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Nonclassical critical behavior of the square-well fluid
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In this paper we report the results of extensive numerical calculations on the equation of state of the
square-well fluid in the immediate vicinity of its critical point, with the objective being the precise
determination of the critical exponents 8 and 6. These determinations were carried out using data generated
by solving the Yvon-Born-Green equation for the pair distribution function (with superposition
approximation) over an extended range of integration (~ 50 intermolecular diameters). When taken together
with the value of the critical exponent y reported previously by the authors (y = 1.24 4-0.04), the results
obtained, 8 =0.330+0.008 and & = 4.4+ 0.2, suggest strongly that the essential physics of the gas-liquid
transition in the neighborhood of the critical point is described correctly by an integral equation derived
from the classical Bogoliubov-Born-Green-Kirkwood-Yvon theory of distribution functions.

I. INTRODUCTION

The development of a comprehensive theory of
the states of matter has been a long-standing goal
in statistical mechanics. Ideally, such a theory
should provide a single framework within which
the equilibrium and transport properties of the
gaseous, liquid and solid states can be calculated
with reasonable quantitative accuracy, and which
provides, as well, at least a qualitatively correct
description of the possible transformations be-
tween (or among) these states. The success with
which one realization of the BBGKY hierarchy,
the Yvon-Born-Green (YBG) equation under the
superposition approximation, is able to achieve
these goals was reviewed recently by two of the
authors.! Considering the particular case of the
square-well fluid, perhaps the simplest model
system for which both attractions and repulsions
are taken into account in the governing intermole-
cular potential function, it was concluded on the
basis of evidence available at that time that the
YBG theory, although reasonably successful in
accounting for the general features of pure phase
phenomena, was, with respect to the description
of coexistence phenomena in the neighborhood of
the critical point, somewhat deficient. In parti-
cular, the numerical values of the critical expo-
nents determined via analysis of equation-of-state
data fell between the classical and accepted non-
classical values. Given the broad objectives cited
earlier, this apparent deficiency in the theory
demanded further investigation. Recognizing that
phenomena in the neighborhood of the critical
point are characterized by a correlation length
¢ thatgreatly exceeds the range of pair interaction
(and, in fact, diverges exactly at the critical

point), the authors decided to reopen the study of
the YBG equation for the pair-correlation function
2®(x), paying particular attention to the down-
range behavior of this function. Accordingly, the
range of the integral-equation calculation of gm(x)
was extended from ~15 intermolecular diameters
(the range which characterized our earlier work)
to ~50 diameters and, from these resulting, more
accurate g(z)(x) data, the behavior in the neighbor-
hood of the critical point was reexamined. As
reported earlier,2 the value of the critical expo-
nent ¥ deduced using these new data is consistent
with the best available experimental and theoreti-
cal estimates. Although, as noted above, earlier
studies on the YBG equation for the square-well
fluid had uncovered some evidence for the emer-
gence of nonclassical behavior in the vicinity of the
critical point,® the quantitative accuracy realized
in our recent study was so “unexpected” and the
implications of the result so fundamental, that we
immediately set about to examine the remaining
critical exponents, again using ¢®(x) data in
which the down-range behavior of the function is
very accurately determined. For we wish to rule
out that the remarkable value of ¥ reported in
Ref. 2 was the consequence of fortuitous cancel-
lations of various (theoretical and/or numerical)
approximations.

In this paper we present the results of further
studies in our more refined analysis of the critical
behavior of the square-well fluid; specifically,
we present estimates of the critical exponents B
and 6. From these results, and considering our
earlier determination of the critical exponent 7,
we shall argue that the YBG theory of the square-
well fluid (with the underlying integral equation
solved using the superposition approximation)
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seems to provide an essentially correct descrip-
tion of the critical region. We shall not attempt
to address here the many deeper questions of
interpretation, for example, why it is that the
nonclassical behavior of a fluid is quantitatively
portrayed by a nonlinear integral equation having
the structure of the YBG equation or why the clo-
sure introduced to decouple the original hierarchy
of nonlinear integral equations seems to be so
harmless, although some discussion of these mat-
ters from the vantage point of modern nonlinear
functional analysis has been presented in recent
work by one of us.*® Rather, our intention here is
to focus on the numerical evidence relevant to the
determination of B and 0 (Sec. II), paying parti-
cular attention to an assessment of the errors and
confidence limits in the calculations. Then in
Sec. III, we present a comparison of our results
with known, theoretical and experimental esti-
mates of the critical exponents 7, 8, and 0 and,
where appropriate, comment on the compatibility
of our data with certain rigorous relations (viz.,
inequalities) involving these exponents.

