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Quantum fluctuations and the variational approach to bound states

W. Buchmiiller*
Physikalisches Institut, Uniuersitat Bonn, D-5300 Bonn, West Germany

(Received 4 May 1979)

Relativistic Hartree-Pock equations are proposed which incorporate radiative effects. Their derivation is
based on functional integration methods and a new substitution rule inferred from the Pauli principle.

I. INTRODUCTION

Variational approximations play a central role
in the treatment of bound states in quantum field
theory. Motivated by the hope of arriving at a
description of hadrons as bound states of quarks
in the framework of field theory, new variational
approaches have been investigated during recent
years. ' ' Various techniques have been employed
based either on conventional Fock-space methods
or on the Feynman path-integral representation
of the generating functional. Using functional in-
tegration methods, Dashen et al.' derived self-
consistent-field (SCF) equations in a two-dimen-
sional model field theory. These equations de-
scribe effects from vacuum polarization, thus
including quantum fluctuations in a variational
procedure.

The incorporation of radiative corrections in
relativistic SCF equations is one of the main the-
oretical problems in atomic physics. 4 Radiative
corrections are tested by several types of experi-
ments involving strong external fields, ' heavy
atoms or heliumlike ions. ' In contrast to the one-
electron problem (hydrogenlike ions), which has
been treated rigorously on the basis of quantum
electrodynamics (QED),"a systematic treatment
of many-electron bound states in the framework
of QED does not exist. " It is not known even in
principle how ener'gy spectra can be calculated
for bound states of more than one constituent in
a systematic perturbation theory including rela-
tivistic and radiative effects. At present the in-
corporation of radiative effects in variational ap-
proximations of Hartree-Fock type seems the
best one can do. This approach has been dis-
cussed in the literature, """ in particular by
Reinhard, Greiner, and Arenhovel" and Rafelski,
Muller, and Greiner. '4 In this paper the new
variational methods mentioned above are applied
to the many-electron bound-state problem in
QED. The results are similar to those obtained
in Ref. 14. There a.re, however, differences as
far as the treatment of quantum fluctuations is
concerned. Rafelski et al. treat "sea" electrons

self-consistently, in the same way as bound elec-
trons; this leads to an infinite number of coupled
integro- differential equations. The approach pre-
sented in this paper yields SCF equations for the
bound constituents only, whereas the ". sea" is
solely determined by the external potential.

The method developed by Dashen et al. to treat
bound fermions turns out not to be appropriate
for the description of bound states in quantum
electrodynamics. The SCF equations obtained by
these authors lead to a classical self-interaction
of bound constituents which is not observed ex-
perimentally. This is very similar to the self-
interaction problem encountered in Fock-space
variational approximations based on coherent
trial states. " In both cases self-interaction terms
occur because exchange interactions are not taken
into account. In this paper a method is presented
which yields relativistic Hartree- Fock equations
incorporating exchange interactions as well as
the effects from quantum fluctuations. This is
achieved by using some of the ideas of Dashen et
al. and a new substitution rule inferred from the
Pauli principle.

The main steps of the proposed method are the
following: the starting point is the energy
E„„[A'"]of the vacuum in an external static po-
tential A'„*(x), which will be calculated in the one-
loop approximation using functional integration
techniques in Sec. II. I then derive the substitu-
tion rule from the Pauli principle and apply it to
the vacuum energy E„„[A'"].The result is the
energy E[A'*; U„U, ] of a two-electron state in the
presence of the external potential A'„" in the SCF
approximation. Variation of the functional
E[A'"; U„U,] with respect to the "wave functions"
Ui U2 of the bound e lectrons leads to SCF equa-
tions determining U, and U, (Sec. III). A straight-
forward generalization of the substitution rule
employed for the two-electron system yields Har-
tree-Fock equations for an arbitrary number of
bound electrons and positrons (Sec. IV). Section
V describes how the energy spectrum of bound
states can be calculated on the basis of the derived
equations. In addition the relation to the work of
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Rafelski et al. '4 is discussed. I conclude with a
summary of my results in Sec. VI. Appendices
A and B deal with the method of Dashen et al.

