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The atomic N-electron wave function of the independent-pair approximation is defined in terms of orbital
configurations of one-electron functions and symmetry-adapted pair functions in the form of partial-wave
(PW) expansions. This form is convenient for an extensive use of irreducible tensor operators. The
formulation was used to set up a variational-perturbation scheme for closed-shell atoms in the case of the
Rayleigh-Schrodinger perturbation theory with the symmetric sum of Hartree-Fock operators for the zeroth-
order Hamiltonian (RS-HFPT). A detailed study of the second- and third-order correlation energies of Ne
is made in order to analyze the nature of various correlation effects. All PW’s up to I',]” <9 are
considered. Particular attention is given to the problem of eliminating the radial basis saturation errors. The
upper bound to the second-order energy is determined by means of 13880 nonoptimized configurations to

be — 0.38638 a.u., which represents 99.3% of the “experimental

”»

correlation energy. Extrapolation of the

pair energies for I’, 1”">9 results in a second-order energy of —0.3879 au. (99.7% of the total
correlation energy). The PW expansions for the (ns,n’s) pairs are compared for He, Be, and Ne.
Remarkable regularities are observed, indicating that the PW formulation represents a convenient tool for
the investigations of correlation effects. The third-order energy obtained for a shorter expansion of the first-
order wave function amounts to 0.00245 a.u. A discussion of the relative importance of the diagonal and off-
diagonal contributions is presented, and detailed comparisons with the results of many other methods are
made. It turned out that the RS-HFPT approach in the present formulation has several advantages over

other perturbation methods.

I. INTRODUCTION

The problem of finding systematic ways to im-
prove the independent-particle description by
means of ab initio methods has been of interest to
atomic physics for some time. There have been
numerous attempts to obtain atomic energies based
on wave functions in which correlation of electron
motion is permitted. The procedure most fre-
quently applied at the present time can be classi-
fied broadly under two categories: perturbation
and variational types. An analysis of the newest
ab initio methods of taking into account correla-
tion effects seems to disclose the general trend
of making use of perturbation theory. As has
been noted by Dykstra et al.,' the actual distinc-
tion between many of the various correlation en-
ergy methods seems to be whether to use higher-
order perturbation theory or to use first- or sec-
ond-order perturbation theory in an interative
manner to achieve a variational result. The ample
variety of perturbational methods being applied
in the many-electron theory makes it impossible
for us to present a brief review. Among the re-
view papers concerning this type of methods,
those of Sinanoglu,? Musher,® Kelly,* and Pople
et al.® are very informative.

The perturbation approach seems to be well
suited for describing correlation effects in many-
electron systems. This is mainly due to the fact
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that it allows in the most natural way for decom-
positions of the global correlation effects into
various elementary contributions. A perturbation
theoretical description was used in the pioneering
paper by Sinanoglu® for demonstrating that corre-
lation effects can be described in terms of inde-
pendently determined pair functions.

The approach of Sinanoglu is, of course, one
of many formulations which have been or could
be applied to the analysis of correlation effects.
The means of description, the use of language,
as well as the quantities obtained strongly depend
on the formulation of the perturbation approach.
This fact often impedes the analysis of the appli-
cability of an individual formulation and makes it
impossible to conclude on the numerical accuracy
of the results obtained. It is not our purpose to
classify the perturbation methods. We only in-
dicate shortly the main factors which may be
used to set up a classification.

Most of the working methods are based either
on the Rayleigh Schrédinger (RS) of the Brillouin-
Wigner methods of constructing the perturbation
series. The former is the most commonly used
in the many-electron theory. The main feature
of each method is the choice of the unperturbed
(zeroth-order) problem, which may consist either
of an explicit partition of the Hamiltonian operator
or of a partition of the matrix of the perturbed
Hamiltonian.” Most of the recent methods are
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based on the use of zeroth-order Hamiltonians
which are either Hartree-Fock (HF) Hamiltonians
H_ or are obtained from the latter by modifying
the potential using, for example, the V*~! form.*
The choice of the HF problem as the starting
point for a perturbation technique seems to be
justified by the fact that the most commonly used
definitions of correlation effects refer just to the
HF energy and wave function. In such a formula-
tion all perturbation corrections describe corre-
lation effects. However, several ways of formu-
lating the HF approximation for atomic systems,
e.g., restricted-HF (RHF and unrestricted-HF
(UHF) methods, which causes additional increase
of the variety of perturbation methods mentioned
above.

The next important feature of each perturbation
theory is determined by the computational pro-
cedure used to obtain the corrections to the wave
functions and eigenvalues. The methods based on

-the direct evaluation of the correcting terms have
especially received much attention. Among these
techniques various versions of the diagrammatic
many-body methods?* ® ° seem to play the most
important role. The diagrams not only offer a
pictorial description of correlation effects but
also give rise to efficient algorithms for the nu-
merical determination of terms in the many-body
expansion. Another important class of perturba-
tion techniques represent all variational-perturba-

" tion (VP) methods.'® They are distinguished by
the fact that they allow us to obtain upper bounds
to the energy corrections of even order. The
variational character of these techniques causes
their results to be considered the most reliable,
and may be used as reference points for the re-
sults of other methods. .

These few remarks allow us to visualize the
multitude of perturbation methods that may be
set up to handle the correlation problem. Two
questions arise immediately. How should one
possibly compare all these methods to pick out the
most effective ones that could be recommended
for a general use? Arethere any indications which
of the existing classes of methods are best suited
for the description of electron correlation effects
in atoms?

Going back to the first question, one should ad-
mit that several attempts at finding general rela-
tions between different classes of approximation
techniques exist.!! However, conclusive argu-
ments concerning the applicability of existing
theoretical methods are provided only by test
calculations of properties of real many-electron
systems.

During the five decades of development in atomic
structure calculations there have always been

atoms that have served as standard test systems
for the theoretical methods. The He atom indiv-
isibly played this role for the first 30 years. In
the early 1960’s berylium started its career.
Now, at the end of the 1970’s the state of compu-
ter technique seems to promote neon to the status
of a standard test system for all advanced meth-
ods. Neon is in fact a rather interesting system
for the analysis of correlation effects. It is com-
plicated enough (with three shells) to allow one to
make definite conclusions about the relative mag-
nitude of different intrashell and intershell effects.
Furthermore, Ne is the simplest closed-shell
system containing electrons described by not to-
tally symmetric atomic orbitals (p orbitals). The
details of correlation effects within the p shell are
still not so well understood as for the s shells.

It may be interesting to note that properties cal-
culated for the neon atom are often discussed
jointly with their counterparts for small molecular
systems.®* ® 2 Results obtained for Ne are com-
monly used for a general discussion of the rela-
tive importance of various kinds of contributions
to the correlation energy, as e.g., the pair-pair
interactions, the particle-particle and hole-hole
ladder diagram contributions, etc. However,
based on the numerical experience gained so far,
one may arrive at the conclusion that within the
class of RS perturbation theories (PT) the tech-
niques based on the zeroth-order Hamiltonians

in the HF form (RS-HFPT) are especially well
suited for the description of correlation effects.
Although, it is true that the choice of H,=Hy;
does not necessarily lead to the most rapid con-
vergence of the whole perturbation series for the
energy,?* '* such a formulation allows us to get the
largest portion of correlation energy in the sum
of the first two energy correction terms. It has
also been found that the RS-HFPT is invariant
to mixing of degenerate orbitals and has the
correct dependence on the number of particles.

In turn, for diagrammatic approaches the choice
H,=H, results in a significant reduction of the
number of contributing diagrams. An additional
argument for the extensive use of the RS-HFPT
is the fact that the accuracy of the correlation
energy is about 100 times greater than the ac-
curacy of the HF energies used in the calcula-
tions. This enables one to use a smaller basis
set for the computation of the Hartree-Fock
Roothaan orbitals without significant loss of ac-
curacy. In turn, this possibility extends the
range of applicability of these methods to quite a
large systems, e.g., the present authors have
recently reported second-order energies for the
Zn** ion containing the 3d'° configurations.® For
general nonclosed-shell atomic states there are



several HF procedures. However, the single-
configurational restricted Hartree-Fock orbitals
are the most easily available in the literature'®
and for this reason they are preferred as the
starting point for the electron correlation theo-
ries.

The main objective of this work is to obtain
very accurate second-order energy (E,) for the
Ne within the framework of the VP method based
on the RHF zeroth-order problem. As has been
indicated above results of the RS-HFPT obtained
within the framework of the VP technique may
serve as reference points in the discussion of the
relative merits of different formulations of the
perturbation method. Several reliable VP results
for the second-order energy of He and Be
exist.'”"2° However, only Pan and King® have
obtained such results for the Ne atom. These
authors disclosed significant differences between
their pair-correlation energies and the results
obtained by Lee, Dutta, and Das?' by means of
the linked -cluster many-body perturbation theory.
Pan and King admitted that the nature of the dis-
crepancies is obscure and that the problem re-
quires further study.

There are several other results obtained for
Ne that need to be analyzed. We mention only
the E, value of Barr and Davidson’ which repre-
sents 121% (when extrapolated, 132%) of the
“experimental” correlation energy. The latter
result is by some authors (see e.g., Musher?®)
considered to be the best calculated E,. Bearing
in mind the above-mentioned fact that the neon
results are commonly used to form a judgment
about elementary correlation effects, one should
aim towards improving the accuracy of the exist-
ing results for this system.

