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Fate of the Coulomb singularity in nonlinear Poisson-Boltzmann theory: The point charge as
an electrically invisible object
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An absolute upper bound of Debye-Huckel form, U(r, )e /r, is derived for solutions to the nonlinear,
spherical, radial Poisson-Boltzmann equation for the problem of an isolated charged sphere, dimensionless
radius r„ in an infinite volume of electrolyte. For r, &1, U(r, ) a: r, ln(1/r, ). Thus, as r, —+0, U(r, )~0 and the
shielding cloud around a point charge shrinks to zero radius. From any finite distance away, however small,
the point charge is electrically invisible.

It seems that the simple, nonlinear Poisson-
Boltzmann (PB) equation harbors within itself,
unbeknownst to its users for many decades now,
the remarkable implication that a point charge is
electrically invisible. We prove this by deriving
an absolute upper bound to the radial potential
distribution generated by an isolated, uniformly
charged sphere, dimensionless radius r, , in an
infinite volume of electrolyte, and then observing
that, at any fixed dimensionless r& r„ the upper
bound vanishes as r, ln(1/r, ) as r, - 0. The Cou-
lomb singularity characteristic of the Debye-
HGckel (DH) solution to the linearized equation is
simply wiped out by the nonlinearity in the PB
equation.

Poisson-Boltzmann theory is defined by the
relations F= -grad%, the Poisson equation z divP
= e[P(R) -N(R) j, and the dissociation equilibrium
relation P(RPf(R) =P,N, =P', for the ions in solu-
tion. Here F is the electric field, 4 the potential,
~ the dielectric constant of the solvent, e the mag-
nitude of electronic charge, P(R) and N(R) the
local concentrations of positive and negative ions,
and Po and%, =Po the corresponding concentrations
in the neutral electrolyte at infinity. Taking 4 at
infinity as the reference potential 4(~) = 0, we can
write P(R) =P, e '~' ~ and ~(R) =P e '~

where we have assumed a simple 1:1electrolyte.
These various relations, taken together, yield the
PB equation:

V2@ (e/+)P (e8% kr e 84/AT)

Here and throughout we use mks units.
For an isolated uniformly charged sphere of

radius R, in an infinite volume of electrolyte, all
quantities vary only in the radial coordinate B.
The appropriate boundary conditions (BC) are 4'

=0 at It=~ and dC/dR= —e2'/e at It =A, , where
e~ is the surface concentration of charge, as-
sumed positive, on the sphere. Convenient dimen-
sionless variables are / =4/Vr and r= It/I, ~,
where the units of potential and length are, re-
spectively, V„=kT/e and I~=(ekT/2e'P, )'~', the
well-known Debye length. The dimensionless form
of Eq. (1) is

1 d, dPr' —= sinhg .dx

The corresponding BC are /=0 at r=~ and dgldr
= —e&/(2ekTP, )'~' at r= r, , the sphere radius.
Henceforth we shall refer to a solution of Eq. (2),
satisfying appropriate boundary conditions, as a.
"PB solution. "

Intractability of the PB Eq. (2) led Debye and

Httckel (DH) to consider its linearized version

1 d 2 dgnn
dr

which has as its solution satisfying g„, =0 at r
=~ the Debye-Huckel function

y „(r)=f(r, , g, )e "/r, f(r, , y, )=y, r, e"', (4)

where the subscript s prescribes evaluation at the
surface of the sphere. More generally, the DH
function which takes on a preassigned value g, at
r = r, can be written as gn„(r) =f(r„g,) e "/r, with
f(ri y.)=kiri e"'

~

It is readily checked that pn, o- (dg„-, /dr), ,
that is, that the sphere potential varies linearly
with the charge on the sphere. Thus, at fixed
r, , as Z-~ also gn, , „-~.Hence from Eq. (4),
the linearized DH solutions do not possess a bound
as the charge on a sphere goes to infinity. On the
other hand, the linearized Eq. (3) obviously cannot
hold up as a good approximation to the nonlinear