The variational derivative of the effective action
reads

II. VACUUM ENERGY IN AN EXTERNAL POTENTIAL

Our starting point is the functional integral

6A ( )
S.ff[A]

= QA" (x)+ ie tr[y'S(x, xiA'"+A)) ., (2.6)

W(T) = —', [DA „][D(t][DY()]exp(iS[A, g, g)),
1

where S[A, g, g] is the action of quantum electro-
dynamics in a static external potential A;" in the
Feynman gauge"

(2.1)

S[A, (,g]= I dt d'x(--,'B„A,a"A"

A„(t„x)=A (t2, X), , th)(t„x) =(t)(t„x). (2.3)

As the action is bilinear in ()) and g, the integra-
tion over the spinor field can be performed im-
mediately, thus incorporating quantum fluctua-
tions of the matter field from the beginning. "
An integral over the vector field A, remains, in-
volving an effective action S,«[A]:

. + P[y" (is, —eA'„"—eA„) —m]P];

(2.2)

T = t, —t„N is a normalization factor, and the in-
tegration is restricted to periodic field configu-
rations, i.e.,

where "tr" denotes the trace with respect to the
spinor indices, and the propagator S(x,y iA) is
defined by

[y"(ie„—eA ) —m]S(x, yiA) = &'(x —y) . (2.7)

The condition for a stationary point of the effective
action,

5

(x) eff[ ]

determines a potential a (x) which, according to
Eq. (2.6), is generated by the vacuum polariza-
tion current induced by the "classical" potential'
A cl.

a, (x) = ie tr[y„S(x,x-iA")], A'„' =A;"+a„. (2.8)

For a static external potential A;" the induced vac-
uum polarization correction a„ is time indepen-
dent as well.

To compute W(T) in the . one-loop approximation,
we expand the effective action around the station-
ary'point a„(x) and neglect terms higher than quad-
ratic in g:

1
W(T) = [DA, ] exp(is. „[A]),

where

(2.4) 1 "
4S„,[A] =S„,[a)+ 2,

d'xd'x' q„(x')

(2.9)

E„,[A'"]=i lim —lnW(T) .1

OO

(2.5)

S.«[A]
t. t2

dt
~I

d'x(- —,'& A„&'A") —i trin[-i(P —m))"t
1

and

Tr 1n[-i(g- m)] = inDet[-i(P —m)]

is the logarithm of, the determinant of the differ-
ential operator

i(Q m-) =-i—[y'(is„—eA'„"- eA„) —m].
The calculation of the vacuum energy E„,[A'"]
now proceeds in the following way: I first dem-
onstrate that the effective action has a time-inde-
pendent stationary point a„corresponding to the
vacuum polarization correction to the external
potential A;"; I then calculate the contribution of
this stationary point to the functional integral
W(T) in the one-loop approximation for large val-
ues of T; the final step is to identify the vacuum
energy as""

A, =a, +q, .
From Eqs. (2.1), (2.4), and (2.9) we thus obtain"

1
W(T) = —exp iS,«[a]

f ) Seff
eA (*)eA ( ') ))

(2.10)

i.e., the determination of W(T) requires the eval-
uation of the effective action at the stationary point
and the computation of a trace involving the second
functional derivative of S„,[A].

Let us start with the trace. Using the relation

S(x, y iA) =es(X, ziA)y "S(z,y iA), (2.11)
&A„z

we obtain

6A„(x')&A„(x)

= Clg~" 5 (x —x') + ie' trl[y "S(x,x'
i
A)y"S (x', x iA)] .

(2.12)
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The one-loop approximation used here neglects
graphs containing more than one virtual photon,
i.e., contributions to W(T) of order e' are omitted.
Therefore it is consistent to neglect terms of the
same order in the computation of the trace under
consideration. This is achieved in the following
way: we write

S,«[a] = dt d 'x(——,']]„a„8~a")

-i trln(-i[y~(is„—eA ) —m]). (2.19)

The effective action at the stationary point is the
sum of the "classical" field energy and a trace in-
volving the Dirac operator:

Ps „
5A„(x ) &A„(x)

where

=K'"(x x')+L""(x x') (2.13) From Eqs. (2.8) and (2.16) we obtain for the po-
tential a„(x)

Then we use the expansion"

ln(K+L) = lnK+K 'L +O(e'),

where K ' is the photon propagator

(2.14)

K""(x x') =-z g'"6'(x x')-=O(eo),

L "(x,x') =e tr[y S(x,x'IA)y S(x' x lA)]=O(e') .

a" (x) = ie -d'x'D""(x —x') tr [y„S(x',x' lA")],

and the "classical" field energy can therefore be
written as

dt d 'x(- —,'s, a„e"a") .

