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Stark effect and perturbation approximations in hydrogenlike atoms

F. T. Hioe and H.-I. Yoo

(Received 10 September 1979)

Two different perturbation series, the weak- and strong-field expansions, for approximating any resonances

of the Stark effect in the hydrogen atom, are given. Together they cover the entire regime of field values up

to the points when the resonances disappear.

I. INTRODUCTION

E (0 ) +~ (1 ) + y2E (2 ) +. . .
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Even though E„' is not real, its imaginary part
(which is negative) is an exponentially small func-
tion of X as X-0. The spectrum of the perturbed
equation is highly concentrated in the neighborhood
of the real numbers E„given approximately by
Eq. (1.1). The sense in which this is true may be
understood if we consider the probability that the
particle is in a state for which E is in the interval
(o., P). This probability tends to zero as X -0 if
the interval (n, p) does not contain any of the num-

bers

E (0 ) + ~ (i ) + y2E (2 ) +,
lr Fr n

The poles of the perturbed Green's function in
such cases are referred to as resonances. The
Borel summability of the usual perturbation series
for the resonances of the Stark effect in the hydro-
gen atom was shown by Qraffi and Grecchi' and by
Herbst and Simon, and the convergence of the di-
agonal Pade approximants sequence was shown by

While most quantum-mechanics textbooks pre-
sent the Stark effect in the hydrogen atom as an
important application of the time-independent per-
turbation method, ' it was pointed out long ago by
Titchmarsh' that a hydrogen atom in the presenc~
of an electric field, no matter how small, has no
discrete energy eigenvalues, but that its spectrum
extends continuously over (—~, ~). Nevertheless
Titchmarsh pointed out that a meaning can be as-
signed to the perturbation expansion

E (0) +~ (i ) + y2E (2 ) +. . .
n n n

in such cases; one way in which this can be done
is to consider the right-hand side as an approxi-
mation not to a perturbed eigenvalue but to a pol.e
of the perturbed Qreen's function. If the perturbed
spectrum is continuous, the perturbed Green's
function has no poles on or above the real axis.
But Titchmarsh showed that it has poles just be-
low the real axis and that there is a pole E„' in the
neighborhood of E„' ' such that

Graffi, Grecchi, Levoni, and Maioli. '
Thus, although many quantum-mechanics texts

probably gave a wrong interpretation of formula
(1.1), the expansion on the right-hand side of (1.1)
is meaningful when it is correctly interpreted and
"suitably" summed.

In this paper we derive two different perturba-
tion expansions for representing the resonances
of the Stark effect in the hydrogen atom depending
on the strength of the applied electric field and
the quantum numbers. The results which we pre-
sent are analogous to those of the anharmonic os-
cillator problem with the Hamiltonian given by

H = —,
' (-d'/dx'+x') + &x', (1.3)

n(n —2)'(n —1) (n+1)(n+2)(n+3)(n+4)
2+ 3X(2n —1) 16[4+6X(2n+ 5)]

n (n —1)(n —2 ) (n —3 )
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yl/3 ~ + ~ y-2/3+ g y-4/3+. . .
n n I n

(1.4)

(1.5)

depending on whether the quantity

A„—= x (n+ —,') (1.6)

is respectively smaller or greater than a particu-
la.r constant c (which is of the order of ~~~). Note
that, no matter how small X is, there will always
be a quantum number above which the second ex-
pansion (1.5) is more appropriate. This is not to
say that the right-hand side of (1.4), which is a
Pade-approximant-type sequence, would not con-
verge in theory if A„were greater than c. It is
just that the convergence would probably be so
slow in that case that its use would become im-
practical. On the other hand, the use of (1.5) for
the case A„& c showed rapid convergence. For
any given resonance of the Stark effect we also
determine the value of the electric field above

for which the ~th energy level E„has been shown

to be well approximated by one of the two following
expansions:

E„=n+ 2+ 4 X[1+2n(rg+ 1)]—X2, (n+ 1)(n+ &)'(n+ 2)
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which the resonance disappears.
Indeed, that the Stark problem can be reduced to

an analogous quartic- anharmonic-oscillator prob-
lem if one uses the parabolic coordinates was
known to Sommerfeld' in 1929. In this formulation
the Stark problem reduces to a problem of two
different quartic anharmonic oscillators with cen-
trifugal terms the eigenvalues of which, when
equated, yield the resonances of the Stark effect.
We use Titchmarsh's version of the WEB formula'
(which is more than a, zeroth-order WKB) and its
corresponding expansions given in an earlier pa-
per" to obtain the energy eigenvalues of the quar-
tic anharmonic oscillators with centrifugal terms.
The Titchmarsh's formula we used has been ex-
tensively tested in earlier papers"" and shown to
be remarkably accurate. More important, our
work showed that the formula gives the correct
behavior of, for example, the dependence of the
energy eigenvalues on X and n in (1.4) and (1.5),
even when it does not give the coeffi.cients of the
expansions exactly. The remarkable fact is that
even for the ground state the error involved is
already very smail.

