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Fluctuations near nonequilibrium yhase transitions to nonuniform states
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The influence of local fluctuations on a symmetry-breaking chemical instability is considered in terms of
concepts developed in the theory of equilibrium phase transitions. It is shown that for infinite systems some
predictions of the mean-field theory are qualitatively incorrect. Indeed, the fluctuations destroy any structure
in one- and two-dimensional systems and some of them in three dimensions. The stabilizing effect of the
finite dimensions on these structures is also discussed, and it is shown that in this case the fluctuations
induce a weak first-order transition near the critical point of the mean-field theory.

I. INTRODUCTION

The simila, rity between equilibrium phase transi-
tions and certain far-from-equilibrium instabili-
ties has stimulated a great number of works mainly
at the level of mean-field theory. " Recently there
has been some progress in the extension of the
analysis beyond the classical theory. " In this
context we study the effects of local fluctuations on
a symmetry-breaking transition in an open system.
Namely, we consider the trimolecular model
("brusselator") in the vicinity of the instability
leading to the onset of stable periodic structures
("dissipative structures"). '

At equilibrium, the breaking of a continuous
symmetry generates long-ranged fluctuations which
deeply influence the static and the dynamic pro-
perties of these systems. ' For instance, these
fluctuations destroy in one and two dimensions the
long-range order at any finite temperature. There-
fore, it seems very attractive to consider the
possibility of the occurrence of similar effects in
nonequlibrium phase transitions. On the other
hand, in the discussion of certain equilibrium
transitions to nonuniform states Brazovskii has
introduced a model whose important feature is the
large degeneracy of the ordered states. ' We show
that the brusselator is equivalent near the insta-
bility to a time-dependent Ginzburg-Landau model
analogous to Brazovskii's original model. Indeed
it includes also an infinite number of order para-
meters each corresponding to a finite wave vec-
tor of length q, . Moreover our generalized poten-
tial contains a cubic term in the order parameters
leading to first-order transitions to periodic
structures except at the point where this cubic
term vanishes. At this point the mean-field theory
predicts a second-order transition (isolated criti-
cal point). It is the main goal of this paper to
assess the influence of spatial correlations on
these structures in various dimensions essentially
in the vicinity of this critical point.

The paper is organized as follows: in Sec. II,
the model is presented and the linear analysis is
developed. Section IH is devoted to the study of
the mean-field description. In Sec. IV, the effects
of the inhomogeneous fluctuations is discussed in
the weak-coupling limit. Section V contains a
short conclusion.

—= A —(B+1)X+X'y'+ D„v'X,
I

X2++ D

(2.1)

where D„and D, are the diffusion coefficients. As
is well known, these equations admit only one
homogeneous steady-state solution X~ =A, Y~=B/A
The linear-stability analysis around this solution
leads to the following dispersion relation for the
characteristic frequencies ~&..
&o&'+ [A2+ 1 -B+(D„+D,) q ]&@;

[(B 1 q'D„)(X'+q'D, ) X'B]= O. (2.2)

On increasing the value of B with A kept fixed,
two kinds of instabi. lity may occur.

(a) B,=(1+&q)', where q=(D„/D, )'~'. At B=B„
the homogeneous steady state ceases to be stable
against the spatially inhomogeneous perturbations
characterized by the wave number q, such that q',
=A(D„D,) '~'. Both the real and imaginary parts

II. MODEL.

As a prototype of reaction scheme giving rise
to dissipative structures, we consider the follow-
ing trimolecular model' ("brusselator"):

A. -~X, B+X -' F+D, 2X+ F -' 3X, X -- E.

For the sake of simplicity, we introduce the usual
scaled variables. We then consider an infinite
system with natural boundary conditions. When
the spatial nonuniformities are taken into account,
the local scaled variables X and 1' satisfy the
following reaction-diffusion system:
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of + vanish at the point (B„q,). The new phase
is a spatially nonuniform and frozen pattern.