K„'„(x,x') =iD„„(x—x'),
because

(2.15)
I

=-T ~e' d'x d x'D""(x—x') tr[y S(x,xlA")]

„D„"(x—x') = 5„"&'(x —x'); (2.16)
x tr [y„S(x',x' lA")] . (2.20)

trlnK is a constant determined by the spectrum
of the d'Alembert operator. This constant is in-
dependent of A, and can be absorbed into the nor-
malization constant N. We thus obtain

$2S
trln -i '-'-' a = trK"'L+0 e

5A„DA „
=ie'

jl
d'xd'x'D „(x—x')

x tr [y"S(x',x lA")

x y~S(x, x' lA")]+ O(e') .

(2.17)

In the case of a time-independent potential A'„",
the propagator S(x, x' lA") is a function of x, i',
and x —x ' only. This leads to

$2S

V

x tr [y"S(x',x A")y'S(x, x' lA")]+O(~') . (2.18)

The computation of the trace occurring in (2.19)
is more complicated and is explained in detail in
Appendix A„Folowing Dashen et al. ,

' we obtain
for large values of T

-i trln f—i[y~(i& —eA'„') —m]]

d'x tr [(—iy'a, +m+ey'A")S(x, y lA")] l, „

Tg e„[A"],- (2.21)

where g„[A"] are the energies of the one-electron
states in the potential A and the sum is over all
negative-energy states.

Combining Eqs. (2.10) and (2.18)-(2.21), we ob-
tain the result for W(T) in the one-loop approxi-
mation, up to terms of order e' and for large val-
ues of -T, and up to terms of order e4,

rrlri=xxp( (re r.(A"]r-,'x'J(-rr'«X'x'
ll(

x (D "(x—x') rr Ir's(xx IA")] rr Irx( ', x' I&"]]r(r'"(x-x'] rrfr x(x', « IA")rx(x «'I&")]]) . (2.22)

For the energy of the vacuum in the potential A'"
we thus obtain [cf. Eq. (2.5)]

E„,[A'"]=E [A'*]+E,[A'"], FIG. 1. One-loop corrections to the vacuum energy.
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E [A'"]=+ z [A"] ergy states. The transition amplitude (3 ~ 1) there-
fore becomes

E,[A'"] = —,
' e' d 'x d 'x'D""(x —x')

x ftr [y„S(x,x IA")] tr [y„S(x',x' IA")]

+ tr [y S(x,x IA")y S(x,x IA")j] .
The physical interpretation of this result is ob-
vious: ED[A'"] is the energy of the "sea" of neg-
at ive- energy states in the potential A '„' which are
occupied according to. Dirac 's hole theory;
E,[A'"] represents the sum of the lowest-order
radiative corrections of the "sea" levels. These
radiative corrections may be represented graph-
ically as shown in Fig. 1. Using different tech-
niques Ditt rich has obtained the same result. "

III. TWO-ELECTRON STATES

Eqs. (2.23) and (2.21) show that the vacuum en-
ergy in an external potential is fully determined
by the electron propagator in the field A '„'. In this
section I demonstrate how the presence of bound
electrons may be taken into account by a substi-
tution rule which modifies the electron- propagator.
This substitution rule wiB be based on the Pauli
principle, thus avoiding the self- interaction prob-
lem from the beginning.

We ask the question: how is the propagation of
the virtual quanta modified by the presence of an
additional bound electron'? Let (,(t, x), P,(t', x)
represent one- electron states at times t and t ' .
The amplitude for a transition between these two
states under the influence of a potential A '„' is giv-
en by23

(2, t' IS(A")
I
1, t& = d'xg', (t', x)i, l d'x'

x S(t', x;t, x' IA")y'P, (t, x') . (3.1)

For t' & t the propagator can be written as

(2, t
I
S(A")

I
1,t&=g d 'x p,'(t, x) q „(t,x)

n&

x d'x' cp'„{t,x')P, (t, x') (3.4)
4

=g (2, t' In, t'&&n, t It, 1&,
n&

i.e., the transition Il, t& to I2, t'& may be vis-
ualized as a process taking place in two steps:
at time t a transition from

I
1) to an intermediate

state n& occurs, followed by a second transition
from n) to I2) at time t'. To obtain the complete
transition amplitude one mu st sum over all po s-
sible intermediate states.