II. DETERMINATION OF THE CRITICAL EXPONENTS
B AND §

In the spirit of Ref. 2, the YBG equation was
solved for g®(x) to the degree of convergence
where, for all x, differences between the g®(x)
computed at successive iterations were 10°°. The
range of g®(x) was allowed to extend to a value at
which g@(x) = 1. 000 000+ 10 is attained, i.e.,
the boundary condition of g®(x)=1.0 was applied
at a value of ¥ =x,,,, where x_,, exceeded the
range. The resulting g®(x) functions were then
inserted into the isothermal compressibility equa-
tion for «p:

Kp=1+2, f”[g‘”(x)_ 1]x% dx, (1)
0

where X\, =4mo} is reduced density, oy is the
molecular diameter (i.e., hard-core separation
of two molecules), and % is the molecular number
density (molecules/cm®). The ky function is cen-
tral to the determination of both 8 and 6 and is
most sensitive to long-range values of g®(x)
owing to the presence of the x* factor in the inte-
grand. .

Initially it was assumed that the reduced reci-
procal critical temperature 6, =€/kT, was 6,
=0.3741, the value reported in Ref. 2 in our
determination of Y. The determination of g, which
describes the shape of the coexistence envelope in
the vicinity of the critical point, offers an inde-
pendent determination of what might be the appro-
priate value of 6,. Values of kr were found at
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several subcritical isotherms outside the coexis-
tence region, i.e., within stable fluid regions,
and estimates of A\ and A, were made by plotting
ro}'-l vs A, on each side of the coexistence region at
constant 6 <6, for 6 =0.38, 0.377, 0.375, and

0. 3741, the latter isotherm being studied to de-
termine whether it might be subcritical, Table I
presents the g?(x) and «; data while Table II gives
X and Ay, as a function of 6. The B exponent

TABLE I. %4, range of g2 (x), and x as a function
of 6 and Ay. This information was used to evaluate the
N\ and Ay that appear in Table II. All calculations
were performed to single precision.

0 o Xnax Range Kp 2

0.3741° 2.5 20 17.60 5.4195
3.0 30 23.35 10.8256

3.3 30 28.75 19.2496

3.6 40 36.65 40.6670

3.9 50 46.65 93.9000

5.3 45 43.30 56.3405

5.6 35 33.65 23.3682

5.9 30 27.20 11.5321

6.2 25 22.75 6.6016

6.5 30 19.55 4.2091

7.0 20 15.95 2.3557

0.375 3.25 40 36.60 19.9072
3.50 40 36.70 38.4914

3.65 45 40.80 59.6184

5.45 45 41.35 47.4092

5.70 40 36.65 23.3140

6.00 40 34.70 11.1535

0.377 3.00 30 28.15 14.0207
©3.25 40 35.80 26.7511

3.40 40 36.60 42.4388

3.55 45 43.05 74.9975

5.60 45 43.30 54.8363

5.75 40 36.65 30.4867

6.00 40 35.00 15.2194

6.50 25 23.05 5.3284

0.380 2.50 20 19.15 6.7806
3.00 30 28.15 19.0825

3.25 40 37.45 47.5699

3.35 45 42.55 76.0265

5.85 45 43.10 52.6679

6.00 40 35.40 26.7863

6.50 25 23.05 6.8139

7.00 20 17.65 3.1182

2Most of the k, values were refined to the point that a
further-converged g‘® (x) did not change the value of Kp
in the fourth decimal place. The author’s experience is
that kp should be reliable to at least two decimal places.
See footnote a in Table III.