With Titchmarsh's formula expanded appropri-
ately, equating the eigenvalues of the two quartic
anharmonic oscillators gives the resonances p,

(-=2mE/5') of the Stark effect implicitly in the two
formulas (3.20) and (4.19), which we present in
Secs. III and IV, depending on the values of the
external electric field b und the quantum numbers
n, P, m. The use of a beautiful inversion formula
developed by Lagrange" then yields two explicit
formulas for p. , Eqs. (3.29) and (4.26). The form-
er is closely related to the usual perturbation ex-
pansion; the latter is new. For convenience, we
call these two expansions the weak- and strong-
field expansions, respectively, even though the
names are strictly incorrect (or even misleading)
for the same reason stated following Eq. (1.6),
namely, that no matter how small the external
field b is, there will always be resonances above
certain values of quantum numbers for which the
second "strong"-field expansion should be used.

The use of the WEB method for the Stark prob-
lem was first employed by Wentzel, ' one of the
originators of the method. He used what is now

called the higher-order WEB approximations" "
to obtain the usual perturbation expansion up to
second order in the electric field strength. He
did not derive the strong-field expansion. Landau
and Lifshitz' mentioned the use of the zero-order
WEB method for the Stark problem but did not pur-
sue it, since they saw it as expressing E implicitly
in terms of elliptic integrals and solving it numer-
ically, a solution which did not appear to be il-
luminating to them. Our use of Titchmarsh's

WEB formula involves the elliptic integrals only
formally, because we were able to expand them
in simple power series, to obtain the general
terms, and to invert them. The final formulas
which we give, Eqs. (3.20), (3.29), (4.19), and
(4.26), are simple and explicit, which together
with the tabulated values of the coefficients given
in Tables I and III can be used to approximate any
resonance of the Stark effect in the hydrogen atom
to very high degrees of accuracy (within, of
course, the Titchmarsh WKB approximation).

The behavior of some selected resonances as
functions of the external electric field are pre-
sented in Fig. 2. The necessity of using our weak
and strong-field expansions as well as the deter-
mination of the values of the field above which the
resonances disappear is explained in the following
sections.

H. STARK EFFECT IN THE HYDROGEN ATOM

V'g+ (Iu+ a/r 2hz)g =0 .- (2.3)

If we use the cylindrical coordinates (p, z, P), we
let

& = p cospq g = p sing y (2.4)

and if we use the polar spherical coordinates
(r, 8, P), we further substitute

p = r sin8, z = r cos6 . (2.5)

The parabolic coordinates which we use are re-
lated to the cylindrical coordinates by

p uvre z 2(u v)p (2.6)

where u and v vary over (0, ~). On substituting

coswp

sl MR p
(2.7)

into Eq. (2.3), we obtain the following equation for
0 in the parabolic coordinates:

In this section we follow Titchmarsh's presen-
tation' in reducing the Stark problem in the hy-
drogen atom to the problem of two quartic anhar-
monic oscillators.

The Schrodinger equation for the hydrogen atom
in an electric field directed along the z axis is

V'g + (2M/h')(E+e2/r ehz)-/=0, (2.1)

where E denotes total energy, 8 electric field
strength, and e, M, and I have their usual mean-
ings. If we set

p, -=2ME/ji', a = 2Me'/I', b -=—Me 8/5', (2.2)

Eq. (2.1) can be written more simply as
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Bo' Bo
BQ Bg, +, +[p,(u'+v')+2a-b(u'- v')

—(m —4)(1/u~+1/v ))g =0, (2.8)

b & 0, we begin by using Titchmarsh's ~K+ form-
ula, ' which gives K and K~ implicitly as fol-
lows".

which is separable with

a= X(u)~(v),

where

(2.9)
and

Q0

(«„+pu' —bu')"' du =n+ -', m+ -',

0
(2.17)

d2
+ [-pu'+ bu'+ (m' ——,')u '] y = «1 (2.10)

dQ

v0

(«& +2a+ pv +bv )" dv=P+ ~m+ 2, (2.18)
0

2

+ [-pv —bv +(m ——,)v ](u=(«'+2a)(u
d 40 2 4 2 1 2

dv Kq + PQ —5Q =0 (2.19)

where Q, and v0 are the smallest positive roots of

and

(2.11)
+2a+ p.v +by =0, (2.20)