How does the presence of a bound electron in-
fluence the transitions of the virtual quanta? One
effect is that the virtual quanta now propagate in
a potential A which is generated by the current
of the bound electron in addition to the external
current. The second effect is due to the Pauli
principle: the subspace being occupied by the
bound electron cannot contribute to the transitions .
Let U(t, x) be the wave function of the additional
electron. The transition amplitude then reads

(2, t'
I
l, t&U

2, t' n, t' ~, t — U, t' .,U, t
n&

= (2, t'Is(A "[U])ll t&- &2 t'IU t'&&U, t Il t&

(3.5)

The modification of the external potential as well
as the change in the transition amplitude is ob-
tained by the following substitution:

S(x,x'IA") -iU(x)U(x')+S(x, x' IA"[U]); (3.6)

from Eq. (2.8) we obtain for the potential A [U]

where

y„(t,x) = y„(x)e " ' {3.3)

(St', 'xt, IxA") =-i Q p„(t', x')y„(t, x), (3.2) a„(x
I

U) =eU(x)y„U(x)

-ie tr[y, S(x,xIA "[U])],
A'„'[U) =A.'*+a [U] ~

(3.V)

are the eigenstates of the Dirac- operator in the
potential A" and the sum is over all positive- en-

For the transition amplitude the substitution (3.6)
implies

(2, t'I l, t&U

d'x y,'(t', x)i d'x'S(t' x t, x' IA"[U])y'4, (t, x')- d'x 4,"(t',x)U(t', x)

= (2, t' Is(A" [U)) I
1 t) —&2 t'

I » t'&&U, t
I
1 t&
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S(x,x' ~A") -t U, (x)V, (x')+ t U, (x)U, (x')

+S(x,x'/A" [U„U ]),
yielding for the potential A"[U„U,]

a„(x
~
U„U, ) =eV, (x)r U, (x)+eV, (x)r U, (x)

-te tr [r S(x, X~A '~[U„U,])],
AD [U„U2] AD + aD [U) y U2]

(3.8)

(3.9)

which is in agreement with Eq. (3.5).
To obtain the effect of two bound electrons on

the propagation of the virtual quanta we employ
the SCF picture. We approximate the two-elec-
tron state by a product of two one-electron states
in some self-consistent field. Concerning the in-
fluence on the propagation of the virtual quanta,
the two bound electrons therefore act completely
independent, and instead of Eq. (3.6) we have the
substitution rule

U, (x) and U, (x) are the wave functions of the bound

electrons.
So far we have determined how the propagation

of virtual quanta is changed by the presence of
two bound electrons which, in the SCF approxi-
mation, are described by wave functions U, (x)
and U, (x). We now employ this result to compute
the energy of a two-electron state in the SCF ap-
proximation, taking one-loop quantum fluctua-
tions into account. We achieve this by performing
the substitution (3.8) in the vacuum energy which
has been expressed in terms of the propagator
S(x,x'~A") in Eqs. (2.23) and (2.21). The result
is the following energy functional, dependent on
the potential A'„' and the wave functions U, (x) and

U, (x):

E[A";U„U,]

d'xU(x)[ (y'e+I+ey A"(x)]U (x)+ Q,'e Jd'xd x D "(x — )[U'( x)y U(x)U~(x x)y U~(x )
i, j=l

—U,.()eUyt)Uex(x')ey„U,.(x')]eQe f d'xdx'U()(D" x(x,. 'x)y„S('x, x']A")y Ulx')+Pe, [„A",. ]
i=a

+&e d xd x'D~" x —x' tr y„Sx,x A' tr y„S,x A +tr &S,x Ac p Sx x A 3-10

where the potential A" is,given by Eq. (3.9) (from
now on I no longer indicate the dependence of A"
on U„U,). The various terms in Eq. (3.10) have

a familiar interpretation: the first two integrals
are, apart from retardation effects, identical to
the expectation value of the Hamiltonian employed
in the ordinary relativistic Hartree-Fock ansatz'A);
the third term represents. the well-known self-
energy of the bound electrons, and the last two
terms are the vacuum energy in the new field A„".

