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A procedure is outlined for using complex scaling to compute matrix elements of the resolvent of the
Born-Oppenheimer Hamiltonian for a molecule with respect to square integrable functions. The method is

superficially identical to that used previously for computing atomic photoionization cross sections —even

though the molecular Born-Oppenheimer Hamiltonian is ill behaved under the scaling transformation

appropriate to the atomic problem. The author gives a heuristic derivation of the method, relating it to
Simon's theory of exterior complex scaling, which treats the molecular Born-Oppenheimer problem

correctly. Numerical results are presented for H, + photoionization cross .sections for which exact results are
available for comparison.

I. INTRODUCTION

The successful application of the method of com-
plex scaling (rotated coordinates)' to resonance
problems in electron-atom scattering has sti-
mulated considerable interest in the development
of generalizations of the method which are applic-
able to other continuum processes. The theory
of complex scaling, as it was originally deve-
loped' and applied to atomic problems, is limited
to Hamil. tonians which are dilatation analytic.
The now familiar y- xe'~ transformation of all
electronic radial coordinates is a direct applica-
tion of the theory for dilatation-analytic poten-
tials.

Although this limitation seemed quite formidable
at first, we are gradually discovering that ex-
tending the original ideas to nondilatation-analy-
tic problems can be quite straightforward. For
example, progress has been made in the treat-
ment of resonances in the Stark problem' where
translational analyticity can be exploited. Also,
the first steps have been taken, both theoretically
and computationally, in the generalization of com-
plex seal. ing to the treatment of molecular re-
sonances within the Born-Oppenheimer frame-
work. '-' However, this problem is far from
being well understood.

As we will discuss in Sec. II, it is the Born-
Oppenheimer approximation which is responsible
for the absence of dilatation analyticity in the
molecular problem. The complete Hamiltonian
of the system of el.ectrons and nuclei is dilatation
anal. ytic. However, it is highly impractical to
abandon the Born-Oppenheimer approximation in
electron-molecule scattering calculations. Also,
as McCurdy and Rescigno~ pointed out, there are
electronic resonance states whose complex re-
sonance eigenvalues yield dissociative potential

surfaces in the Born-Oppenheimer picture. Since
they correspond to continuum states for nuclear
motion, these states would not appear as iso-
lated poles of the resolvent of the complete mole-
cular Hamiltonian, although they do correspond
to features of the cross section. The simple
description of these states is another reason for
retaining the Born-Oppenheimer picture.

The only mathematically rigorous discussion of
compl. ex coordinates in the Born-Oppenheimer
approximation to the molecular problem which
has been given to date is the. work of Simon, '
who has suggested a method he calls "exterior
complex scaling. " At first glance Simon's pro-
posal appears extremely impractical for numeri-
cal calculations. On the other hand, McCurdy
and Rescigno, 'as well as Moiseyevand Corcoran, '
have described numerical procedures for mole-
cular resonances which are within the realm of
practicality but have been given only scant theore-
tical justification.

The purpose of this paper is to demonstrate that
the numerical procedure of Ref. 5 can be ex-
tended to the computation of resolvent matrix
elements, Bnd to provide an argument for why
this is possible. In particular, we compute mole-
cular photoionization cross sections using this
approach. The prescription we use is superfi-
cially identical to that used in the case of a
dilatation-analytic Hamiltonian under the scalingr- re', although, as will become apparent from
the discussion in the following sections, it is
certainly not the case that our procedure makes
the ordinary complex-scag transformation on
the Born-Oppenheimer Hamiltonian.