(2.12)

The new eigenvalue parameters K and K', or more
precisely K„and Kp with their corresponding
eigenfunctions )f„(u) and ~~ (v), are those cor-
responding to the quantum anharmonic oscillators
in the potentials

respectively. The left-hand sides of Eqs. (2.17)
and (2.18) can be expressed in terms of the ellip-
tic integrals of the first and second kinds, and we
obtain

(6mb) '([(p,'+4b«„)"'- p, (p'+4b«„)"'] K(k, )

+ 2u(V'+ 4b«..)"'&(k,)]

U(u) = —p ' ub+u'+ (m' ——,')u '

V(v) =-pv'- bv'+ (m'- —,')v ',

(2.13)

(2.14)

1 1n+ 2m+ 2

where

k', = —,
' [1+ p, (p,'+ 4b«„) "'],

(2.21)

(2.22)

=-—,
' a'(n+p+m+1) ' (2.16)

for n, p, m =0, 1,2„.. . . The number n+p+m+1
is the total quantum number. To treat the case

respectively. These potentials are sketched in

Fig. 1 (remembering that p, is negative) for the
case b & 0 and m ~ 1. For m = 0, the values of U

and V tend to -~ as Q-0 and p -0. The equation
for determining the resonances p.„~ correspond-
ing to the quantum numbers n, p, m of the Stark
effect is given by

(2.15)

It is easy to see that when b = 0, Eq. (2.15) gives
the energy levels of the hydrogen atom

—p, —[p,'- 4b(«,' +2a)]"'
—p, +[p,' —4b( «~2 +)]"a' ' (2.24)

Equations (2.21) and (2.23), though in closed
forms, are not useful as they stand, because we
need «„„and «~ in explicit form to use Eq. (2.15)
to determine p, . The inversion, namely, the ex-
pression of K„and K~ explicitly in terms of p, ,

and

-(lfr/67rb)(- p+ [p,
' —4b(Kp +2a)]"']"'

x ([p,' —4b(«~„+2a)]"'K(k,) + pE(k, )j=p+ —,
' m+ —,',
(2.23)

where

u(U) V(v)

FIG. 1. Potentials U(u)
and V(v) for b & 0 and m) ]
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b, n, p, and m can be carried out in an elegant
manner with the aid of a beautiful formula devel-
oped by Lagrange, "as we explain below.

III. %PEAK-FIELD EXPANSION

Consider Eq. (2.21) and let us write

(3.7)

a„=2(2n+ m+ 1)(-2)"*()+ g A~a',
'

),j=l
(3.8)

or, using the definitions of f' and T„ in Eqs. (3.1)
and (3.4), we have

4b-~ ( u)-'. (3.1) where

Then Eq. (2.21) can be writen as

(8/3))){[(1+g)"'+ (1+1)"4]K(k, )

-2(1+g)"'E(k, )$=8b(2n+)n+ I)(—i1) "'

where

(3.2)

(3.9)

The series expansion in powers of g of the func-
tion p, (1') when g &1 has been given previously in

Ref. 11:

(3.10)

If we now write

=8b(2n+n)+ I)(-!1)"'

(3.3)

(3 4)

where

Writing

(-I))r(2j+ —,') (-I))(4j —1)!!
2 'v" j!I"(j+ 2) 2 'j!(j+1)!

and

P, (g) =--'. )1l{[(1+f)"'+ (1+g)"']Z(b, )

-2(1+ r„)"4z(k )J ' (3.5)

then Eq. (2.21) can be writen as

(3.6)

and Lagrange's formula" can be immediately ap-
plied to give

(p)
—I + g f(1))J

j=l
(3.12)

(3.12')

where a, =1 in this case and

we have computed the values of A, using Eqs.
(3.9)-(3.12) for j = 1-30, and they are tabulated
in Table I. In Eq. (3.12), f,.