In the treatment of bound states in quantum field
theory one problem frequently encountered is the
appearance of a classical self-interaction of the
bound constituents. In the case of ordinary Fock-
space methods this problem was discussed in
detail in Ref. 16. The self-interaction problem
can occur as well if one employs functional inte-
gral techniques, as I show in Appendix B. Qwing
to the presence of exchange terms the energy
functional (3.10) does not contain self-interaction
contributions, although in the course of the cal-
culation leading to Eq. (3.10) various terms of
this type occur. Surprisingly enough, however,
the self-interaction terms arising from the one-
loop part E,[A"] of the vacuum energy cancel those
from the "classical" part E,[A"]. To my mind

this nontrivial cancellation is one of the strongest
justifications for the postulated substitution (3.8)
which is the basis of the approach presented here.

The wave functions U, (x) and U, (x) are unknown.

According to the'SCF picture we choose the time
dependence to be

U,.(t, x) = U,.(x) exp( —fE,t), t =1,2, (3.11)

where the one-particle energies E,. must be deter-
mined self-consistently. Then the direct inter-
action reads

x d4x

~ U, (x ) r„U,(x')

,
i

U,. x r~ U,.(x)V,.(x')r„U,.(x') . (3.12)

For the exchange terms we obtain

I;."=2e d'xd x'D ' x —x' U,. y~U,.

x U, (x') r„U,(x')

", V,.(x)r. U,.(x)

x U~(x') r'U&(x') exp(i )E, -E~~ ~x —x')). ;
(3.13)
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when E,.4 E& the exchange interaction thus receives a contribution from retardation. Taking terms up
to order (v/c)z into account we arrive atzz

2 3 3

I&&
[

V((x)yoU, (x)V,(x')y'U, (x') —z V, (x)y'U&(x)U&(x')y U,.(x')

~
z V (x)y (x —x')U, (x)V,(x')y (x —x')U, (x')

~
(3.14)

(3.15)

The two-electron energy functional is therefore given by [c.f. (3.10)-(3.14)]
e2 3 3

X[A*;()„yy]gf e e (rg(x)[-(y'e, ere cry &'„']ry(x) e———,
(

[(r (x)y" (r(x)(((x')y (((x')
a=1

—V~(x)y Uz(x)Vz(x')yoU~(x') + z V~(x)y Uz(x)Vz(x')y'U~(x') + z V~(x)n 'y'Uz(x)Uz(x')n 'yU~(x')]
2 1

+ e dxdx ~ i+ "x-x'~~S,x' +' ~ 0'x' +E + n=~~ ~ ~

~

1=1

Following the usual variational procedure the
unknown spinors U, (x) and Uz(x) are now deter-
mined by requiring them to form a stationary
point of the functional (3.15):

&A"
x tr [y, S(],& ~A")y"S(,& ~A")] " '„. (3.19)

5
—,—,E[A";U~, Uz]=0, i=1, 2.

&U,.(xj (s.le)

(s.17)

To evaluate the functional derivative of E„[A"]
we use E[ls. (2.23) and (2.21), as well as

As the wave functions represent states of unit
charge, the variation must be restricted to func-
tions satisfying

As we have calculated the vacuum energy in the
one-loop approximation only, we omit terms of
the order e . The result is

( ) E„,[A' ]

~ 2 d3 '
tr[y„S (X,& ~A"],~U,.(x);

(s.20)

and

itrln (i[y"(is„—eA„) -m]]

=-ie tr[y. S(x, x(A)] (3.18)

i.e., we obtain the vacuum polarization potential
acting on the spinor U, (x}.

Using E[l. (3.20) we arrive from the extremum
condition (3.16) .at the following integro-differential
equations:

2 'x' 3 I
y'[-(y'e, +er+ ey "e(; (x) + y' ",

(

(7(x )y (( (x )]U'g(x)„rJ—
(
ryr(x')y'(r(x')) ry(x)

2

+—y'y' ~ (Ur(x)y'(), (x) (r (x)+ y e'y Jl [,(Ur(x')x y(r, (x'))(rr(x)

+ d x'expiE] 0-xo y, x' A" U] x' =E]U,. x, (3.21)

where i,j =1,2, i 4j, and

p( , ]Ax")xe* eDx') (eS , y=] (e)x"r(i *y' (ex yxe)f d'x yr,-('- )tr [ye"S(xx"",x"
].A")7.