%e offer a possible way to view the connection
between the numerical procedure of Ref. 5 and
Simon's rigorous theory of exterior complex
scaling in the discussion of Sec. IV, and we pro-
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vide a heuristic derivation of our successful nu-
merical procedure for calculating resolvent ma-
trix elements. A key to understanding how the
numerical procedure we use accomplishes the
analytic continuation of the Born-Oppenheimer
Hamiltonian is to note that an important feature
of the molecular problem (and in fact of the atomic
problem as well) is that the Hamiltonian as a
function of electronic coordinates may be con-
tinued onto a family of complex contours, all of.
which generate continuations of the Hamiltonian
with the same spectrum. This fact is particularly
apparent in Simon's exterior-scaling theory' in
which a set of contours yielding the same spec-
trum is given by varying his parameter Ro By
performing contour distortions of the integrations
in the matrix elements of the Hamiltonian, it can
be shown that the analytic continuation we use is
equivalent to computing matrix elements of the
Hamiltonian of the exterior-scaling theory with
respect to complex basis functions. Al. though
this interpretation is not unique, it provides
some understanding of why the numerical proce-
dure we use works, particularly in the case of
computing resolvent matrix elements.

In Sec. II we briefly outlirie Simon's exterior-
complex-scaling procedure, and in Sec. III we
describe the numerical procedures we will use.
In Sec. IV we present a discussion of the relation-
ship between the numerical procedures and exterior
complex scaling and outline our procedure for
computing resolvent matrix elements. Section V
presents some numerical results, and concluding
remarks are made in Sec. VI.

r, 0&r R, -
R, + e~(r —R,), R, & r

(4)

(see Fig. 1), and Ro is sufficiently large that the
potential due to the nuclei is analytic for x&R, .
This transformation avoids all the branch points
of the nuclear-attraction terms. In order that
this transformation remain unitary, it is neces-
sary to introduce a Jacobian factor

dab))'~* z(~)
dh

in the operator Uz, (8), which performs the trans-
formation so that for one electron we have that
Uz, (8) operates on a function of r to give (with

has a circle of square-root branch points with z
satisf ying

t
r

t
=

~
H ~, r" R = cosy .

Thus the potential due to the nuclei becomes a
pathological function of real r with continuous sets
of branch points. Clearly this procedure does
not define a useful analytic continuation of the
Born-Oppenheimer Hamiltonian.

So in order to compute resonance positions,
etc. , with this technique, we must find a gen-
eralization of the complex-scaling transforma-
tion under which the Hamiltonian is analytic and
which provides us with an operator whose (com-
plex) spectrum is similar to that of the atomic
Hamiltonian under r- re~.

Simon's3 solution to this problem is to scale
the magnitudes of all electronic coordinates
according to r R(-r), where

II. EXTERIOR COMPLEX SCALING

First of all let us establish the need in the Born-
Oppenheimer problem for something other than
the simple scaling transformation, r re' for-all
electronic coordinates, with 8 complex. In the
Born-Oppenheimer Hamiltonian (atomic units),

r plane

iAJ

the only term which causes problems under the
transformation y-ye~, is the nuclear-attraction
potential. Consider one of the nuclear-attraction
terms in which we perform the scaling trans-
formation with 8=i@, &f& real. Using the correct
expression for the vector distance, we have

&/'
I re' e —R I

= & l[(re'~ —R)']'~ ' .

As Simon' points out, for real r this expression

Im8

c (r)

FIG. 1. Contours R(x) (solid) and c(~) (broken). R(~)
is the contour for the exterior-scaling transformation,
and c(r) is used in the integrations in Sec. IV.
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(Uso(8@)(r) =J(rg (R(r)r)

with an obvious generalization to N electrons.
The exterior-scaling Hamiltonian Hs (8) is defined
by

Hso(8) = Us, (8)HUs'(8)

and is given by

where

1 2

(8)
-zV, , 0&r, ~RO

Rp
——'e V. , R &y'

Since for larger y, the exterior-scaling trans-
formation is the same as ordinary complex scal-
ing, one might expect that Hs, (8) would have the
same spectrum as the more familiar rotated-
coordinate Hamiltonian. In fact, Simon' has been
able to prove that this is the case. The spectrum
of Hso(8) is made up of isolated bound-state and
resonance eigenvalues together with rays of
continuous eigenvalues rotated by 2Im(8).