1980The American Physical Society



21 FATE OF THE COULOMB SINGULARITY IN NONLINEAR. . .

Eq. (2) for indefinitely large g. At sufficiently
large g, the PB solution g(r) near the sphere

. behaves in every respect like a planar solution, as
is shown strikingly by the last column in Table I,
discussed below. This observation suggests that
a close examination of solutions to the planar PB
equation can be turned to advantage in our quest
for a useful bound. Consider, then, a uniformly
charged isolated plate, of infinite lateral extent,
immersed in an infinite volume of electrolyte,
located at Z =0. AQ quantities vary only in the
Z coordinate normal to the plate. In the dimen-
sionless variables Eq. (2) is replaced by

strategy that works uses the planar absolute upper
bound g„(r, —r,) at a single Point, r, &r„but near
r, then, for all r&r„ takes for the upper bound
that DH function g»(r) for which g„(r,) = g„(r,
-r,). The remainder of this paper is devoted to
the proof that this procedure indeed yields an ab-
solute upper bound.

As a preliminary, it is necessary to establish
certain analytic and geometric properties of PB
solutions g(r) and DH functions (»(r). First,
integration of Eq. (2) over the domain r, & r& r,
gives

d'g
, =sinhP. (5)

dg, dpi
dr (7)

Integration' of Eq. (5) gives, for the limiting
case of infinite charge density on the plate, the
solution

g=g„(z)=21n(1+e ')/(1 —e '), (6)

where we have used explicitly the monotonically
decreasing behavior of g(r) for r, & r& ~, which
is established formally in Appendix A. The cor-
responding integral of Eq. (3) is

satisfying -(dg/dz) =~ and g=~ at z =0, and
(=0 at z=~.

Note that g (z) does for the plate what we have
set out to do for the sphere, namely, it provides
an absolute upper bound, at every z, for all other
planar solutions to the PB equation. Note further
that, despite the infinite surface charge concentra-
tion on the plate, the induced potential g (z) is
everywhere finite, except right at theplate, where
z= 0, and that, for z &1, g„(z) rapidly approaches
4e ' asymptotically.

It is quite easily seen that an infinitely charged
plate also provides an absolute upper bound, at
every r&r, , for all PB solutions to Eq. (2) for
the charged sphere of radius r, . In order to see
this, compare the following two situations. In the
first, we have the sphere generating the PB po-
tential g(r, ) at any chosen r =r, &r, . In the sec-
ond, we imagine the sphere replaced by an infin-
itely charged plate tangent to the sphere and per-
pendicular to the radial line joining r = 0 and r

Because, looked at from r„all of the
sphere is behind the plate, and because the plate
has infinite charge density, the potential
g (r, -r, ) at r, due to the plate must obviously be
greater than the PB potential ((r,) at r„whatever
the charge density on the sphere. This physically
plausible argument can be buttressed with a for-
mal mathematical proof. The proof is given in
Appendix B.

The problem with the upper bound provided by
the planar solution f„(r-r, ) is that it is simply
not good enough to yield interesting information
about the PB solution for a sphere. Nonetheless,
this planar upper bound is indispensable for find-
ing an upper bound that is useful. In fact, the

1 2 ? $

Now dg»/dr varies as e " for 'all r, from Eq.
(4), and dg/dr likewise for sufficiently large r,
where («1. This behavior enables the following
simplification of Eqs. (7) and (8), respectively,
in the limit r, =:

r sinh )dr, dg

Fj
(9)

dg»r, = r iI»dr.
r1

With the help of Eqs. (7) (10) we now prove the
following:

If a DH function g» (r) and a PB solution f(r)
coincide at some radius r„g „(r,) = g(r, ), then

g „(r) is an upper bound to p(r) for all r&r,
Iproposition (11)].