The main motivation for performing the present
extensive computations was to obtain an accurate
second-order energy for Ne using our formulation
based on the use of “Symmetry-adapted pair-
functions” of (SAPF) in a partial-wave (PW) form,
and to elucidate the cause of the differences just
mentioned. This seems to be possible because
the results of our piloting calculations indicate
that our method is well suited for the description
of correlation effects in Ne.?? In the present work
careful attention is paid to computational accur-
acy.

Our second aim is to make a detailed identifica-
tion of the contributions to E, from all types of
electron pairs. Furthermore, we analyze the
relative importance of various PW’s. Results of
the letter analysis are useful not only within the
framework of perturbation theory, because it
turns out that the angular structures of the pertur-
bational and variational [configuration-interaction
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(CI)] wave functions are very much alike. Hence,
one can apply our results as a guide when con-
structing accurate CI basis sets. We are also in
a position to analyze the completeness of the basis
sets used in various variational calculations,

e.g., we indicate the reason why the CI-Hy meth-
od, when applied to Ne,?® fails to yield accurate
results.

Our third goal was to obtain some information
about the magnitude of the third-order energy (ES)
for the Ne atom. The results reported so far have
been obtained by means of less-accurate proced-
ures. This rather low accuracy may be one of
the reasons why the E, results of Pople et al.® and
Urban et al.® differ in sign.

In order to secure our objects (especially the
third goal) we set up a general technique for per-
forming the calculations. The formulation is a
little more general than required by the present
variational-perturbation calculations. It may be
useful in all formulations using the “independent:
pair approximations” (for definitions and referen-
ces see Refs. 2 and 24-26). We define our approx-
imate wave functions in terms of configurations
(that are defined® as linear combinations of all
determinants with specified #zl values but with all
possible m; and mg values for each orbital) and
“symmetry-adapted pair functions,” i.e., pair
functions that are eigenfunctions of the two-par-
ticle L? and S? operators. The latter functions
were introduced for the first time by Sinanoglu in
his many-electron theory.® Our approach aims
toward a systematic use of the angular-momentum
theory in the valuation of matrix elements of the
Hamiltonian in the case of atomic configurations
constructed from orbitals of higher angular mo-
menta. It is in this case that elementary methods
of evaluating matrix elements becomes imprac-
ticable. Recently, Sasaki®*’ presented an irre-
ducible tensor-operator method of finding matrix
elements arising in the configuration-interaction
method. Since in our approach to the independent
pair approximation the wave functions are set up
using elementary functions (spin orbitals and
SAPFs) that have a definite tensor operator char-
acter, we can make extensive use of the simplifi-
cations provided by the application of the theory
of angular momentum. The only formulation using
a many-electron wave function of definite sym-
metry, comprising SPAF in a way convenient for
the use of tensor-operator methods, may be found
in the paper of Chisholm and Dalgarno®® concerning
the nuclear-charge-expansion method.

In Sec. IIA we present the formulation of our ap-
proach to the independent pair approximation and
present a more-detailed discussion for the most-
simple closed-shell state.
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Section II B contains an outline of our version of
the VP approach which is presented in a form ap-
plicable to all closed-shell atomic systems. Some
computational aspects are discussed in Sec. III.

In Sec. IV we present our numerical results of the
second-order correlation energy of Ne; we also
extensively compare our results with those cal-
culations. Finally, the E, results are presented
in Sec. V.

II. METHODOLOGY

A. Symmetry-adapted wave function in the independent-pair
approximation

We shall follow the standard approach of the
independent-pair approximations introducing a
reference state ¢, that represents a fairly good
approximation to the eigenfunction of the N-elec-
tron Schrédinger equation. ¢, is usually taken in
the orbital approximation with the same spin and
angular-symmetry properties as the exact wave
function. In most cases the reference function is
taken in the single-configurational form, although,
in case of quasidegeneracy a multiconfigurational
function may be more suitable (see e.g., Ref. 13).
For the sake of simplicity we confine ourselves
in this paper to a single-configuration reference
state.

Having specified ¢,, the approximate wave func-
tion of an N-electron system in the pair-correla-
tion approximation may be written

lI’((!,L,S,ML,MSI 1’ 2;°'°’N)
=¢0(a’L’S;ML7MS‘ 1!2""9N)
+x(a, L, S, M, M| 1,2,...,N) (1)

where x stands for the independent-pair correla-
tion function. For our purpose, it is convenient

to represent X as a sum of wave functions describ-
ing intrashell (TRA) and intershell (TER) correla-
tion effects

x(e,L,S, M, M| 1,...,N)

=XTRA(a’ L,S, M, M| 1,...,N)

+XTER(a’L’S’ML5Msl 1,...,N). (2)

We use the LS-coupling scheme and assume that
¥, ¢,, and x are eigenfunctions of L2, S, L_, and
Sg. The index a stands for any other quantum
number needed to specify the state.

For compactness of notation the electron coor-
dinates will be suppressed whenever misunder-
- standing is excluded. Moreover, we use the

following shorthand notation for sets of quantum
numbers:

T‘—’(L)SyMLaMs)3 t_o—-v(l,s.m,,ms),
T‘_'(L;S)) t""(lfs);
i‘“(M[JMS), ;‘—’(Wll,ms)

In the new convention functions (1) and (2) can
be written

¥(a, T) = ¢yla, T) +x(a, T) , (1a)
x(ay T) ZXTRA(a’ T) + XTER(O[7 7;) . (Za)

Let us now proceed to the details of constructing
the functions involved.

1. Reference function

To construct the N-electron wave function ¢,
of an atom comprising p groups of equivalent
electrons (subshells) identified by the pair of
quantum numbers #;l;, we start from antisym-
metrized wave functions of the various subshells.
We prescribe the variables of the N; electrons
of the ith subshell to be ordered in the sequence
of increasing values of the electron index. We
indicate the wave function of this subshell,* con-
structed by LS coupling, by ‘lf‘(ai, Ty ], where [,
stands for the pair of quantum numbers #»;l;.

The antisymmetric wave function ¥y(a, 7) of
the whole atom in the orbital approximation can
be written

Vo(a, T) =AA(a, T) , (3a)

where §[ is an antisymmetrizer for the whole
system that antisymmetrizes with respect to per-
mutations involving interchanges of electrons
between the subshells (see, e.g., Refs. 29 and 30).
A, is an unsymmetrized wave function of the
whole N-electron atom constructed by multiplying
the subshell functions llf‘(ai,T,)] and adding their
angular momenta L;S; according to some pre-
scription indicated by A, to resultant L and S.

We indicate this wave function by

Ao(a;T) = l ZT(OH,TD v ll:'r(af;T,-) ;{TT}§&: T] ’
(3b)

where {T,} represents the set of quantum numbers
describing the intermediate momenta arising in
the process of coupling the momenta 7,75, . . . ,T,
of the individual shells. & is obtained from « by
neglecting the set {T;}.

More explicitly Ay(a,7) may be written

. Ty« T,T )4
ae D) =2 [ 5]
CUTTE WL T gy

X| lfl(ai’Tl)] tee

li"(ar,Tr)] , (3¢)
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where

[Tl TT] q

Lo LT Nz
denotes the generalized Clebsch-Gordan coeffi-
cient,?® which may be represented by proper sums
of product of ordinary Clebsch-Gordan (CG) co-
efficients. The sum is to be taken over quantum
numbers of the intermediate momenta. The su-

perscript A, indicates the coupling format of the
angular momenta involved.?? The most conven-

Xtrala,T) = ﬂA%RA(a,ﬂ ,

ATRA(a T)= Z Z(ZN 2(01‘,T¢) lz Tp) [}lNi(auTg))

aT'

1D

x| ay, Ty, . . -,

where u,(7,) stands for the SAPF inserted in place
of an uncorrelated orbital pair function [lf(Tp)].
The antisymmetrizer 9 ‘¥ performing antisym-
metrization of the coupled product of wave func-
tions of N-2 electrons and the pair function must
be introduced to ensure that the part of ALy, des-
cribing the ith subshell is antisymmetric. The
symbol (" "%(a’,T"), 1%(7,) | }¥(a,T)) denotes the
two-electron coefficients of fractional paren-
tage?® (tcfp), which are nonzero only for certain
pairs of the T and 7, sets of indices. This fact
causes a considerable reduction of the number of
terms in (4c). Let us note that the pair-correla-
tion effects within a given shell are described so
that the coupling scheme of the shells does not
change.

3. Intershell correlation function

The intershell contribution xpgp(a@,T) is ex-
pressed as a sum over contributions from pairs
of subshells

Xrer(a,T) =;x¥m(a,7) , (5a)
i
where
X (@, T) =AY (@,T) , (5b)

IPISN

of T} i Ty Ty

x| ay, Ty -

A (@', T) =

where (?""!(a’,T"),1|}"(a,T)) are one-electron
coefficients of fractional parentage (cfp) and u,,
denotes the intershell SAPF. . The intermediate
angular-momentum quantum numbers Tj,, T,

ADO ), Ty, u,(T);04,T,] -

S N, THE @ T T ) ug (T TH) - - -

tiqna,l coupling format A, assumes that angular
momenta of the subshells are added consecutively.?