In E(ls. (3.21) the one-electron energies E„ intro-
duced in Eq. (3.11), appear as eigenvalues. They
have been identified with the Lagrangian multi-
pliers enforcing the normalization conditions
(3.17). This identification is justified because in

this way E(ls. (3.21) yield the I ock-Dirac e(lua-
tions in the nonrelativistic limit. '

The variational equations obtained are relativis-
tic Hartree-Fock equations: each electron moves
in the field generated by the external current as



BUCHMULLER 21

well as the other bound electron; in addition, re-
tarded exchange forces and radiative corrections
are taken into account.

It is interesting to consider the hase that only
one of the wave functions is different from zero.
The variational equation for one bound electron
reads

y'[ —iy's, . +m +ey "A„'*(x)]U(x)

+ d'x'y' x,x'&" U ' =«
U(x) = U(x) exp(-i', ) . (3.22)

Equation (3.22) has the structure of Schwinger's
equation, 2' which embodies the radiative correc-
tions to the Dirac equation. The two equations
differ, however, in the mass operator:
Z(xx'I A") is the mass operator in the presence
of the classical potentials~", whereas in Sch-
winger's equation, the mass operator Z(x, x' IA'*)
in the external potential occurs. As 4„"depends
on U(x) [cf. Eq. (3.9)], Eq. (3.22) is nonlinear!
Such a nonlinearity would lead to an interesting
new type of radiative correction, especially in the
case of strong binding. The first nonlinear terms,
however, are of order e . Contributions of this
order were neglected when we calculated the
vacuum energy in the one-loop approximation. It
might well be that terms arising in the two-loop
correction compensate the nonlinearities en-
countered in Eq. (3.22) in the same way as the
self-energy contributions arising at the "classical"
level are cancelled by terms from the one-loop
correction. The radiative corrections in Eq.
(3.22) have a meaning only up to order e', and in

IV. BOUND STATES WITH AN ARBITRARY NUMBER

OF CONSTITUENTS

Generalization of the approach described in
Sec. III to an arbitrary number of bound con-
stituents is obvious. Let U, (x), i =1, . . . ,N, and

V,.(x), j=1, . . . , M, be positive- and negative-
energy spinors representing N electrons and M
positrons in the SCF approximation. The sub-
stitution rule yielding the energy functional
E[A";U„.. . , V~] then reads

S(x,x '
(A ")- ig U,.(x)U,.(x ')

V,. x V,.x' +S,x' A'~

where

(4.1)

U,.(x) = U,.(x) exp(-iz,.x,), Vg (x) = Vy(x) exp(i&@,) .
(4.2)

The potential A" is the solution of the differential
equation obtained by applying the substitution (4.1)
to Eq. (2.8):

e. (x) = eg ((,.(x)X„&,.(x) —e )', (x)X„(,.(x)
t= 1' -1

-ie tr [r, S(x,x IA")], (4.3)

Qcl +ex++
V

Applied to the vacuum energy E„,[A'*][cf. Eqs.
(2.23) and (2.21)], the substitution rule (4.1) leads
to

this order Eq. (3.22) and Schwinger's equation are
identical.

&[A"'Ui " V~]

d'x U; x -iy'~, +m+ey~&~" x U& x — d x V& -iy'~, +m+ey'A. ~"x V&

+ ~e' )
d'xd'x'D""(x —x') [U, (x)y„U, (x)U~(x')y„U~(x') —U, (x)y„U((x)U)(x')y„U, (x')]

j, =1

+ [V,(x)r, V;(x)V, (X')r„V,(x') —V,.(x)y, V, (x)V, (x')y„v, (x')]
=1

[U, (x)r„U, (X)V,(x')r„V,(x') U, (x)y, V, (x) V,(x')y„U,.(x)]
I

+ e' d'xd'x'U, . iD"' -x' y„S,x' &"y„U,
g=l

e dxdx'V sB"" -x'y Sx x'&" y V '+
g"-1 k&

+~e d xd x'D "x-x' tr yS, x &" tr yS ', x' &" +t yS x', x &"y S xx' &" . 44
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This result is very similar to the energy func-
tional E[A";U„U,] obtained in Sec. III [cf. Eq.
(3.1O)].