The proof is by contradiction. Assume there
exists an» r, at which g(r) & g» (r). There are
now two possibilities. One is that g(r) & g» (r)
for all r&r„as illustrated in Fig. 1(a). By in-
spection, we see that this is possible only if
[dQ/dr[, & [dQn„/dr[ „keeping in mind the mono-
tonicity of both functions. Thus the left-hand
side (LHS) of Eq. (9) cannot exceed the LHS of
Eq. (10). But the right-hand side (RHS) of Eq. (9)
must exceed the RHS of Eq. (10) since, for all
r & r„sinh g(r) & ((r) ~ g»(r). This is an evident
contradiction. Thus the situation depicted in Fig.
1(a) cannot arise.

The second possibility is that g(r) crosses
g»(r) at some finite r&r Let r, be. the first such
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For r, and ar, small, expansion of the expo-
nentials in Eq. (13) yields the simpler expression

DH

(r) = U(r n)e

U(r, , u) = 2(l+ n)r, ln(2/nr, ),
(14)

(b)
/

FIG. 1. Impossible forms of behavior for a PB solu-
tion g(r).

&D;. ~is( )=U(r. u)e "/r,
U(r» u) = 2(1+ n)r, e "+"'"~

(1+e ""~)(- "') '

valid for r& (1+n)r,.

(13)

crossing point to the right of ~. Likewise, pro-
ceeding leftward from ~ there must also be a first
crossing point, which might as well be that at r, .
Thus, everywhere in the range r, & r& r„p(r)
-f„„(r)and the situation is as illustrated in Fig.
1(b). As before, the crossing at r, requires that
(dP/«(, - ~&go„/dr(, How. ever, the crossing at

r, requires the opposite inequality, Id//dr ~, - ~dt/r»/
Cr (,. These two inequalities together imply that the
LHS of Eq. (7) cannot exceed the LHS of Eq. (8). But
the RHS of Eq. (7) must exceed the RHS of Eq. (8),
since everywhere in the common interval of inte-
gration, r, &r&r„sinh g(r)&g(r)&g „(r). Again
a contradiction has been achieved, and (11) is
proven.

It is now simple to prove the basic result of this
note, namely, Boundedness Theorem [proposition
(12)]: For any r, and any r, & r, , for all r &r„
an absolute upper bound to the solution g(r) to the
PB Eq. (2), for any charge density cZ on the
sphere, up to infinite charge density, is g»(r)
=f(r„g,) e "/r, with g, =P„(r, -r, ), where g„
is given by Eq. (6) and f(r„g,) by Eq. (4).

We have proven above that this P „(r,) & g(r, ).
Let gD„(r) be a second DH function, as defined in
Eq. (4), with yD„(r,) = g(r, ). From (4), p, (r)
bounds yo„(r) for all r, and from (11), $0„(r)
bounds g(r) for all r&r, The Bou.ndedness Theo-
rem is proven.

Letting r, —r, = nr, , and using Eqs. (4) and (6),
we give the absolute bound function specified by
the Boundedness Theorem, written as g»,» (r),
as

TABLE I. Bound constant U(r»e m;„) compared to
computed constantA(r, ). All computations made for
—(dg/dr)~ = &, corresponding to the flat-plate potential

gp~
——24; g~ is the corresponding sphere potential. Ub;,

o'min) is given by Eq. (14), ~ th e = +min

r

]p
1

5x 10
10 2

5x 10-3
1p~3
5X10-4
2x 10-4
1p-4

0.318478
0.243 913
0.163 722
0.144 365
0.113992
0.104 705
0.094 624
0.088 253

u(r„~,-„)

1.091 7
0.634 37
0.16543
0,090 71
0.021 77
0.01165
0.005 07
0.002 68

1.025 0
0.575 1
0.153 6
0.085 15
0.020 57
0.010 93
0.004 54
0.001 63
0.001 63

23.999 5038
23.9990141
23.995 0000
23.989 7914
23.9380782
23.841 385
23.16868
16.269 5
16.275 5

&(r~) is the large-r limit of g (r)rg".
b This is A DH(rs) the DH value for the asymptotic

constant, calculated fromADH(r ) = g, r e"~.

