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Hydrogen molecular ion in a high magnetic field
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The ground and several excited states of the hydrogen molecular ion in a homogeneous magnetic field
aligned along the molecular axis are studied. A pair of self-consistent equations is derived in prolate
spheroidal coordinates and solved numerically. The results are exact at the limit of vanishing magnetic field
and more accurate than previous results up to about 10' G. The equilibrium internuclear separation and
binding energy for a number of electronic states are reported as functions of the magnetic field strength.
The dissociation energy is deduced from the study of the hydrogen atom in the same coordinate system.

I. INTRODUCTION

The possible existence of extremely high mag-
netic fields in white dwarf and neutron stars has
motivated the investigation of their effects on the
electronic structure and spectrum of atoms. ' Sev-
eral attempts at studying the effects of such fields
on simple diatomic molecules have also been un-
dertaken. ' In all the reported studies of mole-
cules use is made of relatively simple variational
wave functions, which yield results of limited ac-
curacy.

The available variational treatments of H2 can
be grouped into approaches emphasizing the mo-
lecular point of view, which are expected to be
adequate as long as the electrostatic interactions
are dominant, and oscillator(Landau)-like wave
functions, which better describe the regime of
extremely high magnetic fields. ' ' The latter
approaches provide exact solutions of the corre-
sponding Schrodinger equation at the limit of an
infinite magnetic field, though their neglect of
quantum electrodynamic corrections makes them
unrealistic above -10'3 G. The former have only
been implemented with respect to linear-combin-
ation-of-atomic-orbitals (LCAO)-type wave func-
tions, " which remain approximate even at a
vanishing magnetic field. An interesting varia-
tional wave function, which conceptually belongs
in the high-field approach, but in fact yields useful
results even for low magnetic fields, is studied
in Ref. 3. For its limiting behavior at a vanishing
magnetic field see Ref. 8.

In view of the special position of the hydrogen
molecular ion (H2') in molecular quantum theory,
it is both desirable and possible to consider this
system within an approach which at the low-field
limit reduces to the. exact solution of the free mol-
ecule. The construction of a variational approxi-

mation satisfying this requirement is presented.
Computations using this approach were carried
out for the ground state as well as for the 2po„,
3do~, 2Pv„, and 4fv„excited states. In all the
cases considered, the magnetic field, aligned
along the molecular axis, enhances the binding by
reducing the bond length and increasing the dis-
sociation energy. The results reported here are
more accurate than previously reported computa-
tions up to about 10 6, covering not only the whole
range of laboratory-accessible fields but also an
important part of the range of fields of astrophys-
ical interest.

II. FORMALISM

The Hamiltonian for the one-electron diatomic
molecule in a homogeneous magnetic field directed
along the molecular axis is

2 Z~ Ze ZZe
2m y' xb R

ea e282
+ I.„+ , (x'+y') .-

2mc ' Smc

As is well known, for a vanishing magnetic field
this Hamiltonian is separable in prolate spheroidal
coordinates

X=(r, +r,)/R,

p =(r. r,)/R, -I&-p & 1,
0~ /~2'.

The linear term in the magnetic field can be dealt
with trivially, but the operator in the quadratic
term obtains in these coordinates the nonseparable
form x +y =(—,'R)2(y —1)(1 —p, ). We shall attempt
to construct the best wave function, in a varia-
tional sense, which can be written in the product
form (~=L(x)M(p, )C(g). After integrating over Q,

1980The American Physical Society



414 JAMES M. PEEK AND JACOB KATH, IEL

we obtain the following variational expression for
the energy (in atomic units h =-e =m = 1):