Again we can carry out the integration over xp
for the direct- and exchange-interaction terms
and write down the variational equations for the
spinors U,.(x) and V,.(x). The only new terms oc-
curing in the energy functional E[A";U„.. . , V„]
compared to E[A";U„U,] are those which involve
positive- and negative-energy spinors. For the
direct interaction we have

I~]~= p e2 d xd~x'D~" -x' U,. y~U]

variational equations for the spinors U,.(x), . . . ,
V,.(x) which follow from minimizing the functional
(4.4). The result is complefely analogous to
Eqs. (3.21) derived in the two-electron case.

V. CALCULATION OF BOUND-STATE ENERGIES

This section is devoted to the question of how

the results obtained so far may be used to cal-
culate the energy spectrum of bound electrons.
In order to keep the notation simple, we confine
ourselves to two electrons bound in an external
potential A'". The energy functional may be split
into four parts,

x V,.(x')y„V,.( ')

,
~

U, (x)y" U,.(x)V&(x')y~ V&(x') .

The exchange-interaction terms are given by

I'-~&=~e' d'xd x'D"" x-x' U,- x y„V&

(4.5) E[A";U„U,] =gE,. +E e+E„, +E[A ,](5".1,5)
g=l j=l

the expectatioti values of the Dirac Hami. ltonian

E~=
JI d'x U (x)[-.i y' 8, +m +ey A'*(x)]U, (x), (5.1b)

the direct- and exchange-interaction terms

x V, ( ')y„U, ( ')

d xd x
, 0,. x y, p,. x V,. x' y'U, . x'

xexp[i(E,.+E,) Ix-x'I];
in the case of nonrelativistic binding, i.e. , E,.
+E&=2m, we obtain the usual point interaction"

E»=e d xd x'D"" x-x'

x U, (x')y„U, (x') —U (x)y U (x)U (x')y„U„(x')],

(5.lc)

the self-energy corrections

E
I;) — 2 d .x—U,.(x)y V~(x) V)(x)y„U,.(x) .

8m
(4.6)

Using Eqs. (3.12) and (3.13) as well as Eqs. (4.5)
and (4.6) one can immediately write down the

xS(,x IA ~)y U. ( ')

and the vacuum energy in the potential A"

(5.1d)

E[A ]=-i,I t'"te{[-t(Xx'5,. +m +et"A„"(x)]E(x,e ]A")]]

+ Ee d'xd x'D""(x —x )[tr [y.s(x, x IA")] tr [y„S(x',"IA")]+ tr [y.s(x', x IA")y.~(x x'IA")]I

(5.le)

"(x)= „'*( )+ „(x),
where

(5.2)

Because of Eq. (3.9) the potential A~" is given by S(,x'IA") =s(,x'IA'")

+e' d'y S(x,y IA *)y,a'(y)S(y, x'IA *)+

=s(x, x'IA'*)+O(e') . (5.3)

a, (x) = e. d4x'D, „(x—x')

x U]
' y"U,. x' -i tr y"S x', x' A"

a=1

We now expand the propagator S(x,x' IA") in
powers of e'. +E„[A'"]; (5.4)

Using Eq. (5.3), we obtain up to terms of order
e4, which are neglected in the one-loop approxi-
mation,

E, [A"]=/ (-ie') I A'xd'x'Ut(x)X„
t=l

x U, (x)D""(x—x') tr[ y„S(x',x' IA'~)]
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E„,[A'*] is the vacuum energy in the presence of
the external current only [cf. Eq. (2.23)]. The
experimentally observed total energy of the two-
electron state reads

(5.5)

From Eqs. (5.1) and (5.4) we obtain

E".~ = d'xd x'U,. x x x' A. '" U x'

x~ ~ex

d4x"

E[)),U j=gE, +E +f. E
z=l z=1

(5.5a)
(5.5b)

where the radiative corrections E",. are the ex-
pectation values of the mass operator in the ex-
ternal potential