It appears that it would be extremely difficult
to form matrix elements of H»(8) with respect to
the ordinary Gaussian basis functions used in cal-
culations of bound-state molecular wave functions.
So although exterior complex scaling solves the
formal problems in the generalization of complex
scaling to the Born-Oppenheimer Hamiltonian,
it does not have the appealing computational sim-
plicity of the complex-coordinate approach for
atoms. Nevertheless, we will assert in Sec. IV
that it appears that recent numerical calculations
have implemented this theory implicitly.

III. RECENTLY PROPOSED NUMERICAL PROCEDURES

We will discuss the method used by Moiseyev
and Corcoran' in their calculations on H2 and H2 .
We specialize to the case of a one-electron mole-
cule for notational simplicity. The generaliza-
tion to many electrons is obvious.

Moiseyev and Corcoran observed that no matter
what pathologies the Born-Oppenheimer Hamil-
tonian exhibits under the usual scaling transfor-
mattiori r- re, the Gaussian matrix elements of
the Born-Oppenheimer Hamiltonian, all of which
can be evaluated analytically, are entire functions
of 0. So they simply used the analytic formulas
for the matrix elements to evaluate the analytic
continuation of the matrix representation of the
Hamiltonian to complex values of e..

In other words, if we define the matrix R,~(8)

for seal 8 by the matrix elements with respect
to basis functions X of the Born-Oppenheimer
Hamiltonian HBe~ in which the electronic coor-
dinates are scaled according to ree,

x, ~(e) =f y, (r)H(8) y~(r)dx'(rea) e) .

I= e'
)( g),p(, e 's dr=«a(8-) -b(P-8 )

xE ((a+ b)(R —P)2) exp — (A —B)z0 a+5 (io)

where

P = (aA+ hB)/(a+ h)

and E,(z) is the entire function of z given by

E,(z) = —,
' (m/z)'~'erf(z) . (12)

If we define I(8) as the integral in Eq. (10) with
(r —H)' replaced by (re —8)', then for real 8 we
find f(8) is simply given by (factore 8 out of the
inte grand)

f(8) = E,((a+ h)(5e-~ —P)')

abx exp — (A —B)'a+b

Moiseyev and Corcoran constructed the analytic
continuation of the nuclear-attraction-potential
matrix elements by evaluating Eq. (13) at com-

Moiseyev and Corcoran construct the analytic
continuation of the matrix elements X„B(8)to
complex 8. From our discussion in Sec. II, it is
clear that this is not the same as forming ma-
trix elements of the operator Heo (8) for complex
values of e. However, when the resulting com-
plex matrix was diagonalized to produce an
approximate spectrum, Moiseyev and Corcoran'
found that the bounds states and resonance eigen-
values as well as the approximate continuum
eigenvalues of this matrix behave in the same way
as the corresponding eigenvalues in the atomic
problem under the usual complex-coordinate
transformation. This procedure has in fact con-
structed some analytic continuation of the Born-
Oppenheimer Hamiltonian which appears, within
the basis-set approximation, to display the same
spectrum as Simon's exterior-scaling Hamiltonian.

In this approach the two-'electron and kinetic-
energy matrix elements offer no problem; they
are simply scaled by constants, but it is instruc-
tive to examine what happens in the matrix ele-
ments of the nuclear-attraction potential. A
matrix element between s-type Gaussian func-
tions of one term of the nuclear potential is given
by
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plex 8.
Although there are choices of 8 which lead to

large values of I(8) for some physically rea-
sonable a and b, and result in numerical in-
stabilities in the matrix manipulations, 'Eq. (13)
is entirely well behaved in 8. In Sec. IV we will
ask how we would construct f(8}for complex
values of 8 if the analytic formula were not avail-
able. This question will lead to an apparent con-
nection with exterior complex scaling.

