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The problem of the momentum of the electromagnetic field near a homogeneous dielectric plane surface is

studied. In the particular case of evanescent waves, our calculations are consistent with the experimental

result of S. Huard and C. Imbert which points out that, during an interaction between a moving atom and

a surface wave of pulsation co, the exchanged momentum is greater than Ago/c. This work leads at first to a
straightforward procedure for quantizing the momentum parallel to the diopter of the field. The authors

proceed to investigate the form of the component perpendicular to the interface which is transmitted by the

field to an atom during an interaction. (In the case of an evanescent wave, this problem involves the

interpretation of the imaginary part of the wave vector. ) A general theory shows that the presence of a
medium widens and shifts the k levels of the field. This result agrees with the uncertainty principle.

INTRODUCTION

The recent experimental results obtained by
Huard and Imbert' show that the momentum paral-
lel to the interface transmitted to a moving atom
by an evanescent state of the electromagnetic field
ls SK~ (where K„ is the real part of the complex
wave vector of the evanescent wave). This result
had been predicted by Costa de Beauregard et al.'
and has been used by one of us in a theory of the
Cerenkov effect' and in a theory of absorption and
emission near a dielectric interface. 'i Although
it agrees with the de Broglie formula P =8K,
this result is nevertheless surprising, since it
means that, when there is an interaction between
an electromagnetic field of pulsation & and matter,
the modulus of the exchanged momentum can be
greater than Kg/c.

In order to explain this experimental result,
we have examined the problem of quantization of
the electromagnetic field momentum in a space
which is filled with a homogeneous dielectric on
the left of the plane @=0 and is empty on the right
of the plane. In the quantum field theory the ex-
pressions of dynamic variables are obtained from
Noether's theorem and from the principle of sta-
tionary action. The momentum thus corresponds
to the invariant under a space translation. In
the case we are now considering, the field is in-
variant under a translation parallel to the inter-
face. We can therefore define the momentum P„
of the field in the xy plane.

In Secs. II and III of this paper we study P„.
For this we use the triplet modes previously in-
troduced by Carniglia and Mandel' for quantizing
the energy in such a space. By expanding the
field in terms of these modes it is possible to
demonstrate that the field momentum parallel to

the interface reduces to the sum of the momenta
of independent harmonic oscillators. The quanti-
zation is therefore straightforward and proceeds
as it does for a free field. In the case of an eva-
nescent mode the momentum quantum is seen to
be greater than S&o/c. This is consistent with the
experimental results obtain by Huard and Imbert. '
When the wave incident on the diopter is a circu-
larly polarized wave, our result shows, more-
over, that the momentum always lies in the plane
of incidence, even in the case of total internal
reflection, where a transverse energy flux is
observed. This 'energy flux in a direction which
is not collinear with the momentum was foreseen
theoretically by Costa de Beauregard' and demon-
strated experimentally by Imbert. ' We also cal-
culate the total contribution of evanescent modes
to the momentum of the field. We can therefore
draw the following conclusion: the momentum
density of the transmitted evanescent part of the
modes does not intervene in the calculation,
Therefore our result does not depend on the
choice of the electromagnetic tensor in the evan-
escent wave. As a final conclusion of Sec. III
we discuss the importance of the formalism of
triplet modes.

In Sec. IV we investigate the form of the momen-
tum P~ perpendicular to the interface which is
transmitted by the field to an atom during an in-
teraction close to the diopter. In the particular
case of an evanescent wave this problem involves
the interpretation of the imaginary part of the
wave vector of the transmitted field. The field
is not invariant under a translation normal to
the interface. We can therefore state that it will
not be possible to reduce P, to the sum of the mo-
menta of independent harmonic oscillators. In
fact, in addition to the terms containing the dis-
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tribution 5(k —k'), which express the independence
of the different modes in the calculation of P„,
we have now to consider in the general expression
of P, the principal-part terms &(1/(k, —k,')).
Because of the definition of the principal parts
these terms clearly show, when the momentum
of a mode k is calculated, the influence of all the
other modes k'. This result has the fundamental
consequence of .making it impossible to consider
formally the interface-field system as a free field.
This system thus appears as an interacting one.
Therefore, by using the usual expansion in field
theory for the determination of the dynamic vari-
ables in an interacting field, it is possible to
define the momentum perpendicular to the inter-
face P, . After calculations, P~ appears as the
sum of a self-momentum P,' and of an interaction
momentum P'„,. As a consequence of this result
we can understand the influence of the dielectric:
the presence of a spatial discontinuity of the field
(physically described by the interface} widens
and shifts its momentum states, just as a time
perturbation of the field widens and shifts its
energy states. This result occurs, of course,
not only in an evanescent wave but also in a
homogeneous one transmitted very close to the
interface. It agrees with the uncertainty princi-
ple: the partial localization of the field (more
exactly its unequal repartition in the two half-
spaces z & 0 and z &0) makes it impossible to
lmow with certainty its momentum along 2.