This is gDH~, the DH value for the sphere potential,
calculated from $DH

——-[r /{1+r )] (dg/dr) .

valid for r, «1, nr, «1, and r & (1+n)r, .
Up to this point n is arbitrary. We now choose

n = n;„so as to minimize U(r, , n). Setting
dU(r, , n)/dn = 0 gives, for u;„, the equation
(1+n;„)/u;„= ln(2/n „„„r,), which is readily
solved by an iterative procedure.

Table I lists, for 10 '&r, &10 ', corresponding
values of u„.,;„and U(r, , n,„) Th. e quantity label-
ed A(r, ) in Table I is obtained from a computer
solution to the PB Eq. (2) for a high value of
field at the sphere, namely (dp/d-r), = e". This
value of field corresponds in the planar problem,
Eq. (5) to a plate potential g„, = 24. For each
r, , A(r, ) is determined as the large-r limit of
rg(r)e". In the last column of Table I are listed
the computer-determined values for g, . It is
seen that, for r, & 0.0005, g, is close to $,, = 24.
This indicates that, near the sphere surface, the
potential has platelike behavior. Concomitantly,
for r, & 0.005, A(r, ) is fairly close to U(r, , n„„„),
though always below, as it must be. As expected,
g, is always below g„; for the same —(dg/dr), .
At r, = 0.0001, g, is well below g „=24. This in-
dicates that the PB solution for g is DH-like right
up to the sphere, which is verified by comparison
with the DH values for g„„,and A~, (r, ) in the
last row of Table I. Accordingly, the computed
A(r, ) deviates more noticeably from U(r, , n, , ).
That a DH-like behavior should be found for all



2l FATE OF THE COULOMB SINGULARITY IN NONLINEAR. . . 365

r&r, , even though g, »I, is an apparent para-
dox, which is analyzed elsewhere. '

The unexpected outcome of this work lies in the
small-r, limit of U(r, , n;„): U( r, , n = 1) =

4r, ln(2/r, ) & U(r, , u„,,„) and' U(r, , n = 1)-0 as
Since these bounds are absolute, independ-

ent of the charge on the sphere, this means that
a point charge is structureless, that is, has a
shielding cloud around it of zero radius. The
point charge is, in effect, a 5 function encapsula-
ted and compensated by a 5 function of counter-
ions. From any finite distance away, however
small, the point charge is electrically invisible.
The nonlinearity residing in sinh( has completely
overridden and wiped out the 1/r Coulomb singu-
larity which is characteristic of the linearized
DH solution. Although this result is of theoretical
interest, it should be kept in mind that in real
electrolytes the PB model for screening must
break down at the level of a few angstroms be-
cause of the finite size of solvent molecules and

ions in solution.
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RHS of Eq. (A1) must be negative, since every-
where in r, & r& r~, sinhg& tj & 0. Thus curve B
is also not a possible behavior for p(r), and the
monotonic behavior of p(r) is established. It fol-
lows that everywhere in r, & r& ~, (d(/dr) & 0,
thereby justifying the replacement of Eq. (Al) by
Eq. (V).

APPENDIX B: THE POTENTIAL DUE TO AN INFINITELY
CHARGED TANGENT PLANE BOUNDS ABSOLUTELY THE

POTENTIAL DUE TO A FINITELY CHARGED SPHERE

= f (—,")'sinhya. , (Bl)

sinhgp, dr,
1 t'1

(B2)

o

—(~) — =J (
—

)
sinhgdr, (83)

The finitely charged sphere is of radius r, , and

the infinitely charged plane is located at r =~, .
The proof of the boundedness relation rests on four
relations:

APPENDIX A: MONOTONICITY OF A PB SOLUTION P{r) sinhg„, dr .dip) ~

dg pl (B4)

The proof of the monotonicity of g(r) rests on
the integral of Eq. (2) over the domain r, & r& r„
namely,

~ slnh Ar, A
1

which is Eq. (7) suit@out the assumption of mono-
tonicity.