IV. RELATIONSHIP OF NUMERICAL PROCEDURES TO
EXTERIOR COMPLEX SCALING AND THE COMPUTATION

OF RESOLVENT MATRIX ELEMENTS

The analytic continuation of the matrix elements
which is performed using analytic formulas in the
numerical calculations of Sec. III can also be per-
formed by contour distortions in the integrals.
Viewing the problem in this way allows us to see
that the matrix elements R 8 of Eq. (9) when

evaluated for complex 8 can be interpreted as
matrix elements of the exterior-scaling Hamil-
tonian. As noted in the Introduction, this is not
a unique interpretation, since there is a wide
class of continuations of the Born-Oppenheimer
Hamiltonian which have the same spectrum.
The value of our point of view is that it allows us
to (at least heuristically) derive a procedure for
computing resolvent matrix elements.

Again it is only necessary to examine the ma-
trix elements of the nuclear-attraction potential
in detail; the kinetic-energy and electron-re-
pulsion terms do not pose any problems. The
problem is to find a contour c for the radial in-
tegrations such that in each Gaussian integra1. ,
we have (for complex 8)

1
1(9) fdG. chH

t~&
e

C

-y( r-B ) 2
e (14)

where I(8) is given by Eq. (13). We cannot sim-
ply perform the integral in Eq. (14) along the
real r axis because the argument of the square
root g(r)

f(r) =(re' CP, -
will encircle the branch point for some r when 8
is complex. Figure 2 compares the path of f(r)
for 0 & r&~ for 8= P with that when 8=i/, $ & 0
with a particular choice of r and C.

The key to finding the contour, which we will
denote by the function c(r) for real r, is to re-
quire that

Re([c(r)ree- C]g & 0 .
If this is the case, the square root in Eq. (14) will

FIG. 2. Function f {x) defined in Eq. {15)for two
choices of $. See text.

&&Ifs,(8)y, (c(r)r}, (17}

where K, , (8) is the analytic continuation to com-
plex 8 of the function of real 8 given in Eq. (9),
and Hs, {8) is the exterior-complex-scaling
Hamiltonian of Eq. (7}for one electron. Thus,
we may interpret $C ~(8) in the Moiseyev and
Corcoran' calculation as a matrix element of the
exterior-scaling Hami1. tonin with respect to the
complex functions y (c(r)r). The Jacobian factor
fdc(r)/dr][c(r)/r]' plays the role of a weighting
function and does not affect this interpretation.

One can think of Eq. (17) as having arisen from

continuously become the positive square root as
Im(8) —0 for all r Such. a contour is given by
e(r) defined by

c(r)=re-', 0&r R, ,

c(r) =R,e + (r —R,}, R, ~ r,
where R, is defined as for R(r) in Eq. (4). Note
that e~c(r) is R(r). This choice of c(r) is shown

' in Fig. 1 as the broken curve. We can perform
this contour distortion in the Gaussian matrix
elements of the kinetic-energy and electron-re-
pulsion terms as well, where we first set r
=re for all electronic coordinates in the oper-
ators. No nonanalyticity problems arise. And
in every case, since e~c(r) =R(r), the contour
distortion transforms the operators into their
exterior-scaling forms.

The end result of this operation is to derive the
following identity. We will hereafter specialize
to the case of a one-electron molecule for nota-
tional simplicity. The electron-repulsion terms
pose no special problems, and the generalization
to the many-electron case is straightforward.

K,{8)= d'r y, (c(r)r)dc(r) c(r)'
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the solution of

{Hao(8) —EQ = 0

by a Galerkin' approximation in which + is ex-
panded,

@(r)=Q C,X,{c(r)r), (19)

and in which we form equations for the coefficients

Cz by multiplying Eq. (18) by

dr
and integrating over electronic coordinates. This
yields the secular equation for C& and E as the,
eigenvector and eigenvalue of X„»(8).