(b) B,'= 1+A'. At B=B,', the homogeneous steady
state ceases to be stable against the spatially uni-
form but oscillatory perturbation. Only the real
part of co for q=o vanishes at this point. The new
phase is represented by a limit cycle in the X-F
plane. In this paper, we will consider values of
the parameters such that

q&(1/X) [(1+&')'&' 1],
which leads to B,&B,' and one has the first type of
instability. The characteristic frequencies are
then

~-, =X,= (X/q)(1+&A)(1 q'), (2.3)

~f= (1/a, )[(B,-B)q'.B,+ (q q',)'B,D,]. (2.4)

The sly mode S;, which corresponds to the right
eigenvector associated to the eigenfrequency rd,
which goes to zero for B-B„ lql-q, is given by
the following linear combination:

8-= """"-y-'--'
I (2.5)

Ag ' '& q' —I '

where g; and y; are the Fourier transforms of the
inhomogeneous fluctuations of X and F around the
steady state.

Gaussian approxim ation. Neglecting the non-
linear contributions, the correlation function of
the S mode is readily obtained:

c~~(q, (u) = (s~((o)s;(-(o))

lA, I'
[(+B,-B)q',D, (q+' q,')'B„D,]

'

(2.6)

This result exhibits "critical slowing down" and
the diverging "static susceptibility" characteristic
of second-order phase transitions. The critical
exponents are then those of the conventional
theory. Indeed the correlation function is that
which would be obtained from a time-dependent
Ginzburg- Landau equation

BS~

os- + -(t)

with a Gaussian "free energy"

(2.7)

2[&, l r (2v)' "
+ (q'-q'. )'D.D,]ls.-l' (2.8)

and assuming a Gaussian white noise

&n;(f)) = o,

(q;(f)q;,(t')) = rc(q+q )v(t- t ).
(2.9)

At this level the description is equivalent to that
carried out by Zaitsev and Shliomis' for the con-
vective instability and that of Lemarchand and
¹colis for the one-dimensional case of the pres-
ent model.

Nonlinear teyms: For B close to B„-the linear
theory predicts long-range fluctuations. One must
therefore take into account the effects of nonlinear
contributions which tend to couple such fluctua-
tions. These terms also couple the slow and fast
modes. However this coupling is weak because it
is related to the trimolecular step in the reaction
scheme and the corresponding chemical kinetic
constant is small because the probability of a
triple collision is indeed very small. One may
therefore eliminate the fast mode adiabatically up
to the second order in the nonlinearity. This then
leads to the following new time-dependent Ginz-
burg-Landau equation" for the critical mode
written in dimensionless variables

I

+c;( ), (2.10)

with

(g;(~))= 0,
&~;(r)~;("))=~(~+q )~(r-r )

(2.11)

because the characteristics of the noise are not
fundamentally modified by the adiabatic elimination
due to the separation of the time scales involved.
The new "free energy" in Eq. (2.10) is given by'

v d~q d~Q
(2 ). [~.+D(lql-q. )']l~l'+—

2t {2v)d (2v)d g g &I &I

gg d~q dffq ' dffq "
(2 )' (2v)' (2v)d (2.12)

where
ro = (B,—B)/B, ) r =—q,

1

q B D„

r=y'1f, B=4B„/B„

2i r'~'(1 Aq)
Z(1 q')(1+a@)'" '

4t 1'[&'(1 -&n)(1 —n')+28 -n)'1
&2(1+ay)'(1 —q'}2
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To obtain (2.12), we have neglected the wave-vec-
tor dependence of the interaction functions v and
u. On the other hand, one can show that u is posi-
tive for Aq & 2.V3. .. and negative for Aq& 3. In the
intermediate region the sign of u depends on the
value of A. We here always consider u&0. Were
it negative, we would have to carry out the adia-
batic elimination to higher order and this could
possibly lead to the appearance of polycritical
behavior.

The two essential features of the model are that
it may possess an infinite number of equivalent
order parameters each associated with a finite
nonzero wavevector (of length q,) and also that it
contains cubic terms. Free energies containing
the first of these two characteristics have been
used to discuss phase transitions in weakly aniso-
tropic antiferromagnets, ' liquid crystals, ' and the
convective instability. 4 In contrast to other dissi-
pative structures the characteristic wavelength q
appearing in our reaction-diffusion model depends
only on the intrinsic parameters of the systems.