® particularly at this value of 8, an asymmetry in kg
is noticeable with respect to using A(,=4.60. However,
the use of these data produced a coexistence envelope
which appeared to be symmetrical about A= 4.60, to
within the computational uncertainty.
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TABLE I. Ay and Ay; as a function of 6, as deter-
mined by analysis of k7 vs Aj plots. The values of Ay
and Ay, are estimated good to +0.05.

6 Mg Aoz
0.3471 4.40 - 4.80
0.375 4.07 5.12
0.377 3.83 5.38
0.380 3.55 5.67

can be found by using the relationship
‘AO"}\OG|~|(6_9(:)/99::IB- (2)

Arguments introduced earlier by the authors!
suggest that the lower bound on the limit of stab-
ility of pure phase should also signal those points
on an isotherm where kr ~*. The function (see
Ref. 1)

F()\O’ o;u = O) .
=1+ [2?(1L) - R¥(1-¢”) g(R)]=0 ®?)

was examined for roots; in this equation, R is
the ratio of 0,/0, (0; and oy are the range param-
eters in the square-well intermolecular potential)
and the x values of 1, and' R. are locations at the
boundaries of, dut within, the attractive well of
the square-well potential. The results obtained
using the criterion, Eq. (3), support those obtained
using k'—0 as a criterion.

The results of the 8 analysis are that

B =0.330+0.008

and that B; and B, are identical to within the stated
bounds of uncertainty. Furthermore, from these
studies, it appeared that the isotherm 6=0.3741
-was slightly subcritical, and hence the value of
0,=0.37405 was adopted. However, use of 6,
=0.3471 rather than 0,374 05 does not alter the
value of B to any significant degree. Evaluation

of B was done graphically. Included in the uncer-
tainty of B is the uncertainty in )y, the uncertainty
in 2, manifests itself more dramatically in the
determination of & as will be described below.

It was pointed out in Ref. 2 that the exponent ¥
was sensitive to the value of 6, used. In fact, a
large part of the uncertainty in the value of 1,24
+0. 04 reported was due to uncertainty in 6. If
one adopts the value of 6,=0.37405+0,.00005, a
reevaluation of ¥ yields ¥=1.23+0.02. This con-
fidence limit seems realistic in light of the addi-
tional input provided by the 8 determination to the
evaluation of 6,.

To evaluate 8, the shape of the critical isotherm,
i.e.,

P*_P¥| ~ 2= 2, |° (4)

at 6=46,, the value of 6,=0.37405 was adopted
and g% (x) was evaluated along that isotherm at
several densities on either side of the critical
density Ay,. In evaluating ¥ andB, a value of Ay,
=4.60+0,05 was used. Examination of the criti-
cal isotherm indicates that Ay, is probably less
than 4.60. We find that kp —~ at A=y and,
further, x; seems to be symmetrical at a value
of A, between 4.55 and 4.60. The reduced pres-
sure P* (=Po3/€) can be evaluated from knowledge
of kp; specifically, one writes

*o
pP*_p¥= (47roc)"f (k2hYax, (5)
A
Oc

from which expression the exponent 6 may be de-
termined. The symmetry in Ky about A, implies
that 6, = o, .

Determination of 8 is much more difficult than
either ¥ or .8 since long-range critical effects
manifest themselves much further away from the
critical point along the density coordinate than
along the temperature coordinate (relative to the
critical-point values 6, and ), respectively).
This characteristic behavior is present in labora-
tory studies as well and leads to larger experi-
mental uncertainties in 6 than in ¥ or B. Table
III lists the values of kr and A used in the deter-
mination of 6. The correlation function g®(x)
was also evaluated at densities closer to Xy, (up to

Ao = Ag | =0.25), but these calculations (not re-
ported) were hampered by the range requirements,

TABLE III. Values of range of () and x5 as a
function of Ay at 6=6,=0.37405. All computations of
2@ (x) were performed at double precision.

