eq. (46)]. Evaluating the
angular integrals with the help of Eq. (47), we
flnd

V. CONCLUSION

We have calculated operators of the form given
in Eq. (1) representing the electric dipole hyper-
fine interaction in TlF. Our results are

d~ =4.1x 10 'd~ a.u.

including the relativistic correction, and

d~=6.8x 10 'd~ a.u.

(51)

(52)

The comments at the end of Sec. IIA concerning
the reliability of X are equally applicable to our
value of d". However, d" is more certain than d~

because no nuclear structure calculations are in-
volved.

(Il, )~Y)),) =2& Qf ', ' d| (48) These results are used in the following
experimental paper to obtain a new value for d~.
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