"' can be expressed
explicitly in terms of the a,. by the formula

f (1 ) —1/a

(» (-1)"
n n l an+'

0

2a,

6a,

00

5a~

2a0

4a,

(3.12")

, (2n-, 4)a„, (2n —5}a„, (2n- 6)a„,
(2n —2)a„, (2n —3)a„, (2n —4)a„,

~ (n —2)a,

(n- 1)a,

na„ (n —1)a„, (n —2)a„,

&(t),(1) ' =0.928=-R, , (3.13)

The actual computations of f&"
' and A~ were car-

ried out, however, by recursions.
It follows from Lagrange's theorem that the ser-

ies on the right-hand side of Eq. (3.8) converges
if

t

Eq. (3.5).
The corresponding explicit expansions for ~~

can be obtained similarly from Eq. (2.23}. How-

ever, this is not necessary, as we note from Eqs.
(2.17) and (2.18) that all we need do is to change

tc„ to a& +2a, n to p, and 5 to -b. Thus we de-
duce immediately that, if we define

where the value of (t), (1) was obtained by making
use of the closed-form expression for Q, (g) in

= 8b(2p+nz+1)(- p) "',
then we have, from Eq. (3.8),

(3.14)
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1 0.937 500 000 OE —01
2 -0.166 015 625 0 E —01
3 0.572 204 589 8 E —02
4 -0.254 845 619 2 E—02
5 0.130458 1761E—02
6 -0.729 318475 4 E—03
7 0.433 330 527 8 E —03
8 -0.269 238 312 4E —03
9 0.173 109 630 5 E —03

10 —0.114356 222 3E —03
11 0.772 195 708 5 E —04
12 -0,530 978 968 9E —04
13 0.370 728 957 OE —04
14 -0.262 234 0194 E —04
15 0.187 585 770 2 E —04
16 -0.135 507 500 0 E —04
17 0.987 340 150 2 E —05
18 -0.724 911764 2 E —05
19 0.535 872 955 9E—05
20 —0.398 561 105 8 E —05
21 0.298 075 576 OE —05
22 -0.224 044 412 8 E —05
23 0.169170 809 6 E—05
24 —0.128 272 082 0 E —05
25 0.976 352 394 3E—06
26 —0.745 793 191OE —06
27 0.571 546 976 3 E —.06
28 -0.439 343 344 1E—06
29 0.338 674 493 3 E —06
30 —0.261 760 622 6 E —06

0.281 250 000 0 E+ 00
0.556 640 625 0 E —01
0.111236 572 3 E —01
0.192 761 421 2 E —02
0.381 074 845 8 E —03
0.563 671 346 7 E —04
0.135944 155 8 E —04
0.102 940414 6E—05
0.665455 390 8 E —06

—0.707 605 628 0 E —07
0.594455195 5E—07

-0.181136272 8 E —07
0.824 098 388 8 E —08

—0.320298370 OE —08
0.134 923 9108 E—08

—0.557 632 421 4E —09
0.235 162 240 3E —09

—0.994 638 220 2 E —10
0.424 349 448 2 E —10

—0.182 024 173 9E —10
0.785 346 960 9E—ll

-0.340 523 551 2 E —11
0.148 328 205 3E—11

-0.648 915439 6E—12
0.284 892 399 3E—12

—0.125 652 951 6E —12
0.554 231 4194 E —13

-0.248 068 532 7 E —13
0.106772 243 1E —13

—0.527 235 531 9E —14

TABLE I. Values of A and g for j=1—30.

and

&A~

is given by

(-u )
' '((+ Q A,. (v'„+ (-1)'v,"})/=1

=-,'a(n+p+m+1) '.

(3.19b)

(3.20)

Equation (3.20) is our weak-field formula in which
the p appears implicitly. 'With the values of A,.
presented in Table I a simple iteration procedure,
which consists of truncating successively the
series on the left-hand side of Eq. (3.20), enables
one to compute JL(„~ to very high degree of ac-
curacy. Table II shows the convergence of pppp
from this truncation procedure for some selected
values of b, where N is the number of terms used
on the left-hand side of Eq. (3.20). Note that for
these values of b, conditions (3.19) are satisfied.

%'e can express ILL explicitly in terms of b, n, P,
a.nd m from Eq. (3.20) by again making use of
Lagrange's formula. Let

(3.21)

An alternative expansion for z~ is given in Ap-
pendix A.