-e-,'R' x'I-'dX M'd p. —
.L'dX p. 'M d p,

dXdp LM[Z+K+P(p X —p. X )]LM

where

2

2=—(X —1)—--—,
-'- +Ra(Z„+Z, )+P(X -X ),Pt g

dX dX X —1

A
2 d m 2

2 4(1 —p, ) — '2 +Ru(Ze. -Z~)+P(p -~ )
dp dp 1 —p

e =E —Z„Z~/R —Bm,/2c, p = —R B /64c

We sha&l use the abbreviated notation

i OD

0") rw'n=-t'ay, 0")-=x"I.'ax,

OR) =- lMOILM dp, , ))') = r L)'L dx .
"1

Variation of Eq. (2) with respect to L results in

[Z -p'(~' —1)+c+p(Q'&~' —Q'h')]L = 0, (3)

where c = (It&+P (( p, &
—1) and P' = ——,'eR'. Sim-

ilarly, variation with respect to M results in

[3R —p'(1 —p') —c'+ p((X'&p' —&z'&p. ')]M =0,

where c'= —(Z&-P (1 —(X &). Multiplying Eq. (3)
by I. and integrating, we obtain the connection be-
tween c and c',

c' =c + p((p 4&& X'& - ( p'&&X'&)

The same connection can be derived from Eq. (4).
For P = 0 (a vanishing magnetic field), the L and
IVI equations reduce to the exactly separated equa-
tions of the free hydrogen molecular ion.

III. METHOD OF SOLUTION

The pair of eigenparameters (p, c), or (P,c'), is
determined in the process of finding normalizable
solutions L and M to Eqs. (3) and (4). This is very
much like the H2 eigenvalue problem without a
magnetic field and the commonly used method of
series representations in terms of convenient
functions is applicable. Very accurate results
can be obtained rapidly by this technique if one is

.careful to choose efficient representations. The
introduction of a magnetic field means that the ef-
ficiency of a representation must be studied as the
field strength varies. Another technical difficulty
is the introduction of more complex recurrence
relationships for the expansion coefficients of most
representations. These reasons, plus the fact that

for nonvanishing magnetic fields Eqs. (3) and (4)
are approximate and extreme precision is there-
fore not warranted, indicate that alternate methods
should be given consideration.

A numerical method that meets the restrictions
just stated has recently been reported' and ap-
plied to the one-electron-diatomic-molecule prob-
lem. " This technique generates the eigenfunctions
and eigenvalues to problems such as that defined
by Eqs. (3) and (4) by numerical integration tech-
niques. (See Refs. 12 and 13 for a more detailed
discussion. ) The adaptation of the computer code
described in Ref. 12 to the problem defined in Sec.
II is now described.

Values for the expectation values (p, &, (p. '&,

(X &, and (X & are required to define the eigenvalue
problem. The I. and M eigenfunctions are not ini-
tially available, so an iteration technique is used.
The initial guesses for the expectation values are
generated by extrapolating in P from P = 0 for a
fixed R and/or extrapolating in R for fixed P. Once
guesses for the expectation values are available,
a set of eigenvalues is found by use of the code
described in Ref. 12 and new expectation values
are generated from the resulting eigenfunctions.
Seven or fewer of these iterations were used in ob-
taining the data presented here. The differences
between the last two iterations were used as the
accuracy guide. On this basis, the last figure pre-
sented here may be uncertain.

This iteration technique appears to become un-
stable for large P as well as for poor guesses of
the initial expectation values. It was observed
computationally that once P becomes large enough
to make convergence difficult, any improvement
in the expectation-value guess can only slightly
extend the useful range of P. Since the physical
model is observed to become inaccurate before the
iteration technique breaks down, these convergence
properties were not studied in detail.

Two special features of this problem have an
influence on the adaptation of the two-parameter
eigenvalue computer code described in Ref. 12.
The gerade-ungerade symmetry makes it possible
to replace one of the boundary conditions on M by
a condition at the regular point p, =0 that reflects
the desired symmetry. Half of the integration
range for p. can then be ignored, and precise con-
formity to the symmetry conditions is ensured.
The second feature concerns the nature of the sin-
gularities at p. =+1 and X=1. The behavior of M
and L is known to be as (1 —p, )' ' for p,

- 1,
(p, +1)'"~'f re, ——1, and (X —1)'"~'f re.- l. Obvi-
ously either of the two independent solutions is inte-
grable in the neighborhoods of these singularities if
~m

~

& 2. This type of singular behavior can seriously
limit the accuracy available from the numerical tech-
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niques being used. " The obvious device of replacing
these singular problems with conditions derived from
the appropriate series representations and applied
at points slightly removed from the singular points
was used. This makes the adaptation of the pro-
gram described in Ref. 12 a little more awkward
but its performance is considerably improved,
allowing an increase of the range of parameters
for which a given accuracy can be obtained.