2. Intrashell correlation function

The intrashell contribution x;p, is defined as a
sum of contributions from individual subshells
(1s,2s,2p,3s,. . . ,etc.) indicated by the index i,

XTRA(asT) :Z X"I‘RA(U"T) ) (4&)
7
with

(4b)

c M(a,,T) (T ke T, ' (4c)
I
with
A"I‘IER(ayT)': Z M(Ti’ AR r’{TT} {T }T)
{Ty)ca’
X Agidp(a’,T) . (5¢)

In Eq. (5¢), M(Ty, . . . , T;{Trh{T1};T) denotes the
recoupling coefficient from the coupling scheme
of Ay(a,T), which is characterized by the set
{T;}, to a couphng scheme in which the resultant
momenta of the 7j*™ and I}¥"' groups are coupled
together and afterwards coupled to the resultant
moments of the pair of electrons characterized
by I; and 1;. The result of this procedure is then
coupled to the momenta of the other -2 sub-
shells. If the A, coupling format is taken in ¢,
the final coupling scheme in Af. may be also
chosen of the A, type for the changed ordering of
the subshells caused by moving the second of the
(Z,7) pair of subshells to a position just behind the
first. The set of quantum numbers describing
the intermediate states in the new scheme is de-
noted by {T7}. The set {T},} represents all quan-
tum numbers refering to intermediate angular
momenta which had to be introduced when chan-
ging the coupling scheme.

For the applications considered in this paper
Af, may be defined as follows:

Yaf ), 1 |1 ey, T e, T)), 1| Y (e, T))

(a,,T,) {Trha', Tl (5d)

f
and T;; are included in the set {T},} of summation

indices in Eq. (5¢). In Eq. (5d) the values of
(af,T{) and (aj,T;) are limited to those that be-
long to nonzero cfp.
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4. Pair functions

We have not specified the form of the SAPF’s
so far. In principle, any antisymmetric two-
electron function that is symmetry adapted can
be taken. For cur purpose, it is convenient to
define a general SAPF function by the equation

u (] 1,2) = %):R;.’;,T“(n, 77)

X ZW (LM, |8y, 8,)8(S, Mg |0y, 03)
(6a)

where in the case of intrashell pairs we take
i=jand T;;=7,. B is atwo-particle antisymme-
trizer and &(S, Mg |0y, 0,) denotes the spin part of
the SAPF. The function Z*¥'") representing the
angular part of the pair function may be written
as a coupled product of spherical-tensor opera-
tors® C{M(6,),

ZW(L, M) = (4m) [0+ )21 + 1)]?
X[C"(5,) xC (8,147 5 (6b)

where 6 denotes the pair of angles (6, ¢). As a
matter of fact, Eq. (6a) represents a Legendre
expansion for the pair function. A special case
of this expansion, for I’=1’’, has been used in
the discussion of two-electron problems by many
authors, and has been often referred to as the
“partial-wave expansion” (see, e.g., Ref. 17).

We shall use this terminology also for the more
general expansion (6a) which includes terms with
U'#1".

Definition (6a) represents the most general ex-
pression for pair functions. By a proper defini-
tion of the radial function R}#.%i(r,7,), all known
pair functions may be obtained. If the radial
functions depend on 7 and 7,, Eq. (6a) depicts
an CI-type pair function. On the other hand, if
the radial functions depend also on the variables
7¢ and 7,, which denotes the larger and smaller
of the magnitudes of 7, and »,, respectively, Eq.
(6a) explicitly defined correlated pair functions,
i.e., functions depending explicitly on the inter-
electron distances.

5. Application to closed-shell systems

Let us consider an atomic system consisting of
7 closed subshells. Owing to the fact that (for all
i) T,;=0 (O denotes that all quantum numbers of
the given set are equal to zero), the formalism
simplifies drastically.

For closed-shell systems we can rewrite Eq.
(4c) as

Adp)0)= Z AiT2(0), (4d)

where

MO =T, BT [} 20)) [1177(0)+ -+ SV, T )3 00+ +185*2(0); {0} ).

{6} denotes that all intermediate momenta are equal to zero.
The similar part of the interpair correlation function [Eq. (5d)] will assume the following form:

Ajia(0)= ZA;J,:JML
1]

where

T

(5e)

. 1/2 N _
A Ti(0)= (-—L> [148222(0) o 90, (13147 2(2,), 18157 1(E,); T 1), uy5(T4;):0)  + < 1497°2(0); {0}; 0]

Lty

[a,b] is a shorthand notation of (2a+1)(2b+1).
Similar to Eqs. (4b) and (5b) let us define

X’i"RTK(a) = ﬁA'i"RTK (7a)
and
X}Jén”(o) %A.}.’égu . (o)

Now, we can rewrite Eq. (2) in the more convenient
form

X=Xrra™t XTER—Z Z XT'R +Z Z XTaRi,

(8)

where we omit the symbol 0.

I

The calculation of matrix elements of one- and
two-particle operators between wave functions of
the general form discussed above is a very com-
plicated problem. It may be performed by a simi-
lar methodology as in the case of configurations
containing several open subshells. Several ap-
proaches to the latter problem exist.?®3° The spin
and angular dependence of the matrix elements is
separated out being expressed in terms of »n-j
symbols and fractional parentage coefficients.

In the Appendix we consider the matrix elements
used in our calculations of the second- and third-
order energies for closed-shell systems if ¢, is
taken to be the restricted HF wave function. It
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has been shown by several authors®2° that for such
a choice of the zeroth-order problem all pair
functions are strongly orthogonal to the HF orbi-

tals. This requirement is also imposed on our pair

functions.

B. Variational-perturbation method for closed-shell
atomic systems

Let us consider a closed-shell N-electron atom.
We choose the unperturbed Hamiltonian in the HF
form, i.e.,

N
H=H..=Y h(i). (9a)
o HF g
with £(1) denoting the one-electron Fock operator
N
r(1)=11)+Y V,(1), (9b)
k=1
where

V1) =(042)[(1 = Ppo)r 3|04(2)) ) -

Here #(1) denotes the bare-nucleus one-electron
Hamiltonian, P, indicates the two-particle
permutation operator, ¢, are HF spin orbitals,
and the subscript denotes integration over coor-
dinate set 2. The perturbation operator is

N
Hx=i T;}-iz V). (9¢)
i>j 1=l k=1
The first-order wave function ¥, satisfies'®
(Hy— Ey)¥, + (H, - E|)¥,=0,

where E, and E; stand for the zeroth- and first-
order energy, respectively. Within the varia-
tional-perturbation procedure ¥, is approximated
by the function ¥ minimizing the Hylleraas func-
tional'®

Jy[x]= &|Hy - Eo[x)+2(|H, - E, %), ~  (10)

within a given class of trial functions.

It has been shown by Sinanoglu® that for closed-
shell systems the first-order wave function may be
represented as a sum of antisymmetrized products
of occupied HF spin orbitals and pair functions
which are strongly orthogonal to the latter. Hence,
the variational function xy may be written in a from
that differs from the exact function ¥, in that it
contains trial pair functions in place of the exact
ones.

We employ symmetry-adapted pair functions as
the building blocks of the N-electron first-order
functions x in a way that has been specified in Sec.
A, i.e., we write the function ¥ in the form
specified by Eq. (8).

Inserting (8) in (10), and taking into account
only the nonzero matrix elements of one- and

two-electron operators listed in the Appendix, one
gets further

S IDIETE TS 3) DER AN
¢ 3

5 Tij
(1)

This equation represents a decompositions of the
Hylleraas functional (10) into a sum of functionals
depending on the individual pair contributions.
Hence, the problem of minimizing the functional

-(10) reduces to the independent minimizations of a

set of Hylleraas functionals involving only one
pair function each time.

To apply the variational-perturbation method we
express the radial function in Eq. (6a) in terms of
radial basis functions p,,

RipTii(yy, 7,) = }: clinkiip (ry,7,) . (12)

QOur radial basis functions are defined as

P71, 72) = Rlug, 5|7 )R (¢, 14|75) (13a)
where
R(n|7)=r"exp(-n7). (13b)

The linear coefficients c‘i:,Z'f are determined from
the variational-perturbational procedure.
To ensure the strong orthogonality of the pair

functions to the HF spin orbitals we apply the

strong-orthogonality projection operator defined’
as

§(1,2) = 2(1)4(2), - (14)
with
H6)=1- i o) e ).

The strongly orthogonal approximate SAPF may
finally be written in the form

u; (T ;|1,2) = 9(1 2) Z et w (T )1, 2),

| (15)
where we use the PW basis functions
wgel(T[1,2)=Bp (r,, 7,) 2" (L, M, [5,, 5,)
X&(S,M|o,,0,). - (16)

Minimization of the Hylleraas functionals lead
us to the sets of equations

2 it {2100l T I 20 (T,
2
—(e;+ gj)(QwS,.,n(T”)]qum,m"(T“))}
+ 22 AT My HQW (T 3,)1=0  (17)

qm'm
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(s,1’,1” take values from the same set as q,m’'m”).
In (17) the symbol [|| ||] denotes the reduced matrix
element.*® [, stands for the RHF orbital of the ith
shell, and ¢; is the respective orbital energy.

|11 {T,,)) denotes the normalized pair function of
definite symmetry T,; setup of HF spin orbitals.

Let us note that Eq. (17) does not depend on the
My and M ; quantum numbers of the pair function.