From Eqs. (3.8), (3.15), and (2.15), the equation
for determining the resonances p. of the Stark ef-
fect in the case

(3.19a)

g&„+2a= 2(Rp+m+ ()(-p)"'(1+ g (-1)~A,. v'&'„

j=1 )

(3.15)

where the A, are defined as before by Eq. (3.9).
The series on the right-hand side of Eq. (3.15)
converges if

or

then Eq. (3.20) can be written as

~(
&

'' 2(n+P+m+1) (1+ A,'g(8b g J=). j
where

(3.22)

(3.23)

& (t),(1) ' =1.200 =—R, ,

which follows from the fact that

(3.15')

(3.16)

A,'=[(2n+m+l)~+(-1)'(2P+m+1)']A& . (3.24)

From Eq. (3.23) we get

(3.25)

where

where

(3.17) and

s -=64b (n+P +m + 1)'/a' (3.26)

as one can readily deduce from Eqs. (2.23) and
(2.24), with the definition of r now being

(3.27)

4b(~,' +2a)(-—i(.) '
and the analog of Eq. (3,6) being

(3.18) Applying Lagrange's theorem to Eq. (3.25) then
gives

(3.28)
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TABLE II. Convergence of F000/a2 obtained from the
wreak-field formula (3.20) for some selected values of
5/a3.

N b/as=2 x10 3 b/a3=4 xl0 3 5/a3= 6 x10"3

6 -0.2502720187 -0.2510883156 -0.2524496874
8 -0.250 272 018 7 -0.251 088 320 3 -0.252 449 799 0

10 -0.2502720187 -0.2510883204 —0.2524498058
12 -0.250 272 018 7 -0.251 088 3204 -0.252 449 806 2
14 -0.250 272 018 7 -0.251 088 320 4 -0.252 449 806 2

or since p=-4b'~'& '~' from Eq. (3.21), we get

—,'a'(m+p+I+)) '()+I c,s'j '", (8 29)

.where

1 (d
Cg = (. 1), ! d— 43(l) (3.30)

%e see that the appropriate expansion parameter
here is s, which is the product of b/a' and
(n+p+m + 1)' (to within a constant multiplier). It
is clear that no matter how small b is, there will
always be quantum numbers above which the above
perturbation expansion is not valid.

It is instructive to compare the first few terms
on the right-hand side of Eq. (3.29) with the usual
exact perturbation series From .Eq. (3.29) and
using Eq. (3.30), we get

g = ——,
' a'(n+p+m+ 1) '+6(n -p)(n+p+m+ 1)a 'b

—4(n+p+m +1) [1V(n+p+m + 1)' —10(n -p)']
X a 'b'+ ~ ~ ~ (3.31)

while the usual exact perturbation series up to the
terms in b' is

g=--,'a'(n+p+m+1) '+6(n p)(n+p-+m+1)a 'b

—2(n+P +m + 1) [17(n+P +m+1)a 3(n -P—)'
—9m'+ 19]a 'b'+ ~ ~ ~ (3.32)

s —= 64b(n+p+m + 1)'/a' & A„~ (3.33)

where the radius of convergence A„~ is positive
and finite for any finite values of n, P, and rn.
The relation between the usual exact Hayleigh-
Schrodinger perturbation series and the pertur-
bation series obtained from a %KB approximation
has been pointed out in an earlier paper. "

We see that the coefficients C& in (3.29) are, in
general, rather complicated functions of the quan-
tum numbers n, P, andm. It can now be appre-
ciated that for numerical purposes our earlier
implicit formula (3.20) is clearly more convenient
to use, since theA& are independent of n, P, and
rn. In some special cases, however, the depen-
dence on n, P, and m in C& can be factored out,
leaving only pure numbers which are independent
of n, p, and m and which can then be tabulated.
I et us write

(3.34)

where the A; are the same A& defined previously
and tabulated in Table I; let us also define

1 f d i~
cg = (., 1), ! ~] ) 4.(C)"' (3.35)

It can be readily shown that for the following
special cases,

!
(2n+m+1)~c, , n»p, n»m, (3.36)

C& = (-1) (2p+m+1)~cI, n«p, m«p, (3.37)

!
[1+(-1)'](2n+m+ I)'c~, n=p (3 38)

The above results follow from Eqs. (3.30) and
(3.27), because in those cases then, p, andm de-
pendence in (3.24) becomes a factor with a simple
power which can be absorbed in t in (3.2V), there-
by enabling us simply to redefine another variable.
The values of c, calculated from (3.35) are given
in Table I for j= 1-30. The values of p for these
special cases can thus be readily calculated from
our explicit formula (3.29) to very high accuracy.