IV. HYDROGEN ATOM

Setting Z, =1 and Z„=-O, we see that the Hamil-
tonian reduces to that of the hydrogen atom in a
magnetic field. The Hamiltonian still contains a
dependence on R through the definition of the pro-
late spheroidal coordinates, but the exact eigen-
values and eigenfunctions are, of course, R in-
dependent. In view of the fact that the separable
variational wave function is not an exact eigen-
function of this Hamiltonian, the corresponding
energy still depends on R. However, this energy
is an upper bound to the exact (R-independent) en-
ergy for the lowest electronic states with a given
symmetry. R can therefore be treated as an addi-
tional variational parameter. Solutions to Eqs. (3)
and (4) cannot be generated for R =0. However,
the optimum hydrogen-atom energies for the 1s,
2p0, and 2P,1 states were found for the smallest
R values for which the numerical techniques were
stable. For the 2s state the R -~ energy is the
optimal result. The hydrogen-atom energies for
large R define the R —~ results for H2' and are,
therefore, used in computing the H2' dissociation
energies. Energies for the best R as well as for
R -~ are presented in Table I. The results in-
dicate that the dependence of the energy on R is
rather weak for fields below -109 G, suggesting
that the form of the wave function is adequate, up
to that magn. etic field strength.

This conclusion agrees well with other compu-

TABLE I. Hydrogen atom in a magnetic field.

State B(G) EI (a.u. ) E& (a.u. )

2s

1x 10
5x108
1x 109
5X10'
1x 1010

3x ].0«
x ] pi0

1x10"
1x 108

x]p8
] x].09

-0.499 548
-0.489 06
-0.459 68

0.053 34
0.925 1
5.0-10

9.414
20.88

-0.120 7
-0.055 08

0.060 80

-0.499 548
-0.488 96
-0.458 37

0.104 8
1.077

1x 108 -0.122 37
5x 108 0 077 58
1x 1pe 0.010 18

2p+1 1X 108 -0.098 59
5x 108 0.064 73
1x 1pe 0.3152

=0.120 5
-0.051 4

0 ~ 071 9

-0.098 52
0.069 33
0.330 6

tations, which indicate that the present results are
fairly accurate up to fields of -10 G. At 4.7~ 10
G the ground-state binding energy is 27.03 eV,
compared to 27.8 eV obtained by Surmelian and
O' Connell' using a linear combination of Slater-
type orbitals and 26.9 eV obtained by Rau and
Spruch ' using a product of a hydrogenic and a
Landau wave function. For fields higher than -10
G the quality of the present results deteriorates
very rapidly. These are clear indications that this
approach is valid for intermediate fields such as
those typical of white dwarfs, but not for the much
higher fields of pulsars.

V. RESULTS AND DISCUSSION

The procedure described in Secs. II and III is
applicable to all, the discrete states of the hydrogen
molecular ion. For obvious reasons we have con-

TABLE II. Equilibrium bond length, energy, ionization and dissociation energies for the
ground state of H&+.