Ao Range ? Kp ®
3.32 38.30 19.6708
3.6 52.30 42,5853
3.9 63.80 99.6183
5.3 63.75 64.2547
5.6 48.30 25.3615
5.9 37.20 12.0948

2 Although “range” is symmetrical about Aj=4.6, val-
ues of k; are not. k3! appears to be symmetrical at a
value of A closer to 4.55. In turn, 6 appears to be sen-
sitive to the value of Ay, adopted. (Symmetry implies 6,
and 6; would be identical.)

" Due to use of double precision; the values of k; here-
in are higher than one would expect looking at 6=0.3741
in Table I. However, use of single precision in gather-
ing data for B in Table I appeared to be adequate, since
values of kK are used indivectly in an extrapolative tech-
nique. Furthermore, the complementary use of F=0,
which depends on short-range values of g‘2 (x) and is in-
sensitive to range used, supports the results of the ex-
trapolative procedure.
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often exceeding 70 diameters. Toensure thatthe
results obtained were reliable, double precision
was used in the computer calculations. This made
only a minor difference even though the function
P* - P¥ calculated using the integral expression
given above is very sensitive to values (shape) of
the curve k3 vs X. (In contrast, evaluation of

B and ¥ were not sensitive to whether or not double
precision was used). The value of § achieved was
6=4.4+0.2 and is definitely the least reliable of
the three exponents computed from the YBG equa-
tion.

In summary, the critical point for the square-
well intermolecular potential with R=1. 85, as
determined from the YBG equation with super-
position approximation, is

6,=0.47305+0.00005, Xo,=4.57+0.05.
The critical exponents are
¥=1.23+0.02, B8=0.330+0.008, 6=4.4+0.2,

where B and 6 are symmetrical with respect to
gas and liquid sides. These values and their un-
certainties are based on the best values of the
g@(x) function (and the resulting function k) that
we currently have available.’

III. DISCUSSION AND CONCLUSIONS

A useful starting point for a discussion of the
results presented in this paper (and their implica-
tions) is to review some remarks made by Widom®
over a decade ago concerning similarities and
differences between the Ising model and the
square-well model. Since our concern here is not
the solid-liquid transition, we comment only brief-

“ly on the role of repulsive forces in the two mod-
els. In the Ising model (or associated lattice gas),
the metric imposed by the underlying lattice ef-
fectively brings in intevcellular repulsive corre-
lations among the particles in the system. In the
square-well model, repulsive interactions are
taken into account by means of a hard-core con-
tribution to the potential-energy function, and the
correlation propagated in the integral-equation
theory via a continuous spatial variable. Given
Widom’s arguments on the importance of the
“exclusion sphere,” the latter model is expected
to be more successful in describing the solid-
liquid transition, and it'is. As we have shown,
solutions of the YBG equation for the square-well
model become periodic in the high-density
regime' and, in fact, we have shown recently’
that solutions with apparently the correct qual-
itative behavior can even be found below the
triple point. Considering now attractive for-
ces, both models are characterized by Hamil-

tonians emphasizing nearest-neighbor interactions
(only). In the Ising model, there are contribu-
tions to the Hamiltonian due to exchange interac-
tions between nearest-neighbor spins aligned
parallel or antiparallel. If one imagines the ener-
gy levels of the Ising Hamiltonian to be shifted.
such that the value zero is assigned to the anti-
parallel configuration and the value —€ assigned to
the parallel one, then, again emphasizing the
restriction to nearest-neighbor interactions (only),
one simulates the interpretation given to the at-
tractive part of the intermolecular potential func- -
tion in the square-well model. Given this inter-
pretation, one can argue that the square-well
potential when incorporated within the framework
of a distribution-function theory should play the
same role in propagating (attractive) correlations
as the Ising Hamiltonian plays when the latter is
incorporated in a lattice theory, a premise of con-
siderable relevance to the present study since it
is generally believed that the gas-liquid transi-
tion is governed principally by the attractive for-
ces between the particles in the system. In cal-
culating the thermodynamic properties, one aver-
ages over all configurations of spins in the lattice
theory and overall configurations of particles in the
distribution-function theory. If these averages
were performed with no approximation, Widom®
argues that an essentially correct description

of the thermodynamics (here, the gas-liquid tran-
sition) should result. Although, to be sure, ap-
proximations are introduced out of necessity when
one attempts to investigate the behavior in three
dimensions of the Ising model or the square-well
model, one may still hope that the underlying con-
ceptual similarity between the two models tran-
slates into a quantitative correspondence in the
(numerical) characterization of the behavior of a
fluid in the neighborhood of its critical point. We
now examine the extent to which this hope is real-
ized.