The difference between the two equations begins
appearing only in the coefficient of O'. For the
ground state n p =m =0, the coefficients of b'/a'
in (3.31) and (3.32) are -68 and -72, respectively.
In the casen»p and n»m, the coefficients of
b'/a' in (3.31) and (3.32) approach the same value.
This is true also for all the coefficients in the
higher-order terms. The usual exact perturba-
tion series (3.32) includes the increasingly higher-
order WEB approximations, and a straightfor-
ward summation of this series gives divergent
results ""Our s.eries (3.31), on the other hand,
is a convergent series, provided that

IV. STRONG-FIELD EXPANSION

For the weak-field expansions given in Sec. III
to be valid, we stated the conditions (3.19). We
first note that the condition 7& &8, cannot be
vi olated. The equation

~Pffft
= @2 (4.1)

p' = 4b (a& + 2a) . (4.2)

gives the eigenvalue of the anharmonic oscilla-
tor with the potential V(t)) in Fig. 1 at the top of
the well. In this case, k, in Eq. (2.24) approaches
unity and
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Substituting (4.2) into (2.23) gives (4.1). Thus Eq.
(4.1) determines the value of b (which depends on

n, P, and m) above which the resonance p„~„dis-
appears.

On the other hand, there will always be values
of n such that

( (n)=(g (p')

where

(4.15)

b; = [(-1)'2'f'(-,'(2j+ 1))]/[(2)))"'j (1'(-.'(2j+ 7) -j)].
(4.16)

v„&A, . (4.3)
Writing

In this case, let us write

)7
-=—tu/(4b «„)'~'

and write Eq. (2.21) as

(4.4)

(8/31rl)'")((1+@')' '+)7(1+/')'~'] K(k)

—2q(l+)7')' 'E(k)j= 8b(2n+m+1)( —W) '~',

(4.5)

where

(4 6)

g, (n) =-Q g,'"n',
j=0

(4.17)

we have computed the values of B,. from Eqs.
(4.11) and (4.14)-(4.17) for j=0-30 and tabulated
them in Table III. The series on the right-hand
side of (4.13) is convergent if r„

Thus from Eqs. (3.15), (4.13), and (2.15), the
equation for determining the resonances p, of the
Stark effect in the case

(4.18a)

Defining v„as in Eq. (3.4), we can write Eq. (4.5)
as

and

(4.18b)
n = ~„"4,(n),

where

q, (q) -=(8/3v)'~'([ (1+q')'~'+ )7(1+q') '~'] K(k)

—2q(1+ q') "Z(k)]".

(4.7)

(4.8)

is given by

TABLE III. Values of B and g)J for j= 0—30.

The use of Lagrange's theorem gives

(4.11)

Thus we obtain

AO -2
= 4b' '(2n+ m + 1)' ' g h p „"~'

j=0

or

(4.12)

«„~=4b'"(2n+ m+1)"' Q B 7 ""
)=0

where the coefficients B,. are defined by

(4 13)

(4.14)

The series expansion in powers of g of the func-
tion P, (ri) when g ( 1 has been given previously in
Ref. 11:

« ' '=[2b' '(2n+m+1)' '] 'gh&7„~ ', (4 10)
9=0

where

0

2
3

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.546 267 325 1E+ 00
0.675457 518 1E+ 00