We can use this picture to derive an approximation
to resolvent matrix elements. Suppose we wish
to approximate

The elements of g are defined by [we have used
c(r) = e-'R(r)]

g = 8 d'r J'(r)X, (c(r)r) g{R(r)r) (26)

(27)

which is no more than R, »(8) from the analytic
continuation of Eq. (9) plus a constant. Substi-
tuting the resulting expression for 6:(z,r) into
Eq. (21) yields

I=e"f(z -H) g,
where the elements of f are defined

(26)

and (z —H), " is the inverse of the ma. trix (depending
on 8 but not R,)

I= d'r d'r' f(r)G(z, r, r )g(r'), (2o)
f, = e~ d'r J'(r)X„(c(r)r)f{R(r)r) . (29)

where G(z, r, r ) is the resolvent of the real
Hamiltonian (z -H)-', and f(r) and g(r) are I.' and
ana. ytic in the region required in the contour
distortions below. If we distort the integration
contours in Eq. (20) onto the contour R(r), we find

/

I= d'r J'(r) dsr f{R(r)r)Ga(z, r, r )

The final step is to make yet another contour
distortion, this time in the integrals of Eqs. (26)
and (29) onto the contour which undoes the r
—c(r) distortion [assuming f(r) and g(r) a,re such
that we can do this]. Hut we do not do so in the
matrix elements in Eq. (27). Then, using R(r)
=8 c(r), we have

xg{R (r') r), (21) f.= d'rf(r@)X. (r),
whe re J(r) is the Jacobian def ined in Eq. (5) and

Ga(z, r, r ) is the resolvent of the exterior-scal-
ing Hamiltonian, [z —Ha, (8)]-, in the coordinate
representation. We can approximate the integral
5'(z, r) defined,

S(z, r) = d'r' G, (z, r, r')g{R(r')r)

p(z, r) =Q d, X,(c(r)), (24)

multiplying the equation by

dc(r) c(r) '
( ( ))dr

appearing in Eq. (21) by a Galerkin' approxima-
tion such as we used to approximate the solu-
tions of Eq. (18). The function S(z, r) satisfies
the differential equation

( -H .(8))&(z, r) =g{R(r)r).

By expanding 5 (», r) in Eq. (23) in terms of the
basis functions X»(c(r)),

g~ = cPJ'g re X r
(3o)

With this equation we have arrived at our pre-
scription for calculating resolvent matrix elements
with respect to well. -behaved functions f and g:
(i) Form the analytic continuation of X, 8(8) in
Eq; (9) to complex 8 and use that to construct
the matrix (z —H)~' in Eq. (28). (ii) Construct
the integrals f and g in Eq. (30), which have the
form of integrals arising in ordinary complex
scaling. (iii) Form the matrix product in Eq.
(26).

The final result is that if one can compute the
analytic continuation of R»(8), the computation
of resolvent matrix elements proceeds there-
after as though one were simply performing the
complex-scaling transformation. The procedure
outlined above is essentially identical to that used
in atomic photoionization calculations, ' as is
apparent from our molecular photoionization cal-
culations in Sec. V.

and integrating over r, we obtain a matrix equa-
tion for the coefficients dz.

Z=(z —H) g. (26

V. MOLECULAR PHOTOIONIZATION CALCULATIONS

The photoionization cross section can in general
be computed from the imaginary part of the fre-
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quency-dependent polarizabil. ity. In atomic units
we have

c(&o) = (4v(o/c) lm[o. -(s))], (31)

with the frequency-dependent polarizability n (ar)
defined by

0.8

(32)

where +, is the wave function of the atom or mole-
cule in its initial state, and p, is the dipole oper-
ator, g&e ~ r, , for polarization e.

The matrix element in Eq. (32) can be approxi-
mated using the procedure of Sec. IV. In this
way we have:omputed the photoionization cross
section of H2' for transitions into the m„continuum
from the ground state (jsc ) and the first excited
state of o symmetry (2sc ). In the notation of Eq.
(20), f(r) and g(r) are both p@,; so in order to
compute the integrals f and g of Eq. (30), we
require +,(re'). We can, however, obtain an
alternate expression in which we use the discrete-
basis approximation to g, in Eq. (19) to com-
pute these integrals. Using Eq. (19), the assump-
tion that the bound-state eigenfunction of Hso(8)
corresponding to @0 is just Ilxo(R(r)r), and using
the convenient normalization

e,(R(r)r)e, (a(r)r) dc(r) c(r)'
dr

We find, for basis functions y8(r),

(33)