III. MEAN-FIELD THEORY

We now derive the equation of state for the non-
uniform phases in the mean-field approximation.
In such a phase, the average

Q ]a,- )=pa, .[ll(q+ q,.)+ ll(t) -q,.)]
t=l ~ t=l

(3.1)

where the generalized thermodynamic potential 4
is the mean value of the Ginzburg-Landau func-
tional

(3.3)

which has been written in terms of the nonvanishing
averages &cr; &.

In the case v = 0, that we first consider, we
readily obtain from (3.2) and (2.12) for m inde-
pendent pairs of vectors:

Qg prs-. = x a-+ua a. ——ua. ~
2 l 3j

j=l

From the static correlation matrix

(3.4)

(3.5)

we get for the elements of the inverse suscepti-
bility matrix

r; ;.=r, +mua', (i =.j), . (3 6)

is nonzero for m vectors q, such that ~q,.~= q,. The
fictitious symmetry-breaking fields conjugate to
the (o„& are determined from the thermodynamic
relations

(3.2)

(3.V)r;.; = ua;a, (i 0j) .
Hence, for all h;. =0, we find that all the ampli-
tudes are equal to

a,.=a= .
' 'i u-'~'

while

(3.9)

This behavior is again characteristic of a second-
order transition as it leads to a diverging static
susceptibility.

When only one wave vector is excited the con-
centration varies periodically in one direction;
this situation corresponds to the roll pattern for
the convective instability and the helical struc-
tures in certain magnetic systems. One should
also consider structures arising from noncoplanar
wave vectors satisfying the quadrangular relation
(q;+q, +q, +q, =0 such that ~q„~=q,) the simplest of
which gives rise to fcc periodicity in real space.

On the other hand, if vc0, the cubic terms in-
duce structures whose wave vectors have to satis-
fy the relation (q,.+q,.+q, =0 such that ~q ~=q, ).
The simplest possibility is that of an equilateral
triangle leading in three-dimensional real space
to rodlike structures with two-dimensional hexa-
gonal periodicity. We then obtain in zero fields,

x a+va'+ —', ua =0 {3.10)

displaying a subcritical behavior as expected from
the Landau theory. ' We also expect on the basis
of symmetry arguments that there will be no criti-
cal point. The corresponding transition "tempera-
ture" is r„,„=v'/10m In the. convective instability
phenomena this corresponds to the appearance of
hexagonal patterns. The cubic terms may also
generate three-dimensional structures, the sim-
plest of which is an octahedron in q space corre-
sponding to a bcc periodicity in real space. In
this case

spa+ 2va2+ —", ua' = 0~ (3.11)

also giving rise to a subcritical behavior with the
following transition temperature:

2 2/t=ll v fu ~

This structure is the first to appear, a situation
which presents analogies with the theory of the
freezing transition where it has been observed ex-
perimentally that almost all metals on the left-hand
side of the Periodic Table are known to be bcc near
the melting line at low pressure. "

All these situations are sketched qualitatively
in Fig. 1. The relative stability of the various
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FIG. 1. (Schematic): bifurcation diagram in the mean-
field approximation. Full lines denote the stablest struc-
ture.

phases may be obtained by comparison of the cor-
responding generalized thermodynamic potentials.
The stablest phases are represented by plain
lines in Fig. 1.

We conclude this section by stressing that a
great variety of structures may appear originating
through a second or first-order phase transition.
These mean-field results may also be obtained,
perhaps in a more systematic way, using group
representation and bifurcation theory. "

Let us now analyze to what extent the fluctuations
change this overall picture.