Consider first the critical exponent ¥. This ex-
ponent scales the response function p*ky for a fluid
or Xr for a magnet (where X, is the isothermal
susceptibility); in particular, one writes the power
law

plkr =T*|AT|” (6)
In Ref. 2 we reported the value ¥=1.24+0.04.
Actually, the error estimate reported in Ref. 2
is a bit conservative; we can probably assign with
confidence the value ¥=1.23+0,02. The experi-
mental value deduced for this exponent ranges
from 1.23 to 1.28, as updated for Xe, CO,, SF,
and impure SFg in the recent review of Sen-
gers et al.® The precise value of the critical
exponent ¥ for the three-dimensional, spin-3
Ising model (class n=1, dimension d=3) is still
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an open question. There is a small discrepancy
between estimates obtained using high-tempera-
ture series expansions, and those obtained using
renormalization-group theory. Recently, Gaunt
and Sykes® reviewed and reexamined the high-
temperature series estimates for ¥ (considering
the simple cubic, face-centered-cubic, body-cen-
tered-cubic, and diamond lattices), and concluded
that (for all four lattices), the value of ¥ was .
However, the various estimates obtained using
the renormalization-group approach are different
from this value by ~¢% (¥=1.241+0.002 by

Baker et al.,' y=1.241+ 0. 004 by Brezin et al.,
and ¥=1.2402 + 0. 0009 by Le Guillou and Zinn-
Justinm), a discrepancy which, according to Gaunt
and Sykes, is too large to be explained away,
given the stated confidence limits in the calcula-
tions.!* On the other hand, our determination of
the exponent ¥ happens to be in “agreement” with
both the series-expansion and renormalization=
group estimates (by virtue of the wider confidence
limits in our calculation of ¥). Given the great
theoretical significance attached to the precise
determination of 7, we intend in the near future

to undertake a further refinement of our g®(x)
data with the objective of achieving a precision
comparable to the series-expansion and renormal-
ization-group calculations.

The exponent which governs the behavior of the
order parameter [(p - p,) for a fluid and the mag-
netization (M) for a magnet] is the critical expo-
nent B. Specifically, the power law is written

(o-p,)=B|AT|®, @)

In our study, we determined B=0.330+0.008
while the experimental estimates of 8, again
taken from Ref. 8 for the systems noted above,
range from 0. 321 to 0.328. In the series-expan-
sion studies' on the Ising model, B=£=0.3125
whereas the renormalization-group estimate® is
0.325.

Against the apparent agreement found between
the values determined for the critical exponents
¥ and B in the Ising model (d=3,%=1) and the
square-well model (and both of these models with
experiment), more of a discrepancy is found when
one examines data on the critical exponent .
This exponent monitors behavior along the critical
isotherm; here one studies |P —Pcl versus the
order parameter p - p, for a fluid (or |H| versus
the order parameter M for a magnet, where H is
the magnetic field and M is the magnetization)
and writes the power law ’

|P-P,|=Dlp-p,I°. (8)

We have determined 6 =4.4+0.2 whereas the
series-expansion studies on the Ising model, yield

the estimate 6=5.00 + 0. 05 while the renormal-
ization-group studies® yield 6 =4.82. Although
these values are different, the computational dif-
ficulties involved in determining 6 modulate some-
what the seriousness of this difference. In any
case, we can at least claim that the square-well
result is well away from the classical value (3.0
exactly), and perhaps consistent with the value
used by Green, Vicentini-Missoni, and Levelt
Sengers’ in their well-known scaling plot (based
on the experimental data for helium-3, helium-4,
Xe, COy, and H,0), viz., 6=4.5. Moreover, the
value 6 =4.4, when taken in conjunction with our
estimates of B and ¥, certainly satisfies the funda-
mental inequality ¥>8 (6 - 1), here 1.23 vs 1.12
for the left-hand and right-hand sides, respec-
tively. Once again it should be noted that the
value of 6 and its uncertainty are based on our
currently existing g”(») data along 6=6_; these
data suggest that further refinements in this cal-
culation may well increase the value of 8, there-
by leading to satisfaction of the equality, v=pB(6
-1).