Monotonicity is now proven by the method of
contradiction. If g(r) does not monotonically de-
crease with r, then g(r) must have a minimum
somewhere in the domain r, & r& ~, either at
positive g as in curve A or at negative g as in
curve B in Fig. 2(a). First consider curve A with
a minimum at r = x, . Beyond r, there must be a
maximum at some r = r, , in order that g- 0 as
r-~. Taking r, =r, and r, =r„ in Eq. (A1), we
see that the LHS is zero, because both (dg/dr),
and (df/dr), =0. But the RHS of Eq. (Al) must
be positive, since everywhere in r, & r r, , sinh-g
& (& 0. (Note that if g, = 0, the proof is unaltered. )

Thus, curve A is not a possible behavior for g(r)
Next consider curve B with a minimum at ~=~„.
En route from g, &0 to g„& 0, g(r) must cross the
& axis, say at r=~, . Taking ~, =r, and ~, =&„ in
Eq. (Al), we see that the LHS is positive, because
(dp/dr)~ =0 and (dg/dr), must be negative. But the

In these equations P denotes the potential due to

(A)

FIG. 2. {a) Impossible forms of behavior for a PB
solution Q {r); {b) and {c) impossible crossings of g {r)
and @~z{r).
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the finitely charged sphere, and g, ~ that due to the
infinitely charged tangent plate. Note that Eq. (81)
is Eq. (9) divided through by r,', and Eq. (83) is
Eq. (I) divided through by r,'. The monotonicity of

g proved in Appendix A has been used in writing
Eqs. (81) and (83), i.e., Eqs. (9) and (7). Equa-
tion (84) is simply the integral of the planar PB
equation, (d'g, /dr') = sinhg, and (84) reduces to
(82) as r,-~. Here too the monotonicity of g, ~

has been used, and this property of g„ is readily
checked from the explicit solution for g„, , namely
Eq. (6).

The boundedness of g, ~ over any t) is proven by
the method of contradiction. First we note that a
single crossing situation such as depicted in Fig.
2(b) is impossible. If such a crossing did take
place, say at r=r„ then compare Eqs. (81) and

(82). Since g& g„, for all r in the domain of inte-
gration, r, & r & ~, and also r/r, & 1 everywhere
in this domain, the RHS of Eq. (81) must exceed
the RHS of Fq. (82). But because of the monotoni-
city of both P,~ and g the crossing at r=r, requires
that the LHS of Eq. (81) be less than the LHS of
Eq. (82). A contradiction has been obtained and a
single crossing, as in Fig. 2(b), is therefore not

possible.
Using the same method of contradiction we next

prove that a pair of crossings of g and g, , such as
that depicted in Fig. 2(c) is also impossible. If
such a pair of crossings did take place, say at
r=r, and r=r, &r„ then compare Eqs. (83) and
(84). Again, since g& g„~ everywhere in r, & r

& r„ the RHS of Eq. (83) must exceed the
RHS of Eq. (84). But the monotonicity of both g
and g„and the nature of the crossings require that
ldll/«I, Idt, «rI, and Id'/drl. 'Id/pi/drj;, hence
(r,/r, )'

[ dg/d r[, &(dQ, ~ /dr[, . Hence the LHS of
Eq. (3) is less than the LHS of Eq. (84). A contra-
diction has been obtained, and consequently a pair
of crossings, such as that shown in Fig. 2(c) is
also impossible. The only remaining alternative
is that (,, everywhere bounds g, in r, & r& ~, as
expected on physical grounds.

Note that in the above discussion we have taken
(, as finite, whereas g,„,is infinite: (, is fin-
ite because —(dg/dr), ~ Z is finite, the latter be-
ing a boundary condition. If g, were infinite with
—(d(/dr), finite we would immediately run into
a contradiction with Eq. (83), taking r, = r, and
r, a nearby point (the LHS finite, the RHS infinite).
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