(4.2)

or

(4.3)

where n = mqt 'S~/(2w)~, S~ being the surface area
of the unit sphere in d dimensions. It may be
shown' that the higher-order terms may be ne-
glected in (4.2) as long as c(u~r,

~

'~' = I. In this
region, y =yH therefore never reaches zero and
the fluctuations thus have a drastic effect on the
second-order mean-field transition as the static
susceptibility shows no divergence in this regime.
It is important to remark that this conclusion is

IV. INHOMOGENEOUS FI.UCTUATIONS

In the presence of fluctuations, the inverse
susceptibility now becomes

r =g '((ql=q. ) = r. —&((qI= ~.) (4.l)
where the "self-energy" Z(q) may be expanded in
powers of the interactions. We also consider the
case v=0 for which the mean-field theory predicts
the existence of a second-order transitions. In the
uniform phase (ro&0) the Hartree approximation
leads to

independent of the dimensionality; indeed the
phase space associated with the critical fluctua-
tions is described in the reciprocal space by a
spherical shell which is in the lowest-order effec-
tively one dimensional. The system has thus no
critical dimensionality in the sense of the renor-
malization-group approach. " As a matter of fact
if one unthinkingly applies the recipes of the re-
normalization group to this system, one does not
find any fixed point in the neighborhood of the
Gaussian fixed point which becomes unstable with
respect to the interaction. Such an absence of a
stable fixed point has been interpreted as an in-
dication of either the existence of a first-order
transition' of the suppression of the transition.

To analyze what becomes of the mean-field
structures, we first make use of the general
symmetry arguments which are at hand.

e ~= Soexp —f — h- o» (4.4)

The Brazovskii-Ginzburg-Landau functional 7 is
translation invariant and the fictitious symmetry-
breaking fields have periodicity q, . Except for
the source term, the integral is invariant under
the infinitesimal transformation

(4.5)

The variation of the source under this transforma-
tion leads to

a((a;,))= g((a;.
' —iq, P;.))

or in differential form

(4.6)

Qg
f q,h;. =0.

. Bh-.

Considering a structure defined by a set of m
independent pairs of vectors (q, —q ), we dif-
ferentiate with respect to the corresponding fields
and we get, setting all other fields equal to zero
[h; (where q, d(q, q ))],

Because of the arbitrariness of the choice of f and
of (q, -q ), one gets the following relations:

Ct0
gaOt qOf gaO. -a~ (4.9)

A. Symmetry

Owing to the breakdown of the translational sym-
metry at the instability we may derive general
relations between the various elements of the
correlation matrix. Their generating functional
is defined as
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(4.10)g- - -g- - =0 vnq( Psot ag ~ -ag

when the h; are equal, all the q are equivalent
and one ha.s (h; =h, g- - =gD, g; - =g„D)

(4.11)

gi ay=go+~=g. (4.12)

The structure of the inverse correlation matrix
is now very simple and we easily obtain

(4.1s)

In the weak-field limit, rD —r» goes to zero as h,
while according to this conclusion and (4.12) the
elements of the correlation matrix behave as

gD ~ 1/h, g» qc 1/h, (4.14)

a 1
(gD -~~D) (g -g}-—„-- —

) ( =),

(4.16)

while g and gD+g„D are independent of h for all
B&B,. Let us note that relation (4.11) bears some
analogy with the Hugenholtz-Pines theorem" in
the theory of superQuiditv

When relations exist between the structural wave
vectors this result may be extended. We merely
quote the analogous resulting relations.

m = S (equilateral triangles}:

m = 4 (rhombohedrons):

( — )+( '- ")=—=gD g» g g h ( ) ( g IP) 1

(4.16)
where g' =g~; if q and q ~ are linked by a quad-
rangular relation whereas g"=g- - wh n no such~aqg
relation exist and similarly for r' and r".

m = 6 (octahedrons):

(gn- g»}-2(g-g)=
h

1
(re —r„D) —(r' —r") —2(F—r)

(4.17)

with similar notations as m = 3 and where r'= r;;
and r"=r», ;z if q~ and +q are not linked by a
triangular nor a quadrangular relation. In these
cases not only gD and g», but also g and g behave
as 1/h for weak symmetry-breaking fields.