& (G) &~ (a.u. ) &e (a.u.) E& (eV)' E (a.u. )

0
1X 1p
5x 10
1x 1pe

5x ].09

1x 1010

3x 1010

5x ].0'0

1x ]011

1.997 (2.0)
1.996 (2.0)
1.976 (1.95)
1.921 (1.90)
1.448 (1.40)
1.159 (1.10)
0.768 (0.70)
0.630 (0.60)
0.487

-0.602 63
-0.602 35
-0.595 48
-0.575 06
-0.152 25

0.625 87
4.425 7
8.595 1

19.560

16.398 (16.09)
16.969 (16.64)
19.097 (18.77)
21.436 (21.12)
33.084 (33.05)
40.851 (41.36)
53.220 (56.25)
55.534 (45.98)
46.58

0.102 63
0.102 80
0.106 52
0.11669
0.2570
0.451

Values in parentheses from Lai and Suen, Ref. 4. The ionization energy is defined rela-
tive to a free'electron in the same magnetic field.
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TABLE III. Equilibrium bond length, energy, and
dissociation energy for low-lying excited states of H&+.

I O, O
3d cF'g

State B(G) A, (a.u. ) E (a.u.} & (a.u. )

2Pou 0
1x10'

x 1p8

1x 10~

5x 10~

1x 10"

12.55
12.55
11.90
10.55
5.73
4.18

-0.500 061
-0.499 610
—0.489050
-0.458 567

0.100 97
1.064 7

0.000 061
0.000 062
0.000 09
0.000 20
0.003 8
0.012

l.o—

3dog P

1x 1p8

5x 1p'
1x 109
5x 109
8x10'

8.834
8.780
8.217
7.792
7.258
7.375

-0.175049 0.050 05
-0.172 703 0.052 2

-0.129 393 0.0780
-0.040 912 0.1129

0.895 65
1.661 6

& ~f~„(-:ioo)

2P +u

1x 10
5x 1.08

1x 1ps

5x 1pe

7.931
7.700
5.920
4.725
2.482

-0.134 514
-0.109157

0.044 811
0.284 957
2.559 31

0.009 51
0.010 64
0.024 52
0.045 6

io'
8 (G)

t 0

FIG. 1. Equilibrium bond length of H2' in a magnetic
field.

4f o„p
1x10'
5x10~
1x 1ps

20.93
20.62
18.21
16.78

-0.130 655 0.005 655
-0.126 819 0.006 1
-0.067 250 0.012 2

0.039 150 0.021 6

centrated on the ground state. Results are also
presented for several excited states. These states
are defined as the self-consistent solutions to Eqs.
(3) and (4) that have a nodal structure identical to
the P =0 limit. Such solutions are exact in the
P =0 limit.

The results for the ground-state equilibrium en-
ergy and bond length are presented in Table II. It
follows from the structure of the computational
method that the results for the lower magnetic
fields ought to be very accurate. The comparison
with the variational results of Lai and Suen indi-
cates that at least up to 5&& 10 G our results are
superior. The situation at higher magnetic fields
is somewhat confusing, as the energy values at
1 ~10~ a,nd 3 && 10'0 G are lower in the Lai and Suen
approach, but our method takes over again at high-
er fields, before breaking down at -10' G.

The excited states that have been considered are
2Po„, 3do„2Pv„, and 4fo„(Table III). These four
states represent different physical situations,
namely, repulsive states, a state on nonzero
angular momentum, and-states which are not the
lowest of their symmetry species.

The essentially repulsive 2po„state does possess

a shallow polarization minimum at R -12.5 a.u.
The effect of the magnetic field on the location of this
minimum is very similar to that observed for the
ground state (see Fig. 1). This is remarkable in view
of the fact that the origin of the minimum in the 2pa„
state is -very different from that in the ground
state. The same decrease in equilibrium
bond length is observed for the 2Pm„, 3do~, and
4fo„states. However, the 3do, results indicate a
remarkable feature above -5~10 G, namely, the
equilibrium bond length goes through a minimum
and seems to start increasing with increasing mag-
netic field. This is the first observation of this
type of behavior, but since it occurs for magnetic
fields higher than those for which our method is
quantitatively reliable, it may not be indicative of
the actual situation. However, the possibility of
an increase in the equilibrium internuclear dis-
tance at very high magnetic fields, probably only
for states with a sufficiently complex nodal struc-
ture, must be kept in mind until further examina-
tion.
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