It may be seen from Eq. (17) that we have per-
formed a direct reduction of the N-electron prob-
lem to a two-electron problem. Our way of re-
duction differs from the method commonly em-
ployed®18-2° in that it uses SAPF in place of spin-
orbital pairs from the very beginning. Further-
more, we do not use as an intermediate step the
explicit equations for the first-order spin-orbital
pair functions. As a matter of fact, these equa-
tions are of no practical importance in the VP ap-
proach. This is due to the fact that one has to con-
sider a great number of them (see, e.g., Ref. 18),
and that their handling by the variational-pertur-
bation method requires imposing additional con-
straints on the trial functions. Therefore, even-
tually one is forced to transform these pair equa-
tions and to proceed to equations for the pair
functions of definite symmetry (see, e.g., Ref.

20) which, in turn, would allow us to obtain Eq.
(1m).

It may be worthwhile to mention that Shibuya and
Sinanoglu®® developed another method for reducing
the equations for the first-order wave function of
an N-electron system into equations for the radial
parts of the pair functions for closed-shell sys-
tems. The method is based on the application of
the symmetric group Sy. These authors presented

“also a generalization to the open-shell case.®?

For pair functions defined as in Eq. (16), one can
prove that the two-matrix elements in the curly
brackets vanish, unless the pairs I’l” and m'm”
are equal. This involves a reduction of the sets
of linear equations for each pair to sets of equa-
tions determinedby fixed values of I’ and 1", i.e., bya
givenpartial wave. Letus make the observation, that
due to the indempotency of Q, i.e., $2=§, and to
the fact that Q4-2$3=0, one can omit one projec-
tion operator in the first two matrix elements of
Eq. (17). Let A denote the set of indices specifying
a partial wave 1’1" of the pair determined for elec-
trons of the shells i and j with a symmetry speci-
fication T, i.e.,

A“’(l',l",i,j,T”). (18)

We can finally write the sets of equations in the
matrix form

C Aty V(A)=O’ (19)

where C ‘4 stands for the column matrix of linear

dices i, j, T

coefficients. The W4 and V4 matrices are de-
fined by

WL = 2[w el T ) RNl B ol T4)]
_(€i+€j)(wsl'l"(Tij)’qul'l”(Tij)) . (20)
VR=[11AT )7 31l Qugenl T ;)]

Thus, we see that the VP approach allows for a
reduction of the system of linear equations for all
linear coefficients C;{z,?ﬁi of the first-order func-
tion to independent systems of equations of form
(19) for every PW of each SAPF, i.e., for the in-
ij» U’y and 1”7 fixed. This possibility
of decoupling the N-electron problem into sets of
independent problems for individual pairs con-
stitute the most attractive feature of the second-
order perturbation method.

The form of the w ;;~ basis function makes it
possible to express the matrix elements in Eq.
(19) in terms of elementary radial integrals in-
volving the p(r,,7,) functions. These integrals
need to be generated only once. There are several
simplifications inherent in the form of Eq. (19).
For a fixed radial function basis set some subsi-
diary matrices may be used many times, e.g., let
us note that the two-matrix elements entering
W{# depend only on the PW and symmetry of the
pair functions. They do not depend on the quanti-
ties specifying a pair.

Once the C ‘4’ matrices are determined, the ap-
proximation to the second-order energy (E,) can
be readily obtained as the value of the Hylleraas
functional.!® Hence, we can express E, in terms
of increments E ‘?(A) obtained for a given set A
of the PW and pair-function indices, i.e., i

E,= Z) 2(A)E @(4), (21)
z
where!® )
E(z)(A)=C(A)fV(A) (22)

and g(A)=g(T)=(2L +1)(2S +1) represents the num-
ber of possible pairs for given L and S. One can
further define the second-order pair energy for
the pair of symmetry T belonging to the shells ¢
and j as

Ey(T)= ), E®,17,i,j,T). (23)

A

we can express E, in terms of second-order pair
energies as

E,= ; XT: g(T)E,; (7). (24)

III. DETAILS OF THE CALCULATIONS

Our approach is based on the unperturbed Ham-
iltonian in the restricted HF form. In the present
calculation for the Ne atom we have used the ac-
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curate analytical HF orbitals of Clementi and
Roetti'® spanned by Slater-type orbitals. The lin-
ear coefficients of the HF orbitals are slightly
modified to fulfill the orthonormalization condi-
tions with double-precision accuracy. Since it has
been demonstrated by several authors (see, e.g.,
Refs. 18 and 20) that the error in the self-consis-
tent-field (SCF) energy is about a hundred times
greater than the error in the correlation energy,
we may assume that at least the first five signifi-
cant figures of our energy increments are not af-
fected by the approximate character of the HF
orbitals. '

The sets of linear equations (19) have been
solved for all symmetry adapted pairs of Ne. All
PW'’s for which 1’,1” < 9 have been explicitly con-
sidered. The contributions for I’,1”>9 have been
estimated.

Special attention has been paid to the problem of
completeness of the radial basis set defined by
Eq. (13a). We have used several radial bases de-
fined by various sets of nonlinear parameters ob-
tained by largely ad hoc procedures designed to
completely span the expansion space of the basis.
For reasons that will be clear later, much work
has been invested to set up basis sets allowing
minimization of the I’=17=1 and I’=1"=2 PW in-
crements for the pairs of the 2p shell. However,
for a 120-dimensional problem almost all bases
led to vary similar results. Only the 1s? pair en-
ergy and some PW contributions with high I’ and
1” indices disclosed some dependence on the
choice of the basis set. Our computational experi-
ence allows us to believe that the first four sig-
nificant figures of the second-order energy re-
ported below are not affected by the residual in-
completeness of the radial basis set used.

The most important contributions to the cor-
relation energies (i.e., the PW results for I’,1”
< 4) have been obtained using the radial basis
(13a) set up by taking all possible products of the
R(u,n|7) functions with the parameters specified
in Table I. This function have been obtained by
complementing the function set used by Nesbet33
in his Ne calculations. From the 20 basis func-
tions listed in Table I we obtained 210 two-elec-
tron radial basis functions. This set represents
a well-balanced set for PW’s with indices 7’,1”
<4, For all PW’s of the 1s? pair and for the high-
er PW’s of all other pairs other partially optim-
ized radial basis sets have been employed. For
these functions several sets of subsidiary integrals
were generated and stored. In each calculation
120 (for I’=1"), or 130 (for I’#1”) functions have
been used. For the lower PW’s (I’,1” < 4) these
functions have been selected out of the 210 func-
tion set according to the rule that an increase of

TABLE 1. Parameters of the functions Ru,n | 7).

No. U n No. u n
1 0 2.0 11 2 4.214%
2 0 4.0 12 2 10.0
3 0 8.9141° 13 2 21.632
4 0 12.3545°2 14 3 4,214%
5 0 21.63 15 3 10.0
6 1 2.1839% 16 3 21.632
7 1 3,49212 17 4 4,214
8 1 5.5 18 4 8.0
9 1 11.0 19 4 21.632
10 1 21.632 20 5 21.63

2 Used for the construction of the Nesbet (Ref. 33)
basis.

the 1’1” indices of the PW enlarges the participa-
tion of functions containing higher powers of 7.

Special care has been paid to avoid linear de-
pendences in the set. To supervise the numer-
ical stability of the results for each partial wave,
Eq. (19) has been also solved for some purposely
chosen subsets of the final basis sets.

OQur final first-order wave functions for Ne con-
sists of 13 880 nonoptimized configurations con-
structed from about 300000 distinct Slater deter-
minants. This basis may be compared with its
counterpart used in the most extensive CI calcu-
lation which contained 1571 configurations. A
general computer program applicable to all
closed-shell atomic system has been developed.
The computations were carred out on an IBM
370/145 computer in doublé precision arithmetics.

IV. SECOND-ORDER ENERGY RESULTS AND DISCUSSION

A. Partial-wave increments to the pair-correlation energies

We have solved Eq. (19) and calculated the PW
increments to the second-order energy E ¢)(A).
The results are presented in Tables II-V. For
reasons of convenience we use the more-explicit
spectroscopic way of designing electron pairs,
e.g., we write 1s2p(*P) to indicate the intershell
pair (involving the 1s and 2p shells) correspond-
ing to L=1 and S=0. We also prefer to use the
letter convention for the designation of PW’s,

i.e., we use s,p, d,f,... to denote 1=0,1,2,3,...,
respectively. For example, dd denotes the PW de-
signated by I’'=1"=2,

Table II lists the results for the four (ns,n’s)
pairs. It is apparent that the relative importance
of various PW contributions is different for each
pair. For the 1s2(*S) and 1s2s(3S) pairs, the pp
wave provides the dominating contribution. For
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TABLE II. Partial-wave contributions E®(4) and pair energies for the (ns,n’s)-pairs. ?