and the same expression for g . Since e can be
factored out of p(re~), we only have to compute
real transition-moment matrix elements between
thebasisfunctions X„(r). Thuswefirstdiagonalize
3C ~(8) for the initial-state symmetry to com-
pute the coefficients C~ in Eq. (33), and then con-
struct 3C z(8) for the continuum symmetry (m in
our examples). Using Eq. (28) and constructing
the matrix inverse (z —H)~', with z=E, +&@, by
diagonalizing 3C z(8) for the excited-state sym-
metry, we complete our approximation for o) (&o).

Thus we essentially follow the same numerical
procedure used to compute photoionization cross
sections previously' used for atoms.

Some numerical. results of this calculation are
shown in Figs. 3 and 4. We found it necessary
to use a large basis to describe the state @, for
both the 1so and 2so cross section. We used the
Huzinaga' 10s and 6p Gaussian basis sets with
exponents scaled by 3 centered on each proton
and augmented this basis with 12s-type Gaussians
at the center of the molecule as well as four
additional (three p and one s) functions of large

0.6

C0

0 04

0.2

0
0 1 2

Energy of ejected electron (a.u.}

FIG. 3. Calculated photoionization cross section of the
1so~ state of H2' for transitions to the ~„continuum (sol-
id) and the exact results of Ref. 10.

exponent on each proton. From this set we can
form a total of 32 basis functions of o symmetry.
The results shown in Figs. 3 and 4 were com-
puted with a m„basis of only 9p-type Gaussians
on each proton. For both calculations the value
of e~ was 0.8exp(0. 244i). The results are com-

2.5p

2.0--

~ 1.5

C0

1.0

0.5

0
0 0.5 0.1 1.5 2.0

Energy of ejected electron (a.u.}

FIG. 4. Calculated photoionization cross section of the
2so~ state of H2' for transitions to the ~„continuum (sol-
id) and the exact results of Ref. 10.
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pared with the exact results of Bates and Opik'0
and show remarkably good agreement.

We observed that for this basis the cross sec-
tion is stable (within 10%) with respect to varying
the imaginary part of 8 for only a range of about
7' in arg(e ). This is in contrast with the much
more stable behavior of atomic calculations by
the same method. ' In principle a converged re-
sult would be independent of 8. We have not
made an exhaustive study of the convergence of
the method as the number of basis functions is
increased. However, we have found that for
somewhat larger m„basis sets (15 functions on
each center), the region of stability of the cross
section is not dramatically increased.

VI. CONCLUSION

We have demonstrated with a numerical cal-
culation that matrix elements of the resolvent
of the Born-Oppenheimer Hamiltonian can be
computed using the complex-coordinate technique.
The method superficially appears to be simple
complex scaling which we know to be inapplicable
in the case of the Born-Oppenheimer Hamiltonian
for a molecule. We have offered a heuristic
derivation of the method by showing how to inter-
pret it in terms of Simon's' exterior complex
scaling. Although this is by no means the only
way to view the analytic continuation of the Hamil-
tonian matrix elements we use, it at least gives
some insight into the nature of that analytic con-

tinuation.
There appears to be a need for some additional

refinement or modification of the method before
it shows the same numerical stability as shown
in atomic applications. ' In a later paper we will
investigate some alternatives, in particular the
McCurdy and Bescigno procedure. 4 It can be
shown that the latter procedure for resonance
calculations is the same as that of Bef. 5 but with
Gaussian basis function centered, not on the
nuclear centers B, but instead on complex cen-
ters, e~B . Thus the method of McCurdy and
Bescigno~ can be extended to the computation of
molecular photoionization cross sections in exactly
the same way as the method of Moiseyev and
Corcoran' was extended in the present paper.
Preliminary indications are that some light can
be shed on the lack of numerical stability we ob-
served in Sec. V by asking what becomes of the
cusps in the wave functions at nuclear centers in
a molecular complex-coordinate calculation. We
will explore that question in a future publication.
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