I. NOTATIONS

Let us consider a space which is filled with an
isotropic medium of refractive index n, on the
left of the plane z =0 and is empty everywhere on
the right of this plane (see Fig. 1). We use the
triplet modes previously introduced by Carniglia
and Mandel' and are keeping their notation. %(hen

the incident wave on the diopter is coming from
the z & 0 or from the z & 0 half space, the corre-
sponding modes of the field are, respectively,
called left modes (subscript L) or right modes
(subscript R). These modes are characterized
by the wave vector of their incident part (k for a
left mode and K for a right one) and by their po-
larization s [s = 1 for a transverse electric mode
(TE) and s =2 for a transverse magnetic mode
(TM)]. Each mode can be expressed as the sum
of its incident, reflected, and transmitted parts
(superscripts I, R, T):

g~ (k, s, F) = gg (k, s, r)

+gg(k, s, r) +@~(k,s, r),

g„(K, s, r) = g'„(K, s, r)

+gas(K, s, r)+g„(K, s, r). (2)

The wave vectors of these components are k,
k~, and K for a left mode and K, K~, and. k for
a right one (Figs. 2 and 3). Their modulus and
their components parallel to the diopter verify

iki=ik i=n, (K K)' '=n, a/c
left mode,

k„= k, (

——K„

[K/= /K" /=/k//n. =~/c
right mode.

We write, e~(s), e~(s}, e~(s) and ss(s), es(s),
and Ps(s) as the polarization of the incident, re-
flected, and transmitted waves of the modes. In
the TE case (s = 1) all these vectors are equal to
a real unit vector & lying in the plane z =0 and
perpendicular to the plane of incidence. In the
TM case (s = 2) they are defined by (e & z)/(K ~ K)' ',
where v is the possibly complex wave vector of
the corresponding component of the mode. The
normalized complex amplitudes a~ (a„) of each
component of g~(k, s, r) [gs(K, s, r)] are given by

as(1) =as(2) = noa~~(1) = noa~ (2) = 1/M2, (4)

ass(1) = -noah'(1) = (1/v 2 )(K, —k,)/(K, + k,),
ass(2) = -noa~s(2)

= (1/v 2 }(n+,—k,)/(n~, + k,),

FIG. l. Space filled with isotropic mediuxn of refrac-
tive indexno, where% represents the wave vector of
the incident wave. In the case in this picture the plane
of incidence is yz.

(6)

K~I s(s) =n'(r)a~~ „(s)e~~ s(s) . (7)

ars(l) =n, (K,/k, )azr(1) = (1/v 2)2K,/(K, + k,),
asr(2) =n, (Kgk, )a~r(2)

= (1/v 2 )2n~./(nmP, + k.) .
Noting that n(r) = 1 for z & 0 and n(r) =no for z

&0, we introduce
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With this notation we can write for a left and a
right mode

n'(r)8~/(k, s, r) =f~/(s)e'"', (8)

n'(r)8sI(K, s, r) =Z„'(s)e/"'. (8)
Similar relations can be obtained for other parts

of the modes by changing superscript I into 8 or

For clarity, it must be realized that g~/, gg,
P~ and 8~1, S~~, and g~~ are zero for g & 0 and g
& 0, respectively.

By combining all possible modes with arbitrary
complex amplitudes u(k, s) and v(K, s), we can
form a representation of any B.rbitrary electric
field (see Carniglia and MandeP):

2, @ 1/2
E(r, t}=, dk P — [u(k, s}g~(k, s, r)e /"'+ c.c.]

Ago ~g ~0

2 g~ X/2
+ 2, dKQ — [v(K, s)Ss(K, s, r)e '"'+c.c.].r(0 ~g so

(1O)

In the same way the magnetic field can be
written

%~(k, s, r) = di~/(k, s, r) + dig(k, s, r)

+ (B~~(k, s, r),
/8s(K, s, r) =di„'(K, s, r) + 6l„"(K,s, r)

+i8rs(K, s, r).
Each component of ~ and ~ is deduced from

the corresponding one of g~ and $~ by the help of
Maxwell's equation curl E = -BB/Bt.