Partial-wave

Symmetry-adapted pair

contributions 1s%(1s) 1s2s(1s) 1s2s(3s) 25%1s)
ss 0.012125 0.001 655 0.000 023 0.003182
y 74 0.022 490 0.001 684 0.000415 0.001 843
dd 0.003740 0.000422 0.000073 0.004 623
Vid 0.001 042 0.000116 0.000 012 0.001 303
gg 0.000395 0.000043 0.000003 0.000 504
hh 0.000179 0.000020 0.000001 0.000233
it 0.000092 0.000010 0.000122
Vi 0.000 052 0.000006 <10-5 0.000 069
kk 0.000031 0.000 004 0.000041
124 0.000 020 0.000 002 0.000 027

Calculated

pair energies 0.040 166 0.003962 0.000 527 0.011 947

Extrapolated

pair energies 0.04022 0.003 97 0.00053 0.01202

2 All energies in a.u. with signs reversed.

the 1s2s('S) pair this PW increment is still the
largest, but the ss contribution is very close to it.
The situation is quite different for the 2s%(*S) pair
where dd contribution prevails and the role of the
pp increment is very much reduced even with re-
spect to ss. We tried to find the asymptotic rate
of convergence of the energy increments with re-
spect to I. It seems that for the singular pairs it
is close to the /™ law found by Schwartz,* although
the convergence for the 2s® pair is slightly slower
than for the other pairs. In the case of the triplet
1s2s pair the convergence is like 1%,

Sums of the PW increments representing the
pair energies calculated according to Eq. (23)
are also reported in Table II. It may be interest-
ing to note that the second-order pair energy for
the 2s? pair is much smaller than for the 1s?
pair. In the last row extrapolated pair energies
are displayed. The extrapolation procedure is of
some importance only for the 1s? and 2s? pairs.
For the latter pair the higher PW are relatively
more important than for all other pairs, e.g., if
one takes the sum of the three first PW increments
one obtains for the 2s? pair 80%, whereas for the
other pairs, 95% of the total pair energy.

It seems interesting to compare the PW incre-
ments for the (zs,n’s) pairs in the case of a ser-
ies of closed-shell atoms. Table III summarizes
the results for He, Be, and Ne. In the case of the
1s%(1S) pair a striking regularity of the three ex-
pansions may be disclosed. First of all, the pat-
terns of convergence of the PW expansions are in
all three cases very much alike. There are very
little changes of the magnitude of individual con-
tributions. The ss contribution slightly decreases

when proceeding from He to Ne, whereas the pp
decrement discloses an opposed tendency. For
higher PW one can observe a very slight increase '
of the second-order energy increments when
proceeding to larger atoms. It seems, that to dis-
close all subtleties of the behavior of the PW ex-
pansions one should perform computations for all
three atoms with the same accuracy. However,
even now one can say that, in the case of dynam-
ical pairs,?3% not only the total correlation energy
but also the individual PW increments are approxi-
mately transferable. The latter fact is an addition-
al argument in favor of a more extensive use of
the PW language.

Comparison of the 1s2s(1S) and 1s2s(3S) expan-
sion for Be and Ne also reveals a strong regular-
ity. All PW increments are larger in the case of
the Ne atom. The same is true for all but one con-
tributions to the 2s2 pair energy. In the latter
case the pp increment for Ne is much smaller
than for Be. This sudden decrease is caused by
the fact that in Ne there are no unoccupied 2p or-
bitals which are quasidegenerate like for Be with
the 2s orbitals considered. Therefore, the 2s2
pair, which is nondynamical®® in Be, becomes
dynamical®® for Ne.

In Table IV, PW contributions for the (zs,2p)
pairs are reported. The main component for the
1s2p pairs is provided by the pd wave, whereas
for the 1s2p pair the sp wave gives the dominant
contribution. The convergence for the singlet
pairs is rather slow. The higher terms behave
approximately like [3(I’+1”)]*. The convergence
in the case of the triplet pairs seems to be like
[3(Z’+1")]®. In both cases the convergence is
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TABLE III. Comparison of partial-wave increments to the second-order pair energy for He,

Be, and Ne.?
1s%1s)

1 HeP Be® Ne d
0 0.01347 0.01247 0.01213
1 0.018 94 0.022 48 0.02249
2 0.00317 0.003 55 0.00374
3 0.000 92 0.001 01 0.001 04
4 0.00035 0.000 39 0.00040
5 0.00016 0.00018 0.00018
6 0.000 08 0.000 09 0.000 09

1s2s(%s) 1s2s(1s) 2s%(tg)

Be® Ned Be ¢ Ned Be® Ned

0 0.000 014 0.000 023 0.001 030 0.001 655 0.002 26 0.00318
1 0.000 663 0.000415 0.001819 0.001 684 0.022 14 0.001 84
2 0.000 050 0.000 073 0.000 246 0.000422 0.003 82 0.004 62
3 0.000 008 0.000 012 0.000 074 0.000116 0.00119 0.001 30
4 0.000 002 0.000 003 0.000 028 0.000 043 0.000 48 0.00050
5 0.000001 0.000 001 0.000013 0.000 020 0.000 23 0.00023
6 <1078 <1078 0.000 006 0.000010 0.00012 0.00012

2 In atomic units with signs reversed.

b Byron and Joachain (Ref. 17).
¢ Webster and Steward (Ref. 19).

9 This work.

slightly faster for the 1s2p pairs. The calculated
pair energies for the pairs considered are also
reported in Table IV. One can see that, according
to the common intuitions, the correlation energies
for individual singlet pairs are larger than for the
corresponding triplets ones. This difference is
especially pronounced for the 2s2p pairs. The
pair energies for the 2s2p pairs are considerably

tions.

larger than for the 1s2p pairs.

55

The PW contributions to the three 2p? pairs are

reported in Table V. For all pairs considered,
the pp and dd waves provide the main contribu-
The ss wave does not contribute to the 3P
and D pairs, and is of little importance for the

1S pair. The convergence characteristic is rather

TABLE IV. Partial-wave contributions E®X4) and pair energies for the (ns, 2p) pairs. ?

Partial-wave

Symmetry-adapted pair

contributions 1s2p(1P) 1s2p(°P) 252p('P) 2s2p(°P)
sp 0.000079 0.000678 0.008158 0.002 016
pd 0.002 005 0.000783 0.004198 0.000509
af 0.000405 0.000067 0.004 834 0.000 349
fg 0.000121 0.000 012 0.001 518 0.000 065
gh 0.000 048 0.000003 0.000 626 0.000018
hi 0.000022 0.000 001 0.000 304 0.000 006
ij 0.000 010 0.000164 0.000 002
jk 0.000 006 <1078 0.000 095 <10-8
kl 0.000 003 0.000 059

Calculated

pair energies 0.002 690 0.001 544 0.019 956 0.002 965

Extrapolated

pair energies 0.002 71 0.001 56 0.02011 0.002 98

2 All energies in a.u. with signs reversed.

complicated. For the 2p*('S) pair and the I’l’ part
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TABLE V. Partial-wave contributions Em(A) and pair
energies for the 2p® pairs.

Partial-wave

contributions 2p%('D) 2p%(1s) 2_92(3?)
ss ces 0.002 294
b 0.008011 0.015207 0.004 582
dd 0.004 651 0.020777  0.004485
Nid 0.000 664 0.004 300 0.000486
g8 0.000192 0.001469 0.000102
hh 0.000076 0.000637 0.000030
it 0.000036  0.000321  0.000011
i 0.000020 - 0.000178  0.000 006
kk 0.000011 0.000106 0.000 002
i 0.000 007 0.000067  0.000 001
sd 0.001 339
bf 0.000 789
dg 0.000988
fh 0.000 372
gi 0.000170
hj ©0.000089
ik 0.000 050
il 0.000030
Calculated
pair energies 0.017495 0.045356  0.009705
Extrapolated
pair energies 0.017 57 0.04556 0.00971

2 Energies are in a.u. with signs reversed.

of the 2p?(*D) pair the convergence rate is inter-
mediate between the I and [~ laws. For the high-
er terms, convergence is a little bit slower than
[5(Z’+1")]%. Inthe case of the triplet pair the
convergence rate is slightly slower than given by

the [ law.

For the intrashell 2p? pair energies the most
significant contribution is due to the 'S pair. In
turn, the P pair energy is almost five times
smaller. However, due to the high value of the
pair weight g(7) the triplet pair contributes more
to E, than the 'S pair.

Turning now to the whole set of pair energies
for Ne, we compare in Table VI our results with
those of some previous calculations. The results
of Nesbet?® were obtained within his Bethe-Gold-
stone approach, whereas the pair energies of
Weiss?® were calculated for each pair by CI cal-
culations involving doubly excited configurations.
However, these energies seem to be by several
percents higher than their accurate counterparts.
This is due both to the fact that the angular func-
tions involve only spdf orbitals as well as to the
incompleteness of the radial basis. As may be
seen in Table VI the values of the pair energies
of Nesbet and Weiss exhibit the same behavior as
our results. However, the most interesting seems
to be the comparison with the second-order pair
energies of Pan and King?® (PK) also obtained
within the framework of the RS-HFPT within the
VP approach. One can see that for the (rzs,n’s)
pairs their results are very close to ours. Yet,
the energies for pairs involving p electrons differ
considerably. The difference is especially pro-
nounced for the 2p?(*P) pair where it amounts to
30%ofthe PK pair energy. For the 1s2p(3P),
2s2p(CP), and 2p%(1S) the results differ by 149,
219, and 149, respectively. The best coincidence
may be observed for the 2s2p(*P) pair, in which

TABLE VI. Comparison of second-order pair energies E;;(T) with other works. 2

Pan and
Type Nesbet Weiss King This work
of pair (Ref. 33) (Ref. 26) (Ref. 20) Calculated Extrapolated
1s%(ts) 0.03993 0.0394 0.04010 0.04017 0.04022
1s25(%s) 0.00047 oo 0.000 51 0.00053 0.00053
1s2s(ls) 0.00373 “ee 0.003 80 0.003 96 0.003 97
2s%(1s) 0.01083 0.0105 0.012 00 0.011 95 0.01202
152p(3P) 0.00148 oo 0.001 34 0.001 54 0.00156
1s2p('P) 0.00219 cen 0.002 42 0.002 70 0.002 71
252p(3P) 0.003 30 0.002 57 0.002 47 0.002 97 0.002 98
“2s52p(1P) 0.01729 0.0163 0.018 97 0.01996 0.02011
2p%(P) 0.01091 0.0100 0.00748 0.00971 0.00971
2p*('D) 0.01650 0.0165 0.015 96 0.017 50 0.017 57
2p%(1s) . 0.04408 0.0436 0.03981 0.045 36 0.045 56