Such divergencies are a consequence of the high
order of degeneracy of the order parameter. As
a result long-ranged fluctuations may develop in
all the ordered phase. Indeed, by studying the
response of the system to a long wavelength de-
formation of the structure

[o'( r ) = o ( r —& cos k r); ( and fk
f /q. «1],

we derive Bogolubov inequalities" in zero fields.
The variation of the potential due to this infinitesi-
mal deformation and which corresponds to the
transformation

where g=g~», if q and q are linked by a tri-
angular relation whereas g=g- - when no such

q, (gag
relation exist. 1s

a-'=o;+-. fq 5(a- -+a-;) (4.18}

((q=~;(T)= g
+ - g (fqf-q, }' go;[cr;.„-+cr'; ] —[cr;;„+cr;-„]cr;]- (4.19)

Moreover the following inequality has to be satis-
fied:

&a;,.;,o „-,.=,&&~;($)fJ;(5)&

Owing to the fact that for any operator z,

&~U;(t)& = &ii&, —&~&;,.„,
we obtain in zero fields

gq;+k, q;+k @qi+k,

(4.21)

- f&o -. ;fJ;(()&f'. (4.20) where

(fq;+kf- q.)

2 (q; g)'a';
(iP;, + k',. )(q,' p)'a', +g [(Iq —ki —q,)' —(IqI —q,)'](q. g)'g~;

' (4.22)
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Then one finds easily that

Ig,(l) g„,(l)l
or for structures defined by m. independent pairs
of wRve vectors

(4.23)

(4.25)

where Iqdl= lqdl=qd But for an infinitesimal rota
tion

IrD(~) —r~D(k) I-.(2Q;,.~)
' (4.24)

These Bogolubov inequalities imply the destruc-
tion of any long-range order by the fluctuations for
a ( 2 infinite systems.

In three-dimensional systems however the prob-
lem needs further discussion. Let us consider
what happens if one rotates one vector of a. struc-
ture (characterized by independent wave vectors),
say q,.-q, As a consequence of the rotational in-
variance, one has

ones which may appear in infinite three-dimen-
sional systems. They appear only through first-
order transitions and the first to appear (with in-
creasing B) corresponds to octahedrons in q
space, i.e., a bcc lattice in real space.

B. Finite dimensions

We now discuss the stabilizing effect of boun-
daries on structures which are destroyed by fluc-
tuations in infinite systems.

We first consider the situation when

( r /q, L) 1n q, L « 1 .
The nondiagonal terms may then be dropped from
the equations of state which are in Hartree ap-
proximation (v = 0 and m independent pairs of vec-
tors):

2 1 3
h», .= roa&+na aj —

& ua.
jo 1

q) = qg+ki

where q,'k, =O. Therefore the combination of
translational and rotational symmetry leads to the
following stronger inequalities:

d~k
i (2 ~)d

I d "0
r~.~, =ro+u a.+

2 (2 )d gl, 1 i
j 1

(4.29)

(4.30)

2(~', ,+~'; )
' (4.26) r,".;.= & ua;a, [2 —5(q;+ q,.)]. (4.31)

Ir~ —r„nI&2(~', .+ ~', ). (4.27)

Ng .+ )t q i+ )f.

-',. (q; ()'a',.
(~', , + ~',. )(q,. t.)'a,.'

As a consequence these structures are the only

(4.2S)

As a consequence all these structures are de-
stroyed by the fluctuations in infinite systems.
For m =1, this result is analogous to the impossi-
bility for one-dimensional crystals to exist in
three-dimensional systems as argued by Landau

and Peierls. " For m =1, our result is in contrast
with Brazovskii's conclusion about the fluctuation-
induced first-order transitions to such structures.
His assumption to neglect the nondiagonal elements
of the correlation matrix is inconsistent with the
fact that the correlation length diverges in zero
field for alt m as proved in relation (4.27).