By introducing

bi s(s)=(c/co)//I s(s)g~ sx ~~ „(s),
we can write

k, s, r)=br(s)e/"'

die/(K, s, r) =b/(s)e/"',

and similar relations for the other parts of the
modes. As above, L„L, , and ~ and ~, ~,
and ~~ are zero for g&0 and x&0, respectively.

The more general magnetic field can then be
written

2 @~ 1/2
s(r, t) = f 2rncp, [u(ic, s)a (ic, s, ee '"+c.c]

k&0 0

1+, dK, [v(K, s)its(K, s, r)e /"'+ c.c.].
7/ ml 60C

SC &0

zij
TL(k, '") zii (K,s, r)

«R
(K, s, r )

0

j
+L(k, s, r ) PL (k,s, r ) ~R (K,s, r )

FIG. 2. Definition of a left mode. SL(%,s, r) repre-
sents the electric field. Superscripts attached to
hz (X,s, r) correspond respectively to the incident, re-
flected, and transmitted parts of the field. The wave
vector is R in the dielectric, and K in the vacuum.

FIG. 3. Definition of a right mode. Notations are as
in Fig. 2.
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II. COMPONENT PARALLEL TO INTERFACE OF
FIELD MOMENTUM

According to field theory, the expressions for
dynamic variables are obtained by using Noether's
theorem and the principle of stationary action.
Thus the momentum corresponds to the invariant
in a space translation. In the case we are study-
ing, the field is invariant only under a transla-
tion parallel to the plane interface. This situation

(16)

enables us to define and to quantize the momen-
tum P, parallel to the interface. By using the
Maxwell-Minkowski energy-momentum density,
we have

PI= dr D r, t ~B r, t

Using D(r, t) = n'(r)s, E(r, t), substituting (10) and
(15) into (16), and noting (for clarity) u(k, s) —= u,
u(k', s') =-u', b~(k, s, r) =—g~, etc. , we obtain

1 IP =
(27] )' d' C

—((our')' ' u*u'e"" "" drn'(r)g*&&$' + c.c.II

ss'= j.
y' &o

I

+ uu'e '("""" drn'(r)gr. "ts' „+c.c.

1 r
+ — ]) dkdK' —(urn')' ' u*v'e'(" "')' drn'(r)g*&&d]' + c.c.(2v)' c R II

kg&o, I L
K' &o

ss =1
Z

+ uv'e J'"'" &' drn'(r)g~ xS„' „+c.c.

1+ (2s)'
dKdk' ~ —(ur&u')' ' v u'e'(" "&' drn'(r)8*x' + c.c.~ c R L

Ez&o, ss'= 1

+ 'UQ'e drn'(r")g &&(8,' „+c.c.

1+ dKdK' ~ —((ee')' ' v*v'ej(" "&' drn'(r)S*&k' + c.c.(2w)' ~c II

Eg&O, ss'- j.
E' &o

+ vv'e j(""")' dFn'(r)gs&k(Bs ))+ c ~ c.
I

To study (17) we must calculate eight spatial integrals, which we denote I„ I„.. . , l„according to
their position. For the sake of space, we present a calculation only of the first one:

drn' r S,xe (i8)

According to Eqs. (1), (8), (ll), and (13), this expression can be written

I, = dr d~r*&&br~
II exp j k —k' r + dr d~R bi „exp -j k —k r + dr d~~ bi IIexp -j K*—K' r

+ dr(d' xb")„exp( j(k —k")r] +f-dr(d" xb')„exp[ j(k —k')r]. -

Making use of (3), we can bring out of the above integration the term

(20)dxdy exp -j k„—k„' x exp -j k, —k,' y = 2w '6 k„- k„' 5 k, —k„',

which shows that only those modes which have the same plane of incidence contribute to I,. When inte-
grating the equation on variable s, we obtain because of the discontinuity at s =0 (tp denoting the principal
part)

I, = —'(2e)'il(k —k')((IT'"xb') +(iT xb") +e ' '(i( "xb }„]e(2r)'e(k —k')(,& (dV"4)))-(df*"bx») (dV" i )))-( i* ~))( „. ~ + 'ddr*xbr k

g Z g g g g
(21)
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In order to calculate this expression in the
simplest possible way, we must consider sepa-
ately the different possible values of s and s' and
calculate the different vector products d~b'.
When sos', (21) is seen to be zero. Finally, we
obtain

1
(kd)'& f dk KK (k k k)

x v(-k„', -k,', -K,')

x e """a„'~a~)p(s) . (33)

I, = dr+' r 8~x~~~ „
(22)

The sum of these last two expressions vanishes.
Consequently we have

= —,
' (27l)'(cK„/0l) 5,5(f —k') .