2 In a.u. with all signs reversed.



case the pair energies differ by only (5-6)%. This
comparison indicates that the pair energies of PK
for the 1s2p, 2s2p, and 2p? pairs are farther away
from their exact counterparts than was anticipated
by those authors, who expected to be in error by
less than 5%. It seems that these large, in com-
parison with the situation for (zs,n’s) pairs, dis-
crepancies of the results of PK is caused by the
fact that the correlated trial functions, i.e., func-
tions dependent explicitly on the interelectronic
distances, may not be well suited for the descrip-
tions of correlation effects for pairs involving p
electrons. The reason of that fact may be under-
stood basing on the present results. Let us note,
that the basis functions of PK can be represented
as CI-type functions involving s and p-type orbit-
als multiplied by certain scalar correlation fac-
tors. The latter are scalar products of two ten-
sor operators. After recoupling, one may obtain
functions in the PW form. However, for orbitals
with I >0 the PW functions arise as linear com-
binations with fixed coefficients which may differ
considerably from the variationally determined
ones. Therefore, not all PW contributions may
be obtained with sufficient accuracy.

The pair energies listed in Table VI are the
only available in the literature. To get the pos-
sibility of a thorough comparison with previous
works we present in Table VII shell-correlation
energy contributions published by various authors.
The first column shows the most accurate vari-
ational results reported so far. They were ob-
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tained by Sasaki and Yoshimine® by means of an
exhaustive CI calculation using a basis set of 1571
configurations containing up to quadrupole exci-
tations from a set of orbitals containing functions
of s, p, d, f, g, h, and i symmetry (< 6). The
authors estimate their error to be of the order of
(3-4)%. Results of various independent pair meth-
ods formulated within the framework of the vari-
ational approach are collected in the second col-
umn. The numbers represent the results of a
summation over all pairs of the shells considered.
The results for the K shell obtained by various
authors do not differ much. Yet, for the KL- and
L-shell contributions the discrepancies are sig-
nificant. This situation is mainly caused by the
fact that different basis sets have been used in
various calculations. For example Bunge and
Peixoto,®” Weiss,?® Viers, Harris, and Schaefer,?®
(VHS) and Moser and Nesbet?* all use orbital
basis sets limited to 1 <3 (spdf limit). Barr and
Davidson’ applied their total-pair-excitation-
block method using the orbital basis set restric-
ted to functions with / < 4. Only Nesbet, Barr,
and Davidson’ calculated the Bethe-Goldstone
pairs for the L shell with a nonoptimized basis
set which included harmonics up to I =6. This is
the reason why the total correlation energy ob-
tained by those authors represents more than
105% of the “experimental” correlation energy.
Although the saturation remainders due to the in-
completeness of the basis sets have not been re-
ported it seems that for complete basis sets the

TABLE VII. Comparison of K-, KL-, and L-shell correlation energy contributions for Ne. All energies are in a.u.

with signs reversed.

Second-order perturbation

Accurate Various variational method
CI independent-pair CI-Hy Previous This
Shell (Ref. 36) approximvations' (Ref. 23) MBPT calculations work
X 0.0407 0.03993 % 0.03847" 0.03897 ¢ 0.032 34 0.0272749 0.04010° 0.04017°%
0.03993f  0.03948 0.03764" 0.04022%
0.0266 0.025032 0.02326" 0.02437°  0.01521 0.02758¢ 0.02465° 0.02754
KL 0.0276 0.02402™  0.02655°  0.02318 0.02411 P 0.02773!
0.0257°
0.29997 0.34534 K 0.27857° 0.31044°  0.23194 0.358419 0.27807° 0.31868
L 0.3052! 0.27259™  0.32940f 0.29878 0.37533" 0.254 08P 0.31997!
0.3221 0.3315°

2 Nesbet (Ref. 33).

! Estimated results.

b Bunge and Peixoto (Ref. 37).

¢ VHS- spinorbital pairs (Ref. 25).
4 Lee, Dutta, and Das (Ref. 21).

€ Pan and King (Ref. 20).

f Barr and Davidson (Ref. 7).

8 Weiss (Ref. 26).

b Binkley and Pople (Ref. 38).

j Singly and doubly excited configurations.

K Nesbet, Barr, and Davidson (Ref. 39).

1 Singly to quadruply excited configurations.
MVYHS- irreducible pairs (Ref. 25).

m Prime and Robb (Ref. 40).

° Moser and Nesbet (Ref. 24).
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sum of pair-correlation energies would overes-

timate the correlation energy by about 109,

Table VII lists also the results of the combined
configuration-interaction-Hylleraas (CI-Hy) cal-
culations of Clary and Handy?® which include ex-
plicitly correlated wave functions. One can see
from Table VII that the KL- and L-shell subtotals
of the correlation energy are smaller than the
other results. This fact seems to confirm the
statement made above, when discussing the pair
energies of PK, that the correlation in p2? and sp
pairs is comparatively poorly represented by ex-
plicitly correlated wave functions. In closing the
discussion of the variational-shell contributions,
we would like to mention that our results are in
good agreement with their most accurate counter-
parts obtained within the variational approach.
The particularly close agreement of our L-shell
result with the estimated value of Sasaki and Yosh-
imine seems to be encouraging. We would like to
add that our energies are practically free from

the radial basis saturation error.

Turning now to the results of the perturbation
methods, we start with the comparison of the
second-order shell contributions. One can see
from Table VII that our shell subtotals are sig-
nificantly lower than their counterparts obtained
by Pan and King® and Binkley and Pople3® within
the RS-HFPT approach. We have already dis-
cussed the source of the difference with the re-
sults of the former authors. The difference with
the latter authors is mainly due to the fact that

they work within spd limit (1< 2).

It is of considerable interest to compare our re-

sults with the exhaustive calculations of Lee,

Dutta, and Das® (LDD) within the framework of

the linked-cluster many-body perturbation theory
(LCMBPT). Results of the latter paper are con-
sidered by many authors as representative for the
discussion of the relative importance of various
many-body effects. One can see from Table VII
that the results of LDD differ from other pertur-
bational results. First, the K-shell (1s®-pair)
contribution differs by 30% from the average of
all other results. Tt should be mentioned that by
including contributions from various ladder di-
agrams this result is supposed to take into ac-
count the fact that due to the use of a V¥ poten-
tial the 1s orbital differs from the exact RHF one.
LDD suggest that the disparity is somehow distri-
buted among other pair correlation energies.
However, nothing like this was observed for the
1s? pair in Be.** Second, the L-shell contribution
of LLDD is larger than obtained by other authors.
This is especially true for the perturbation re-
sults. To get a better insight, one may compare
the configuration pair energies, i.e., the sum of
all pair energies determined by the same pair of
orbitals

E =), g(DE,(T), (25)

where E,;,(7T) is defined by Eq. (23). Results for
the L shell are listed in Table VIII. One can see
that the difference between the LCMBPT results
and the second-order values are the largest for
the 2p? pair. The results of LDD represent pair
energies including contributions from hole-hole
interactions, rearrangement corrections, hole-
particle, and particle-particle diagrams summed
up to all orders. If these corrections are neglec-
ted, the pair-energy contributions increase even

TABLE VIII. Comparison of configurational pair contributions for the L shell.?

Second-order perturbation

method Variational
Previous This pair energies
€ MBPT calculations work (Ref. 7)
b c
2 0.012 68 0.012 00
2s 0.01251¢ 0.009 26 ° 0.011 95 0.011 17
b c .
0.094 91 0.07914 _
2s2p 0.081529 0.05824° 0.086 55 0.084 78
b c
2 0.250 82 0.186 93
2p 0.26582 0.18658° - 0.22018 0.23345
0.28128°¢

# All energies are in a.u. with signs reversed.

b LDD (Ref. 21).

¢ Pan and King (Ref. 20).

4 Prime and Robb (Ref. 40).

¢ Binkley and Pople (Ref. 38).

f LDD contributions from second-order diagrams.
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more as may be seen for the 2p* pair, where to
the pure second-order diagrams corresponds the
energy of -0.26582, This value should be com-
pared with the second-order energies listed in the
third and fourth columns. The difference amounts
to 219, of our result. To make a more-detailed
comparison possible, we calculated the PW in-
crements to the 2p? orbital pair-correlation en-
ergy. These values are compared in Table IX
with the results corresponding to the second-or-
der diagrams reported by LDD.? One can see
from Table IX that the largest differences arise
for the pp and dd PW’s. These discrepancies ac-
count for 979, of the difference between the two
2p? orbital pair-correlation energies considered.
Therefore, special attention has been paid to the
problem of completeness of the radial basis set.
As mentioned in Sec. Il for these two PW’s var-
ious basis sets specially chosen to minimize the
energy decrements have been used. However,
we were not able to reduce the difference further.
We realize that due to the fact that the LDD ap—v
proach differs from ours in the choice of H,, com-
plete quantitative agreement of the second-order
energy is not to be expected. However, the or-
bitals of the L shell are very close to ours (the
2s is exactly identical with ours) and one would
expect that the pair-correlation energies are very
much the same. This point of view has also been
expressed by PK who first noted the discrepancies
for the 2p? orbital pairs. The difference of the
2p? increments is for our results only 58% of that
found by the latter authors. However, as has
been indicated in Sec. IIl we have eliminated to a

TABLE IX. Contributions to the 2p® pair-correlation
energies from different partial waves. ?