On the other hand, for structures constructed
from wave vectors satisfying definite angular re-
lations (as the triangular relation associated with

the cubic term of the Ginzburg-Landau functional
or nonplanar quadrangular relations because of the
quartic term) the result depends effectively on the
relative orientation of the wave vectors and is only
lnvar1ant for the 1otRtlon of the g pRttern Rs R

whole. Therefore the following inequality holds:

If all h;=h, these equations may be written for
structures with m independent pairs of wave vec-
tors

h=ra —
& ua,3 (4.32)

(2m —1)r+hu/v r +r,=o, (4.33)

+(y(rl/2 r1/2) (4.34)

where the tilde refers to the uniform phase. It is
easy to show that the nonuniform structures be-
come stabler than the uniform phase for r'
(r„&r'„&2'/'r ) where b4 changes sign. This
then defines the first-order transition tempera-
ture. In their coexisting region, the smaller the
value of m, the stabler the structure, therefore

where a =c/D '/'. Therefore, nonuniform (meta-
stable) states appear when

—r, o r„=3(2m —1)'/'(nu/2}'/',

with a fznite amplitude a = (2r /u)'/' Here on. e
can discuss also the relative stability of the va-
rious structures by calculating the difference be-
tween the corresponding generalized thermody-
na, mic potentials. If we compare the uniform and
nonuniform phases, we obtain

&C = C' —4 = -(1/2u)[(2m —l)r'+ r']
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the structures with small m are the first to appear
in contrast to Brazovskii's conclusion. '

Let us stress the fact that the fluctuations change
the nature of the transition qualitatively: the
mean-field second-order transition is transformed
in this case into a weak first-order transition and
the transition temperature is also shifted by the
fluctuations.

%e also want to point out that the preceding
analysis is already applicable to study the effects
of the fluctuations on the structures characterized
by definite angular relations between the wave
vectors in infinite systems. For fce structures
(@=0) the fluctuations also induce a weak first-
order transition. If on the other hand vW 0 (hex,
bcc) (but small e'/u«~r~) the fluctuations have only
a weak effect on the supercritical first-order
transition. '

It is however important to note that in the case
of finite-dimensional problems the system may
develop fluctuations whose correlation length be-
come larger than the size of the system itself.
Then the problem becomes zero dimensional with
aQ the consequences discussed by Graham in the
case of hydrodynamical instabilities or in the case
of the laser. '7 This arises when

( ) D„Ag 1
I.'a, (1+Ay)2 I-'q' ' (4.35)

2 ~l /2 py3 /2
&3/2» ~c c 4 &3/2(MF&

D/ d/ (4.36)

To evaluate ~, we use the local fluctuation dissi-
pation theorem" as we argue that the system re-
mains in a state of local equilibrium throughout
the transition region. Then

I" - (k,/k~)(X~/No&'), (4.37)

where L is the size of the chemical reactor. This
quantity depends on the nature of the reactive
medium through the diffusion coefficient d„
(d„=k4D„) and the kinetic constant k, which cor-
responds to the elimination of X (X-E), this pro-
cess being a fast one. In liquid phases plausible
values are

d„-].0~em'sec ', B,'-1, L-10 cm, k4&10 sec '

leading to &p & 10 . This limit may however be
reduced or enlarged by several orders of magni-
tude because of the wide range of variation of
chemical parameters.

To discuss the experimental relevance (d = 3) of
the effects of the fluctuations on the mean-field
theory one has to evaluate r which is the analog
of a Ginzburg criterion for this system. The
mean-field theory is then valid for values of &p

such that

(4.39)

As one must have k, /k4«1, a plausible order of
magnitudefor this quantity is 10 in liquids (k,k, /
k~& 1 (cgs), A -10 'M cm '). On the other hand, to
observe the effects of Quctuations one must also
have yp™F)&yp"~'. This condition may be written in
general as

SIIP) A 2/3 (k k k )2/3
(4.40)

Therefore, it follows that the role of the fluctua-
tions may be of experimental importance for re-
actions taking place in media with low diffusion
coefficients and high reaction rates. " Let us also
remark that the size of the noise is further reduced
by the effective one-dimensional character of the
problem [I'2/' and not I' for d = 3 in (4.36)].

So the behavior of the system would be zero di-
mensional or mean field in gases, but in liquids
or electrolytes the effects of the inhomogeneous
fluctuations on the symmetry-breaking transition
could in principle be observable if the coupling of
chemical and hydrodynamical modes do not affect
the overall picture given here.