Defining a(s) = + ( 2)l)'n'0( c/(d)K„5 ~ (sign is +
when. s = 1, is —when s =2), we can evaluate the
seven other integrals in the same way:

I, = n(s)5(f„+ f„)5(k, —k;)asa,',
I, =O,

Id = n(s)5(k„+ K,', )5(k, + k,')asra~,

(24)

(25)

I5=0, (26)

I,= o (s)5(K„+k,', )5 (k, + k,')alai,

I, =-,'(2~)'(c/~)K„5„5(K —K ),

I, =o (s)5(K„+K,', )5(K, K,')assas—.

(27)

(26)

(29)

Using these results, we can now calculate the
eight terms in Eq. (17). For the sake of clarity,
they will be denoted P,'„P'„, . . . , P,'„according to
their order in (17). Using (22) and (26), we obtain

2

p,', =
( )fdkF , liK„(u u+uu'),

Ago

2 2Tt'g

2p'„=,,g dk IK„u(k„,k„k,)
2v) k X

x v( —k„, —k„, —Kd)

x e-'~"da'a'p (s)

We now want to state that all the other terms
vanish. Using (23) and (29), respectively, we see
that the expressions)to be integrated in P2 and P,',
appear to be odd functions in k „and k„; P'„a.nd P,',
are then identically equal to zero. Because of (24)
and (26), P,', and P,', must also vanish. We have
then only Pd)) and P,', to consider. Using (25) and
(27) and after integrating on K' in P„and on K in
P,'„we obtain [where p(s) =+1 when s =1 and p(s)
= —1 when s=2]

2

, j dk QKI5, u (k, s)u(k, s)
l)d OO

,f dK QKK„S'(K, s)s(K, s). (35)
Kd&0

The similarity between Eq. (35) and the expres-
sion

2

H=, dk Q S(ou'(f, s)u(f, s}r l))0
z s=l

2

+ 2, dK gk(d vt(K, s}v(K, s}
K &0

(36)

obtained by Carniglia and Mandel' for the Hamil-
tonian of the field allows us to attribute to the
modes whose energy and polarization are h& and
s a momentum parallel to the interface P„=SK((.

III. DISCUSSION

Equation (35} shows that the quantum of the mo-
mentum of the electromagnetic field is SK„(SK„
=5k„). This result agrees with the de Broglie
relation P =5K when it is restricted by invariance
considerations to its component parallel to the .

interface. In the case of a left mode, by express-
ing it in terms of n, and 8 (Fig. 1), the modulus of
the momentum parallel to the diopter absorbed or
emitted close to the interface can be written

+ dK SK„v*K,s v K, s
JC &0 g*l

(34)
Since each mode satisfies the Helmholtz equa-

tion, ' this expression shows that P„reduces to
the sum of the momenta of independent harmonic
oscillators. The quantization is therefore
straightforward and proceeds as in a free. field.
The complex amplitudes u(k, s), u*(f, s) and

v(K, s), vd'(K, s) are replaced by Hilbert-space
operators u(k, s), u~(k, s) and v(K, s), v~(K, s),
which can be given the usual interpretation of
annihilation and creation operators for quantum
modes (k, s) and (K, s):

2P„=,, dk Q k K„u (k, s)u(k, s)
2)T) 0 )0
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P, = hK„=(k"/c)n, sin6.