The emergence of the nearly exact quantitative
agreement with the accepted nonclassical values
of the exponents 7, B, and (to a lesser extent) &
suggests strongly that our earlier determination
of the critical exponent ¥ was not the outcome of
a fortuitous cancellation of (theoretical and/or
numerical) approximations. Even so, the most
cautious position to be taken at this point is to
demand further evidence on the critical behavior
of the square-well fluid before making any final
judgments on the YBG theory. Accordingly, in
future work we intend to examine first the down-
range behavior of the pair correlation function;
as noted by Fisher,'® the asymptotic behavior of
this function expressed in terms of its spatial
argument may be represented as a power law
where the exponent depends on the dimension d
and an index 71, viz.,

gm(,r) ~,V-01-2én)’ T=— Tc R (9)

Although there are some computational difficulties
here, it should be possible to determine the criti-
cal exponent 7. Secondly, we intend to examine
the behavior of the specific heat C;; as a function
of (T -T,)/T,, where the power-law dependence
here is monitored by the critical exponent a; we
remark that @ does not seem to be as range de-
pendent as ¥, B, and 6. If, however, we may
take as representative the (nearly quantitative)
nonclassical behavior found thus far in our deter-
mination of ¥, B, and 8, then we believe the evi-
dence presented argues for the essential correct-
ness of an approach to the study of critical pheno-
mena based on the classical theory of distribution
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functions.

Given the paucity of formal theorems establish-
ing (even) the existence of distribution functions
outside the dilute-gas regime, 8 and given the spec-
tacular success enjoyed by the recent renormali-
zation-group theories of critical phenomena,'®
the (tentative) conclusion reached in the preceding
paragraph seems almost presumptuous and cer-
tainly reactionary. But, supposing that there is
at least an element of truth in the statement, a
number of theoretical implications of this conclu-
sion can be explored. For example, one can

. speculate that the very existence of critical expo-
nents might be linked to the topological indices
whose specification codes the existence and uni-
queness properties of the Yvon-Born-Green or
Kirkwood nonlinear integral equations. It was,
in part, to unravel this idea that the research re-
ported in Refs. 4 and 5 was undertaken. There,
conditions on existence and uniqueness of solu-
tions of integral equations derived from the
BBGKY hierarchy were established for various
potential functions using the methods of nonlinear
functional analysis. Unfortunately, as regards
critical phenomena, what is lacking in these form-
al studies is an integral equation derived from a
distribution-function theory which is known to give
an essentially correct description of the gas-
liquid transition, and against which the predic-
tions of a given fixed-point theorem can be check-
ed. Taking at face value the close agreement be-
tween the computed values of ¥, B, and 0 for the

square-well model vis-a-vis the Ising model (and
experiment), we may suggest that the YBG equa-
tion for the square-well fluid can be regarded as
an acceptable model equation for such studies.

In fact, with respect to the eventual goal of prov-
ing concrete theorems, perhaps even greater pro-
gress would be realized if one were to construct

a representation of the YBG equation for the
square-well model in fwo dimensions. For d=2,
n=1 one has, of course, the exact solution of
Onsager for the Ising model, and although it
would be too much to expect that one could achieve
an analytic solution of the corresponding YBG
problem, at the very least one could calculate
(numerically) the critical exponents for the d =2
square-well model, and, if the apparent corre-
spondence between the Ising model and the square-
well model is preserved in two dimensions, one
could use the Onsager solution as a guide in ex-
amining the topological properties of the corres-
ponding YBG equation. These studies are in pro-
gress and it may be hoped that the results obtained
will cast light on the above problems and the un-
derlying concept of universality.
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