Partial wave This work Lee, Dutta, and Das®
ss 0.002 294 0.002 97
PP 0.096 500 0.12414
dd 0.084 397 0.10131
Vid 0.011 994 0.014 53
88 0.003 347 0.00331
hh 0.001 287 0.00116
i 0.000600 0.00048
sd - 0.006 695 0.007 62
bf 0.003 945 0.004 00
dg 0.004 940 0.004 35
IR 0.001 860 0.001 39
gi 0.000 850 0.000 56
Total 2p-2p
correlation 0.22019 0.265 28
energy

2 Energies is a.u. with signs reversed.
b Reference 21.

large extend the radial saturation error. There-
fore, the difference is due either to the different
choices of the potential in H, or to some numer-
ical inaccuracies in the work of LDD, If the first
possibility takes place, our results would be a
strong argument for the advocates of the V¥ po-
tential. This is due to the fact, that the second-
order pair energies yield almost 1009, of the total
correlation energy. To obtain comparable results
within the LCMBPT using V¥-! one has to take in-
to account a large number of complicated higher-
order graphs. In Tables VII and VIII we also list
the MBPT results of Prime and Robb*® obtained
in a discrete orbital basis set. The 2p? pair con-
tributions of those authors differ even more from
our results than the LDD ones. However, this
additional difference may be caused by the incom-
pleteness of their Gaussian-type basis set. To ob-
tain reasonable agreement with our results Prime
and Robb had to take into account very complicated
higher-order graphs.

Let us further consider the total second-order
energy. We present in Table X a detailed break-
down of E, in terms of PW increments defined as

E®Q17) =3 D 'g(T)E®\",1",4,j,T). (26)
i if T

These results allow us to grasp an idea about the
character of the convergence of the PW expansion.
Since the convergence patterns of the CI and per-
turbation expansion are very much alike, the in-
crements given in Table X may be also useful for
the analysis of accurate variational results. One
can see from Table X that taking 1l”<3, 5, 7, and
9 one obtains 92.89, 97.9%, 98.9%, and 99.39 of
the “experimental” correlation energy (Egm).
Closing this discussion of E, we compare in

TABLE X. Breakdown of the total second-order cor-
relation energy into partial-wave contributions. Energies
are in units of 107 a.u. with all signs reversed.

" GQ)(lrl”) " 6(2)(l'l”) 11" 5(2)(l’l”)

ss 19325 sp 48 957 sd 6695
PP 123762 pd 30237 of 3945
dd 93401 af 19461 dg 4940
Vid 14491 fg 5610 fh 1860
gg 4298 gh 2211 gi 850
hh 1722 hi 1041 hj 445
ii 824 ij o 540 ik 250
i 459 jk 303 jl 150
kk 255 kl 186

u 160

Subtotal 258697 Subtotal 108546 Subtotal 19135

Total E, 386378
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Table X1 the most important results for the cor-
relation energy of Ne obtained by the above-men-
tioned authors. Essentially the results reflect the
behavior already disclosed for the L shell. Most
of the variational results are affected by some
basis-saturation error. The best agreement with
E¢, . has been obtained by LDD. One can also see
from Table XI that our second-order energy re-
presents 99.3% of E, ,, whereas the estimated
value amounts to 99.7% of the latter energy. An-
other result listed in Table X deserves some com-
ment. This concerns the second-order energy ob-
tained by Barr and Davidson’ within the framework
of a perturbation approach involving a partition of
the Hamiltonian matrix for a basis containing ¢y .
Their result represent 1219 of the correlation en-
ergy. This E, value has been extrapolated by
Musher® to 1329 of EZ .. The latter result cer-
tainly discourages from using second-order HF
perturbation theory. We hope that the present
work will lead to a revision of such pessimistic
opinions. Barr and Davidson also used their E,
to oppose conclusions reached by other authors
concerning the relative importance of pair-pair
interactions and ladder diagrams.” It seems,
however, that their formulation provides the
second-order energy so far from the accurate
value, that the conclusions about the behavior
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of higher-order terms may not be transferable to
the approaches used by other authors.

V. THIRD-ORDER ENERGY

To be sure that our second-order energy really
represents a reliable result, one has to gain some
insight into the structure of the perturbation ser-
ies. First, one should inspect the magnitude of
the higher-order terms to find out whether good
agreement is due to fast convergence of the per-
turbation series or rather to a coincidence, and
if the results will deteriorate if higher members
of the series are taken into account. We concen-
trate our attention on the third-order term.

The third-order energy may be expressed in
terms of the first-order function as®

E3=<‘I’1’H1 ‘E1|‘I)1>. (27)

In the variational-perturbation approach ¥, is ap-
proximated by the function y minimizing the Hyl-
leraas functional Eq. (10). Hence, we approxi-
mate E; by
Eg=(x|H;-E %)
=(Xrra TXrEr Hi —E{|X1Ra + XTER - (28)

with the notation of Sec. II. Due to the two-elec-
tron character of Hy, the calculation of E; is

TABLE XI. Comparison of the total correlation energy for Ne. All energies in a.u. with

signs reversed.

Total
Method Authors correlation energy
C1 Sasaki and Yoshimine (Ref. 36) 0.3627°% 0.3697° 0.3896 ¢
Bunge and Peixoto (Ref. 37) 0.3403
Barr and Davidson (Ref. 7) 0.3333
Ahlrichs et al. (Ref. 41) 0.3236
Variational- Nesbet (Ref. 33) 0.4103
pair VHS (Ref. 25) 0.3356¢  0.3738°
approximations Weiss (Ref. 26) 0.3612
Ahlrichs ef al. (Ref. 41) 0.3726
CEPA Ahlrichs et al. (Ref. 41) 0.3338
CI-Hy Clary and Handy (Ref. 23) 0.2795
MBPT LDD (Ref. 21) 0.3891 0.4134f
Second-order Pan and King (Ref. 20) 0.3428
perturbation Binkley and Pople (Ref. 38) 0.3158
theory Barr and Davidson (Ref. 7) 0.4709
This work 0.38638 0.3879¢

“Experimental” correlation energy (Ref. 21)

0.3890+0.001

# Singly and doubly excited configurations.
b Singly to quadruply excited configurations.
¢ Extrapolated result.

d Spin-orbital pairs.
¢ Irreducible pairs.
f Sum-of-pair energies.
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rather complicated and requires the same types of
integrals as the purely variational method.

We have discussed in Sec. IIA the main idea of
computing matrix elements for functions contain-
ing SAPFs.

Since the computer time needed for the calcula-
tion of E4 is close to that required by a variational
calculation with the same basis set, we could not
effort to accomplish the computations with the
same accuracy as indicated in Sec. III, i.e., using
the full set of 13880 configurations. Therefore,
we performed another second-order calculation
using smaller sets of radial basis functions, and
limited ourselves to the most significant PW,
e.g., for the 2p*(®P) pair we used radial bases of
dimensions containing 36, 15, 6, and 3 functions
for the pp, dd, ff, and gg PW’s, respectively.
Some energy increments obtained in this calcula-
tion are listed in the last column of Table XII.

The E, value obtained is —0.34203 a.u. com-
pared with our most-accurate value of —0.38638.
Although the former result is affected by an error
of about 11% it is still very close to the best E,
obtained so far (Pan and King— —0.3428 a.u.).

The third-order energy evaluated with the simp-
ler first-order wave function is + 0.002446 a.u.
We know of two attempts of evaluating E, for Ne
within the framework of RS-HFPT. The first
result of —0.00048 a.u. has been reported by Pople,
Binkley, and Seeger.’ The second value of
+0.00012 a,u. has been published very recently by
Urban, Kolls, and Hubaé.® The second-order en-
ergies obtained by these two groups have been of
-0.25452 and - 0.2149 a.u., respectively. Both
results have been obtained within an approach
which involves direct summation of the perturba-
tion series. Therefore, the accuracies of their
second-order energies are not so directly, as in
our case, connected with the accuracy of E ;.
However, their E, values provide some informa-
tion about the completeness of the set of one-
electron functions employed. It seems that both
numbers are quite far from the exact third-order
result. Our E; value, although computed with a
first-order function, leading to more accurate E,
is also expected to be affected by a significant er-
ror, which may be even as large as 20%. Our ex-
perience gained for Be indicates that when improv-

TABLE XII. Diagonal and some off-diagonal contributions to the third-order energy of Ne.
Orbital pair increments to the second-order energy ? (in a.u.).