For an evanescent mode (n, sin0& 1) we have

P)( (@co/c)n, sin8 & her/c. (38)

This value, greater than that we always have in
a free field,

P=h"/c, (39)

fYl CO

FIG. 4. Example of specific interaction near an inter-
face: the Cerenkov effect. „The possible dynamic states
of a free electron are represented by hyperbola E
=(c I +m, c ) . Because of the relation chk & k~ a
free electron can emit or absorb an evanescent mode
(2), whereas the interaction was impossible in a free
field {1)(cat =a~).

is characteristic of the evanescent field. It is the
cause of some specific interactions between the

.field and the matter very close to an interface.
To illustrate this, let us consider the case of a
free electron traveling at constant velocity in a
medium or in the vacuum parallel and very close
to a plane dielectric. its possible dynamic states
can be represented by the E =(c'P'+m', c )'~' hy-
perbola, and because of (39) the absorption or the
emission of a photon can be represented by a
parallel to the light-cone vector. Therefore
when looking at Fig. 4 we can understand that
such an interaction cannot exist. In fact, if the
electron had to absorb or to emit a photon (39),
its final state I" would no longer be on the hyper-
bola and would thus not be an allowed dynamic
state for it. With an evanescent field things are
quite different: the momentum quantum being
greater than K&@/c, the evanescent mode can be
formally represented by a vector which points
out from the light cone. Thus the transition is
possible. As we have seen in Refs. 2, 3, and 9,
it corresponds to the Cerenkov effect. Inequality
(38) is a Priori surprising, since it formally im-
plies a spacelike energy-momentum transition.
It is nevertheless consistent with the experimental
results of Huard and Imbert. '

All the above results have been obtained by using
the Maxwell-Minkowski's momentum density as
expressed in (16). As is well known, ' the Maxwell-
Minkowski and de Broglie momentum densities
are yet quite different in the evanescent wave. It
should then be interesting to know whether the
de Broglie tensor leads to the same result (35).
Of course it does. Briefly, the reason for this
is that the momentum density of the evanescent
transmitted part of the mode never intervenes in
the calculation of P„. To make this result more
precise, let us calculate separately the total con-
tribution of the evanescent modes to the momen-
tum P of the electromagnetic field: in accord-
ance with (34) only the P,', (left modes) and the P,',
(right modes) terms do not vanish. As evanescent
modes are left modes, their contribution to P)t
will appear only in the left term P~, . In order to
perform the discussion in the simplest possible
way, we consider, instead of (30), the expression
for P~~ as written in the first term on the right-
hand side of (17). Then, using (18) and the first
term on the right-hand side of (21) [recall that
we have demonstrated that the principal-part term
in (21) is zeroj, and after integrating on k' and
adding on s', we obtain

2

K +K+(d, "Xb)+X' ' '(d»Xb"))+d. d.

(40)

In this expression, which represents the total
contribution of the left modes to P~, the vector
products d&&b are directly connected with the
momentum density D(r, t) XB(r, f) as written in
(16). The total contribution of the evanescent
modes may be simply obtained by restricting the
integral (40) to the domain k', &k3+O'. Since in
this case of total internal reflection K, is imagin-
ary, the multiplicative factor K, +K,* of the mo-
mentum density D~ && B~ of the transmitted part of
the field is zero. Thus we have (using the sub-
script "ev" to denote evanescence)

1
))ev 2(2.)3 kg~,

kg&k~+k)

&& fzz+u[(dz~—"xbr~)+ (dg*xb~s)„]+ c.c.}.
C

(41)

As explained above, (41) clearly shows that the
momentum density of the evanescent part of the
modes does not contribute to P)), nor conse-
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quently to P„. If we use the de Broglie tensor,
we obtain a quite similar result. It is possible
simply to realize that, by calculating directly
the momentum of the evanescent transmitted part
of the field. In such a calculation, whatever the
tensor may be, we must consider the integral

way possible when performing calculations on
the interaction between matter and the electro-
magnetic field very close to a dielectric. We have
mentioned this fact on several occasions and
parti. cularly in our study of absorption' and of
Raman scattering' in the vicinity of an interface.

exp[-(K,*-K,')s] de IV. COMPONENT PERPENDICULAR TO SURFACE OF
FIELD MOMENTUM

(42)

It is then possible to see that the 6(k —k') term
always v'anishes in the evanescent case (K,+K,*
=0). Of course, this presentation is not suffi-
cient, since it does not show how the principal-
part term vanishes. For this we must integrate
the momentum density over the entire space and
then take into account the momentum of the inci-
dent and of the reflected part of the field, as in
the above calculations. When we proceed in such
a way, the principal-part term vanishes, and we
obtain by using the de Broglie tensor the same
result (35) as with the Maxwell-Minkowski tensor.
In conclusion, we can see that, although they lead
to quite different momentum densities in the evan-
escent wave, the Maxwell and de Broglie energy-
momentum tensors are, as expected, quite equiva-
lent when calculating P„(as they obviously are for
the Hamiltonian H).