—0.186799 733 l E+ 00
0.430 301 073 8 E—01
0.298 240 895 0 E—01

-0.565 884 242 l E—01
0.517 622 551 7 E—01

-0.339083 590 9E —01
0.203 480 156 8 E—01

—0.197285 281 6E- 01
0.297 402 266 7 E—01

-0.417 430 794 9E —01
0.487 093 735 4 E—Ol

—0.505 748 009 5 E —01
0.533 828 978 4E —01

-0.636 468 264 7 E—01
0.830 697 176 8 E —01

-0.108131755 1E+ 00
0.134651 3161E+ 00

—0.163063 215 1E+ 00
0.199648 876 2 E+ 00

-0.252 766 202 0 E+ 00
0.327 841 764 5 E+ 00
0.426 168218 3 E+ 00
0.549 102 769 5 E+ 00

-0.704 1g7 892 9E+ 00
0.907 915 602 4 E+ 00

-0.118288 831 7 E+ 01
0.155329 570 2 E+ 01

-0.204448 559 6E+ 01
0.268 952 902 9E+ 01

0.409 430 481 0 E+ 00
0.195 636 775 1 E+ 00

-0.859 491 802 7 E—01
0.108 664 947 5 E—01

-0.222 723 370 2 E—01
0.970 420 1143 E —01

-0.160 OQ8 077 5 E+ 00
0.176362 861 2 E+ 00

-0.2101Q64892E+ 00
0.360 625 868 6 E+ 00

-0.643 952 270 3 E+ 00
0.996 886 186 0E+ 00

-0.145 212 564 9E+ 01
0.227 121 930 8 E+ 01

-0.382 088 267 g E+ 01
0.637 0117482 E+ 01

-0.102 680 683 6 E+ 02
0.165 675 660 4 E+ 02

—0.274 810 598 3 E+ 02
0.462 777 286 6 E+ 02

-0.775 278 1663 E+ 02
0.129 221 141 9E+ 03

-0.216 707 300 5 E+ 03
0.367 0001071E+ 03

—0.623 764 783 7 E+ 03
0.105 957 462 1 E+ 04

-0.180256 680 6 E+ 04
0.307 826 340 4 E+ 04

—0.525 006 240 9E+ 04
0.918178325 8 E+ 04
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2bl/3(2nym+ I)4/3 g $2//. -3

g fff

jW
(4.19)

where N = 0 in the beginning but is increased in
steps of 1 in the following iterations and where
the p, in 7'~ has been assumed to have the value
//, „, then Eq. (4.19) can be written as

p, = --,' a'(n+ p+ m + 1) ', (4.20)

where the subscripts n, p, and m on the p, 's have
been dropped for convenience. If we write

a —(Sp+m+(}(-W }'i (1+ / (-(}A+()j=1
N 2b'"(2n+m+ l)4/3

(4.21)

Equation (4.19) is our strong-field formula, in
which the p, appears implicitly. With the values
of A j and B,presented in Tables I and III, a sim-
ple iteration procedure which consists of truncat-
ing successively the series on the left- and right-
hand sides enables one to compute p,„~ to very
high degrees of accuracy. Table IV shows the
convergence of p.,p p p from this truncation pro-
cedure for some selected values of b, where N„
and N~ are the number of terms used on the left-
and right-hand sides of Eq. (4.19). Note that for
these values of f/, conditions (4.18) are satisfied.

It may be mentioned that steps (4.11)-(4.14)
leading to the determination of the coefficients Bj
(or A/) can be varied, although the final results
for these coefficients must, of course, be the
same. An alternative procedure for the determi-
nation of B/ from the function (1},(q) is given in Ap-
pendix B.

We can express p, explicitly in terms of b, n, p,
and m from Eq. (4.19) by directly applying La
grange's theorem to Eq. (4.19). However, Eq.
(4.19), as it will be noted, is a Laurent-type series
rather than a simple Taylor series. This means
that we would have a formula of the form
(d/dr/)/g(r/)/", with the value of tl evaluated at
points other than zero —a somewhat inconvenient
procedure. The following procedure is more con-
venient:

We assume that the left-hand side of (4.19) has
a known value, by first assuming the unperturbed
value of pp of p where

where

and

(4.22)

I

(4.23)

(4.24)

Application of Lagrange's theorem to (4.22) gives

(4.25)

B, ( d
D/= (. 1)(i d

(r} (n) (4.2V)

The values of D, calculated f.rom Eqs. (4.27) and
(4.24) for j= 1-30 are given in Table III. Thus
beginning with i/, , given by (4.20) and t, given by
(4.21) and using the values of B, and D, given in.
Table III, we get p, from Eq. (4.26). We then use
//, , to obtain t, from (4.21) and substitute this into
(4.26) to obtain lt, . The process is repeated until
p„„converge to the accuracy desired. Equation
(4.26) is our explicit strong-field formula for the
resonances p, of the Stark effect in the hydrogen
atom.

We have used Eqs. (3.20) and (4.19) to obtain
//, „& /a' for p = m = 0, n = 0, 1, . . . , 10 for a. wide
range of values of I//a', which are plotted in Fig.
2. The solid lines correspond to those values ob-
tained by using Eq. (3.20), namely, when conditions
(3.19) are satisfied, and the dotted lines corre-

or, writing the l/, thus obtained in (4.25) as tt„„,
where N denotes the order of iteration as explained
earlier, we get

„=—4( ~'(2n+m+ }(f B,'t„(1+gD, t'), .
j"-1

(4.26)

where

TABLE 1V. Convergence of p}0,0, 0/at obtained from the strong-field formula (4.19) for
some selected values of b/a3.