Off-diagonal contributions

Second-order

Diagonal involving specified types
Pairs contributions of pairs only. energy increments ?
1s%(%9) —0.000 98 —0.038 99
2s%(1s) —0.00071 -0.01023
1s2s(1s) —0.00012 —0.003 63
1s2s(%s) —0.000 02 —0.00046
1s2s —0.00018 0.000 01 ~0.005 01
1s2p(1P) —0.000 24 ~0.002 02
1s2p(3P) —0.000 06 —0.00140
1s2p —0.00128 0.00011 —0.018 66
2s2p('P) —0.008 52 —0.01533
2s2p(°P) —0.00031 —0.00281
2s2p —0.02835 0.00323 —0.07128
2p%(1s) —0.00313 —0.04035
2p%°P) ~0.000 69 —0.00933
2p%('D) —0.001 81 -0.01471
2p* —0.018 39 0.018 92 -0.19787
Sum of diagonal Total off-diagonal Total second-
contributions contributions order energy?
—0.04989 0.052 38 -0.342092

Third-order energy

0.002 446

2 Obtained for the first-order function used in the third-order calculation.
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ing the accuracy of the first-order result the ab-
solute value of E; decreases. In summary, we

see that the third-order energy for Ne is very
small, and the high accuracy of our second-order
result is due to the fast convergence of the pertur-
bation expansion.

Although the estimation of E; has been the main
motivation of our calculations, -there has been
another problem that attracted our attention. This
was the problem of relative importance of diagonal
and off-diagonal terms!® in the expression for Ej.
We use the terminology of Byron and Joachain who
understood by diagonal terms the diagonal matrix
elements in the basis of the xi%%, and x ¥ is func-
tion, i.e.,

i, Ty i,T ij, T, ij, Tjj
(Xtea? |Hy =E 1 Ix1ra? Or XTeR ¥ 1Hy —Eq Xt i)

(29)

All other terms are called off-diagonal, Basing on
their estimates of typical terms of the off-diagonal
type, Byron and Joachain!® claimed that for the Be
atom these terms contribute little to the third-or-
der energy, and thus neglected them in their cal-
culations. This is equivalent to a reduction of the
problem of calculating E4 for the N-electron sys-
tem to the computation of the third-order energies
for a set of two-electron problems defined by all
possible electron pairs.

We report in Table XII all diagonal contributions
to the third-order energy together with off-diagon-
al contributions involving pairs differing only in
the symmetry designation. One can see from Table
XII that all off-diagonal contributions are positive.
They are in fact small for the 1s2s, 1s2p, and
2s2p pairs. However, for the 2p® pairs the sum
of all off-diagonal contributions is even slightly
greater than the absolute value of the sum of all
diagonal contributions. We see that for the 2p
shell of Ne one cannot omit the off-diagonal terms,
and therefore a reduction of the N-electron prob-
lem to a set of two-electron problems is not poss-
ible if accuracy up to third-order is considered.

If one uses the nomenclature of Pople et al. the
sum of diagonal contributions can be considered
as a counterpart of their E®,,. In turn, the off-
diagonal terms represent pair-pair interactions.
‘Our results indicate that for the Ne atom the
E(I:%PA and pair-pair interaction contributions al-
most cancel, which is in agreement with the con-
clusion of Pople et all It may be interesting to
compare our value of the diagonal contributions
with the result for E®),, reported by Pople et al.’
The values are —0.04994 and - 0.03511 a.u., re-
spectively. The ratio of these two contributions is
almost equal to the ratio of ours and Pople’s et ql.}

second-order energies. Our off-diagonal contri-
butions for the 2p* pairs, 0.01892, and for the
2s2p pairs 0.00324, may be compared with the re-
sults of Prime and Robb® for the pair-pair repul-
sion corrections which are 0,02382 and 0.00509,
respectively. The ratio of the off-diagonal contri-
bution for the 2p? pair to the sum of the second-
order energy and the diagonal third-order terms
is 0.052 compared with the estimate value of 0.1
reported by Micha?*® for the ratio of many-body to
two-body correlation energies for the 2p shell of
Ne. Finally, one may from the entries of Table
XII estimate the “two-body” terms of Sinanoglu’s
theory,* 20, ;(E¥+E®), and compare it with the
“three- and more-electron” effects represented
by the term )

J
2 |
7

iyisk iV

of that theory.** The results are —0.39198 and
0.05238 a.u. for the short expansion of the first-
order wave function. If the accurate second-order
energy is used, we obtain —0.4407 a.u. One can
see that the two-body term overestimates the
correlation energy by more than 10%.

VI. SUMMARY

We defined the atomic N-electron wave function
of the independent-pair approximation in terms of
orbital configurations and SAPF. This form has
been chosen to fit the Condon-Shortley-Racah
formulation of the theory of complex atomic con-
figurations. Our formulation was used to set up a
general variational-perturbation algorithm within
the framework of the RS-HFPT. A general pro-
gram for the computation of very accurate E, and
E4 energies has been developed and applied to the
ground state of Ne.

Our formulation is equivalent to other variation-
al-perturbation approaches. It offers, however,
the possibility of performing computations for
large atoms containing several closed shells of
b, d, and f electrons.

It turned out that the perturbation expansion for
the RS-HFPT is very fastly convergent for the
system considered. Our E, result represents
99.3% of E¢,, (the extrapolated value reproduces
99.7%). The Ej value is about 0.5% of the second-
order result. The sum E, +E; indicates that the
exact correlation energy is 0.3879+0.002 a.u.

The pair functions are represented in a PW form,
and the PW energy increments are obtained for all
pairs. The comparison of the PW increments for
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the ns,ns pairs along the series He, Be, and Ne
allows us to disclose very interesting regularities
in the behavior of individual energy increments.
This seems to confirm our opinion that the PW
formulation represents a convenient tool for the
investigation of correlation effects.

We have performed a detailed analysis of the
relative importance of various PW contributions
both for pair energies as well as second-order
energy. It turned out that restricting the expan- .
sions to 1’7" <3 one may get 92.8% of E¢,,;, where-
as for 1'1” < 9 one obtains 99.3%. The PW analy-
sis also sheds some light on the problem of the
ineffectiveness of explicity correlated wave func-
tions in describing correlation effects within the
L shell.

The high accuracy of the present results make
it possible to use them as reference points in
discussions of other perturbation approaches.
Therefore special attention is paid to the compari-
son with other work. We found, e.g., that the VP
results of PK*® may be considerably improved. On
the other hand, the second-order energy obtained
by LDD?! within the framework of the LCMBPT
based on the V¥! potential significantly overesti-
mate the correlation energy. The same is true
for the individual orbital pair energies. The val-
ues of the latter are only slightly improved by
taking into account the contributions due to hole-
hole, rearrangement, hole-particle, and particle-
particle higher-order diagrams. We also indicate
that a perturbative method based on the partition-
ing of the Hamiltonian matrix in a way suggested
by Barr and Davidson yields second-order ener-
gies which are very different from the standard
RS-HFPT results and therefore may lead to inac-
curate assessments of various correlation effects.

The results of the present work confirm the ob-
servation of Pople et ql.° that the independent-pair
contributions to the third-order energy almost
cancel with the pair-pair increments, leading to
an enormous reduction of E5. This cancellation is
especially effective for 2p® pairs. Thus the pro-
cedure of Byron and Joachain!® based on the
neglect of off-diagonal terms is not applicable for
larger atoms.

The very good agreement with E ; obtained
within a RS-HFPT formulation indicates that this
conceptually simple method may be especially ef-
fective in dealing with correlation effects in larger
atomic systems. Our general computer program
allows to handle every closed-shell atom. Results
for a system containing the 34! shell have already
been obtained.!” The main problem now is to in-
vestigate to what extent the success for Ne depends
on the specific system chosen. Work along this
line is in progress.
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APPENDIX : MATRIX ELEMENTS OF ONE- AND
TWO-PARTICLE OPERATORS

Let us discuss the matrix elements of the oper-
ator U (a one- or two-particle operator) which
arise from the expression

(500 + Zxtenl®) + 2 xhaa @)1 91640

+Z X7'zr(0) +Z XTRA@)) (A1)

i<j

in the case when all pair functions involved are
strongly orthogonal. It can be shown®! that non-
vanishing contributions are due to the following
matrix elements: .
(i) for any one-electron scalar operator, F:

(@) [04(0) IF194(0)], (b) [Xera(0)IF Ixina(0)],

(e) [x¥er(0) 1 F Ix#an(D)], (d) [X¥5a(0) | F Ix35n(0)]

(e) [XTER(UHF IXtra(0)] . (A2)

~

(ii) for any two-electron scalar operator, G

(@) (601G 16(D], (b) [$(D) G Ixiha(D)],
(©) [6o(0) G 1Xipa(®)], () [Xima(D)I1CIxima(D)],
(e) [xima (016 Ixdna(®)], () [X3£r(0)IG Ixikn (D],

(@) [x¥er(0) 1C 1 x5 (0)], (h) [xi:r(0)IG IXELR(D)],

(1) Dékra (016 Ixdka (0], () [xima(0) 16 Ix42(0)].

(A3)

In order to evaluate all such matrix elements one
needs to carry out the following steps: (a) to
apply the Wigner-Eckart theorem to the initial
form of the matrix element and (b) to execute such
successive changes of coupling schemes in the
functions which separate out only these parts on
which act the operators f; or g;;.

Let us, for example, present the explicit ex-
pression for the matrix element between two in-
trashell contributions
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T ol T) =1t 1), 0,6, [2); T g oo I 1) 1),1,(2,12); T,

BTy Ty T) =14t 1),06(T 12, 3); T5ll gy, 1 14(¢ 1), u,(T5 12, 3); Ts]

SI(T)=[u(T11,2)buy(T11.2)],
04 I(T)=[u;(T11,2)ll g, l2,(T 11,2)] .

The double vertical lines in these elements denote
irreducible matrix elements. These elements can

I
be readily expressed in terms of pure radial inte-
trals and 3n-j symbols.*
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