As a third remark, let us emphasize that, the
contribution AK„of each oscillator being in the
plane of incidence of the corresponding mode, P,
will always lie in the plane of incidence, regard-
less of the polarization of the incident part of the
wave. In the evanescent case this result must be
emphasized when the incident wave is circularly
polarized, by referring to the Imbert transversal
shift. ' In fact, as Costa de Beauregard has pre-
viously pointed out, ' this means that in here the
momentum is not collinear with the energy trans-
fer.

As a final conclusion, we would like to add the
following remarks on the importance of the use of
triplet modes. Because the interface is included
in the definition of them, they permit the perform-
ance of calculations which automatically take into
account the combinatorial aspects of the different
parts of the field arising from the presence of
the diopter. Besides, we can see from Secs. II
and III that these modes are at the same time
eigenmodes of the Hamiltonian H and of the mo-
mentum P„of the field. All of this allows us to
proceed in a formal way as in a'free field and
therefore to present calculations in the simplest

When calculating the total momentum of the field,
the discontinuity introduced by the surface at z =0
causes the expressions obtained in the two half
spaces z ~ 0 and z & 0 to be integrated separately.
Then, as we saw in Secs. II and III, we hive
principal-part terms &(1/(k, ak,')) coming from
integrals as

f e ""~ "~&' dz =m5(k, —k,') j6'(1/—(k. , k')) — (43)
0

Owing to the continuity relations of the field
through the interface, these principal-part terms
vanish in the calculation of P„. Thus only the dis-
tributions 6(k —k') remain, meaning that in the
calculation of P;, each mode has an independent
contribution SK~, to the total momentum of the
field. In the calculation of P„ the principal-part
terms go longer vanish. Because of the defini-
tion these terms 6'(1/(k, —k,')) clearly show, when
the momentum of a mode (k, s) is calculated, the
influence of all the other modes (k', s'). This
result has .the fundamental consequence of making
it impossible to write P, as the sum of the mo-
menta of independent harmonic oscillators. Thus
in consideration of P, the interface-field system
now appears as an interacting one. Therefore it
is no longer possible to obtain P, from Noether's
theorem and principle of stationary action. In
that case we must use, instead of action, the
unitary operator which transforms the state vec-

/

tor Q of the system under an infinitesimal per-
pendicular to the diopter translation. We use
for that purpose the presentation and notations
of Bogoliubov and Schirkov" (with units such that
S=c=1).

Let P be the state vector of the system. As
this state is an interacting one, we call it &f&(g),

where g is a function characterizing the interac-
tion and whose values are to be taken in [0, 1].
To make discussion clearer, we consider the
most general case of a space-time translation.
We denote the space-time coordinates by x" with
the understanding that x =t, x'=x, x =y, and
x'=z. We use a metric tensor g„„with compo-
nents g"=-I (1=1, 2, 3), goo=+ 1. Without any
interaction, under the transformation
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(t) - Q
' =u~ Q .

Since in this case Q= P(g), we must take into
account that g(x) also undergoes the same trans-
formation:

g(x) —g'(x) =Lg(x) =g(l, 'x) .
Then we can write

4(g) - 4'(g) =~.4(L 'g)

(46)

(47)

and, when we consider an infinitesimal transla-
tion,

e(g) e(-g) =(1+5 .)e(L 'g);

the state vector (t) of the system will become
(where M~ is a unitary operator that keeps invariant
the norm

~

(t)*P~')

P(»(g) Pt) g))))] H(x g)
( (56)

It can be demonstrated tsee Ref. (10}]that the
eigenvalues and the average values of the P (g)
operators so-defined do not depend on g and
therefore really correspond to physical observ-
ables. Equation (56) then defines the energy
momentum of the interacting system. Making g
=0 in (56), we can see that P reduces to P",,
which can then be identified as the energy momen-
tum of a free field.