V. CONCLUSION

'We have shown that the trimolecular model near
the Turing instability may be discussed in terms
of the concepts developed in the theory of equili-
brium transitions to nonuniform states.

It furnishes a further example where the pre-
dictions of the mean-field treatment are qualita-
tively incorrect. Indeed the long-range fluctua-
tions which develop in all the ordered phases
destroy the structures which appear in the mean-
field description of infinite one- and two-dimen-
sional systems. They are also responsible for the
nonexistence in three dimensions of infinite struc-
tures characterized by m independent wave vec-
tors. On the other hand the structures specified by
a set of related wave vectors (bcc, hexagonal
prisms, . . .) may exist in infinite systems. There
fore there appear two classes of dissipative struc-
tures. In the first class, because they must be
stabilized by the finite dimensions of the systems,
the general theorems resulting from the breakdown
of the translation symmetry are not applicable.

where X = (k, /k, )A is the stationary concentration
of X, & is the mean free path in the reactive me-
dium and Np is Avogadro's number. Consequently

r -(A/Pr, /")(k, k, /k', ) (4.38)

and the validity of the mean-field theory may be
assumed for
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Whereas in the second class the instability is
analogous with equilibrium first-order transition
such as crystallization.

The chemical rate constants offer a much wider
rangy of variation than the transport coefficients
in usual liquids. As a result, for sufficiently fast
reactions, the chemical instabilities might lead to
the possibility of observing the effect of fluctua-
tions in contrast with other nonequilibrium transi-
tions such as convective instability which for
physically realizable parameters take place in the
zero-dimension regime.

Finally, we feel that our discussion could be
transposed to Turing instabilities in other non-
linear chemical models.

ACKNOWLEDGMENTS

%e are indebted to Professor G. ¹icolis for
valuable comments. A fruitful discussion with
Professor D. Sattinger is also acknowledged. %e
thank Professor I. Prigogine for his constant en-
couragments. This work was supported in part by
the Belgian Government under Actions de Recherche
Concerteee, Convention No. V6/81 II.3.

*Chercheur Qualifie au Fonds National de la Recherche
Scientifique.

~G. Nicolis and I. Prigogine, Self-Organization in
Nonequilibirum Systems (Wiley, New York, 1977). .

2H. Haken, Synergetics (Springer, Berlin, 1977).
36. Dewel, D. Walgraef, and P. Borckmans, Z. Phys.

B 28, 235 (1977).
4D. Forster, D. R, Nelson, and M. J. Stephen, Phys.

Rev. Lett. 36, 867 (1976),
~J. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319

(1977).
8D. Forster, Hydrodynamic I'luctuations, Broken

Symmetry and Correlation I'unctions (Benjamin,
Reading, Mass. , 1975), and references therein.

~S. A. Brazovskii, Sov, Phys. JETP 41, 85 (1975).
V. M. Zaitsev and M. I. Shliomis, Sov. phys. JETP,
32, 866 {3.971).

SH. Lemarchand and G. Nicolis, Physica A 82, 521
(1976).

~ L. D. Landau and E. M. Lifshitz, Statistical Physics
(Addison-Wesley, Heading, Mass. , 1969).

~~S. Alexander and J. McTague, Phys. Rev. I,ett. 41,
702 (1978).

~2D. H. Sattinger, Functional Analysis 28, 58 (1978).
~ S. K. Ma, Modern Theory of Critical Phenomena

(Benjamin, New' York, 1976).
4D. Mukamel and S. Krinsky, J. Phys. C 8, L496 (1975).

~5N. M. Hugenholtz and D. Pines, Phys. Hev. 116, 489
{1959).

6N. N. Bogolubov, Lectures in Quantum Statistics (Mac-
Donald, London, 1971), Vol. 2.

"R.Graham, ~»luctuations, Instabilities, and Phase
Transitions, NATO Adv. Ser. B, edited by T. Riste
(Plenum, New York, 1975), Vol. II.
L. D. I,andau and E. M. Lifshitz, I'luids Mechanics
(Addison-Wesley, Reading, Mass. , 1959).

~9A. Nitzan, Phys. Rev. A 17, 1513 (1978).