Ng, Np b/a3=8 x10 7 b/a 3= 10"6 b/a =2 x]0

6, 6
7 $7
8, 8
9, 9

10,10

-0.001 562 907 1
-0.001 567 354 7
-0.001 565 741 3
-0.001 566 672 0
-0.001 565 8342

-0.001 447 939 5
-0.001 448 943 6
-0.001 448 655 9
-0.001 448 788 5
-0.001 448 693 3

-0.000 898 825 2
-0.000 898 828 7
-0.000 898 829 1
-0.000 898 829 4
-0.000 898 829 5
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APPENDIX A

The eigenvalues K~ of Eq. (2.18)wereapproxi-
mated by the expansions (3.15) in this paper, i.e. ,
expansions about &~ =0. For those eigenvalues
near the top of the potential well V(v), i.e. , when

=B„z~ should be more appropriately approxi-
mated by an expansion about v~ =R,. Though we
did not use it, we shall write out this expansion in
this appendix.

In Eq. (3.16), instead of expanding p2(g) about
/=0, we define a new variable

-O. I—

—-- n=Q

e =(1 g)"'
and expand about I9=0. I et us write

P,(e) =- e 11 —(1+ e)' "[—eK(k, )+ E(k,)]t ',

where

(Al)

(A2)

—I—

FIG. 2. p„00/a vs 5/a for various values of n (note
the logarithmic scales).

spond to those obtained by using Eq. (4.19), namely,
when conditions (4.18) are satisfied. For every
given resonance the line terminates at a certain
value of b/a2 which is determined by Eq. (4.1). It
will be noted that if p& n, only the weak-field for-
mula (3.20) need be used for determining p, up to
the value of b above which the resonance disap-
pears. However, if n&p, there will always be a
region for which the strong-field formula (4.19)
must be used. Note that the values of b/a' for
which the strong-field formula was used are very
small and decrease rapidly as the value of n in-
creases.

V. SUMMARY

We have presented two different types of pertur-
bation formulas for approximating the resonances
of the Stark effect in the hydrogen atom. The
formulas (3.20) and (4.19), and (3.29) and (4.26)
are simple and together cover the entire regime.
We have used them to calculate several selected
resonances as functions of the applied electric
field. Some interesting features are clearly ex-
hibited in Fig. 2. The extensive table of coeffi-
cients presented in Tables I and III enables one to
compute readily any resonances of the Stark effect
to high degrees of accuracy (within the approxima-
tion of Titchmarsh's formula).
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k', =(1-e)/(1+e), k,"=1 k', =2e/(I+e).

where ( is the digamma function and

E(k2) =1+—,
' g, ", [21n(1/k,')+ ((m+2)

(1/2) „(3/2)
m p 'm m+

q(m + 2)]k &2m+2

(A5)

By defining the expansion parameter t' by

t,' = 1 —(3mb/W2)(2p-+m+ 1)(—p) "
=1 —&' /8, ,

(A6)

(A V)

the expansion about t~ =0 for y~ is

(-v)'
+ 2a=

4
1 —t~

I
e,. t~' (A8)

where

1 d
(q+I)! de (A9)

and where $2(e) is given by (A2).
Using the expansion (A8) for e,', we determine

the resonances p, of the Stark effect as before by
equating

-&p~ =
&nm ~ (A10)

The elliptic integrals K(k2) and E(k2) can be ex-
panded inpower series in 8 by the formulas"

(1/2) (1/2)
p m. m f

x [ln(1/k, ') —g(m + 2) + t/j( +m1) ]k2, (A4)
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where v„ is given by Eq. (3.8) or (4.12), depend-
ing on whether v'„&R, or ~ ~Ry 7'~ being always
less than R,.

APPENDIX 8

I g„) I !!&,(~)'l . (B2)

=-7. I' h'T "l'
nm j nmj~

or using the definition of g given by Eq. (4.4), we

get

In this appendix we give an alternative method of
determining B, of E.q. (4.19) from g, (q) of Eq. (4.8)
or (4.17) to show the variety of steps which can be
taken.

From Eq. (4.7), if we consider a function

f(n) = n',

then Lagrange's theorem gives

OO -1
= 4b' ~'(2n+ m + 1)' ' g a,'T " '

=4b' '(2n+m+1)"' B.~ "".j nm
jm

In this method we obtain the coefficients Bj from
the coefficients h,'. given by

(d
&(= (.,2), ~,„„—l2nti(n)'"j. ~

by the relation

(B8)

o!!

g B,x'=( g a,'. x'
~

. (B7)
)

Using the formula, we employed in Eqs. (3.12') and
(3.12'), we can represent B, explicitly . in terms of
hj'. The representations are the same as Eqs.
(3.12') and (3.12") with f,'." replaced by B, and a.

&

replaced by ig j. For numerical purposes, it; is
easier to use recursion relations for the deter-
mination of B,
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n
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