&cry close to the interface z =0 and for symme-
try reasons the functions g(x}, which represents in
our case the interaction between the field and the
dielectric, cannot vary vs x, y, or t. Therefore
its only nonzero derivative is 8gjBz and (56) yields

0~ being Hermitian, 5u~ must be anti-Hermitian.
It must also be written as a linear combination
of the infinitesimal values (5x". So by introducing
P~~, an Hermitian operator the physical meaning
of which will appear below, we have

H=H,
P"=P"

P =Po + H x, g —dx=Po+Pg t ~

Bg g

(57)

~P g))))Pt)5x))

k

Therefore it follows from (48) that
(

0'(g)-4(g)= 4(I 'g)-4(g)+», 4(g)

+ 5 de(I 'g) e(g)l-

(48)

(50)

("(») —('((l)= j»(;(»)»»» ('(»). (52)

Equation (52) may be transformed by writing

5g(x}=g(I.x) —g(x) = Q g 5x'.
k

(53)

We then obtain, using the variational form of the
Schrodinger equation,

»&((a) jH(»»)((»)&»'(»=)d»,

and substituting into (52), we obtain

0'(g) —4(g) =i (P(gh l t(g), (55)

where P(g)A denotes the scalar product of the
four-vectors-=Ox with P, whose space-time co-
ordinates are

Defining 5g(x) as g(I x) —g(x} and using (46), we
can write

0'(g( )) - A(g( ))= 4(g(L ))- 4(g( ))

+», y(g(x)),

0'(g) —4(g) = 4(g+ 5g) —A(g)+», 4(g}.
Using then the definition of the functional deriva-

tive of Q(g) vs g at point x, we have

The first three equations show that the energy
and the momentum parallel to the diopter of the
dielectric-field system are the same as in the free
field (this agrees with the results presented in
Secs. II and III). The last means that the momen-
tum perpendicular to the diopter (P, =P') now-
appears as the sum of a "self-momentum" Po and
of an "interaction momentum" P;„,.

A good way to make this result somewhat clearer
is to compare the present case to the one of a
time perturbation. When a time-dependent inter-
action is switched on at time ~ in free space, the
only nonzero derivative of g is sg/st. Hence in-
stead of (57) we obtain from (56)

H=H, +H,„,, P~=P," (k=x, y, z). (58)

As is well known, this result shows that the total
momentum is the same as in the absence of inter-
action, whereas the Hamiltonian is the sum of a
nonperturbated Hamiltonian and an interaction
one. With the help of (58) it becomes possible to
understand the physical consequences of (57}: in
just the same way as energy states of a time-
dependent interacting system would be enlarged
and shifted, we can predict near an interface a
widening and a shift of the momentum state P, of
the field. This result agrees with the uncertainty
principle: the partial localization of the field
(more exactly, its unequal repartition in the two
half spaces z ~ 0 and z & 0) makes it impossible to
know precisely its momentum along z. It is im-
portant to note that these results occur of course
not only in the evanescent wave but also in a
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homogeneous one very close to an interface.
Generally, when considering the left case, the
explicit calculation of

P, =
J dry(r, t) x B(r, f)j,

leads us to the intermediate result

f dr n'(~)(g~ x ~~~}

2 &3 K+K*
Q7 2k'

(59)

(60)

whatever the evanescent or homogeneous charac-
ter of the mode may be. In the particular case of
an evanescent mode where K, +K,*=O the shift
and the widening of the momentum state is then
made from the value P, =O.

V. CONCLUSION

In conclusion, this work, which is a continua-
tion of Ref. 11, has the following results: In
Secs. II and III we have seen that triplet modes
are eigenmodes not only of H but also of 5„.
This allows us to consider the interface-field
system as a free field when we are concerned
with H or 8g Therefore the use of triplet modes,
previously introduced by Carniglia and Mandel'

and then developed by one of us, ' makes it possi-
ble to study interactions between matter and the
radiation field very close to an interface with the
same method as in a free field. Our results are
consistent with the experimental results of Huard
and Imbert, ' who have pointeg out the possibility
of absorbing near a diopter a momentum P„whose
modulus is greater than h~u/c.

By using the usual expansion in field theory for
the determination of the dynamic variables in an
interacting field, we have defined the momentum
perpendicular to the diopter P, of the interface-
field system and shown how the presence of a
spatial discontinuity of the field (physically de-
scribed by the medium) widens and shifts its
momentum states. The form of P„, could be
studied by looking at the form of g(x). This would
permit a new approach to such problems as, for
example, that of the momentum of the photon in a
dielectric medium. The method we have used
may also be useful in studying the angular momen-
tum exchanged between the field and an atom during
an interaction very close to an interface, particu-
larly in an evanescent wave. Concerning this
problem, it can be noted that our theoretical
results4 have now received a first experimental
proof. " At this point we must moreover mention
the recent paper of Huard on the spin-angular
momentum of a field interacting with a plane
interface. "
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