Neglecting again radiative corrections of order
e the variational equations determining the spinors
V,.(x) are [cf.Eqs. (3.21)]

2 x'
yo -iy'8;+I+eye A„' x +—y~ - -, Uf x' „Uf x' U; x

r &'~' "e*u(((z, —s, )(x, —x'))D„.(x —* )V ( ')&"))(x'))Uy(x)

+ d'x'exp iE; x -x' y' x, x' A'" U; x' =&,U,. x, i, j=1,2, i~j. 5.V

In terms of the eigenvalues E,. the total, experimentally observable energy of the two-electron state is
given by

(s.s)

The relativistic Hartree-Fock equations (5.7) in-
corporate radiative corrections in the leading
order. They are the simplest equations whach
might have been guessed: the single-particle
radiative corrections described by Schwinger's
equation" are simply added to the ordinary
Hartree- Foek equations.

In principle there should be no difficulty in using
Eqs. (5.7) for explicit calculations, although
technically they will be very compl. icated. The
renormalization of the mass operator is known
from the single-particle case. ' For weak exter-
nal potentials one can treat the radiative correc-
tions perturbatively, starting from a solution of
the ordinary Hartree-Fock equations. In the case
of strong potentials, however, the mass operator
must be incorporated in the variational procedure.

The method employed to obtain Eqs. (5.7) can be
extended to derive variational equations which
include higher-order radiative corrections: one
must go beyond the one-loop approximation for
the vacuum energy before applying the substitution
rule (3.8). Most probably the simple structure of
Eqs. (5.7) will not survive, and in addition to
highe r- order contributions to the mass- operator
radiative corrections of the direct- and exchange-
interaction terms will occur.

SCF equations similar to Eqs. (5.7) have been

obtained by Heinhard, Greiner, and Arenhovel"
for one-electron states in an external potential;
these equations were extended to variational
equations for many-electron bound states by
Rafelski, Muller, and Greiner. " 'The result ob-
tained by these authors differs from Eqs. (5.7) in
the treatment of the quantum corrections. Where-
as in Ref. 14 bound electrons and negative-energy
"sea" electrons are determined by the same SCF
equations, Eqs. (5.7) involve the mass operator in
the external potential only, i.e. , the "sea" elec-
trons obey simply the Dirac equation in the external
potential. In the approach developed in the pre-
vious sections no recoupling of the "sea" to the
bound electrons occurs in a consistent treatment
at the level of one-loop radiative corrections.

VI. SUMMARY

Employing functional integration methods develop-
ed byDashen et al. ' and a new substitution rule,
we have derived relativistic SCF equations which
incorporate radiative effects. 'The substitution rule
has been justified by the Pauli principle and the
SCF picture. 'The obtained variational equations
have a familar physical interpretation. Self-
interaction terms do not occur and exchange-
interactions are taken into account; single-particle
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APPENDIX A

In Appendix A I calculate the trace needed in
Sec. II [cf. Eq. (2.21)]. For a time-independent
potential A, (x) the Dirac operator

y'(4 —m) = y'[y" (is „eA,)-—m] (Al)

possesses a complete set of periodic eigenfunc-
tions p„, (x):

~...(x) = e.(x)e '"-'

co~ = 2rm/T, T=t~ —t~, rncZ,

radiative corrections have been added with respect
to ordinary relativistic Hartree-Fock equations.

The basic problem of Hartree-Fock equations
is the lack of a procedure allowing for the com-
putation of corrections to the variational approxi-
mation in a. systematic wa, y. This leads to some
arbitrariness of SCF equations. I find it interest-
ing that the equations derived in Sec. IV contain
retarded exchange interactions, while the direct
interactions are instantaneous. Different SCF
approaches may lead to different equations"
yielding, for example, both interactions to be
either instantaneous or retarded. As long as a
systematic perturbation theory around Hartree-
Fock equations does not exist it cannot be decided
theoretically which interaction yields the most
appropriate zeroth-order approximation.

Re~

FIG. 3. Contour for the vacuum energy.

tr ln[-i(4 —m)] = tr In[-iy'(Q —m)]

ln -i (d —&„ (A4)
n

'The Feynman boundary-conditions determine how
the singularities occuring in Eq. (A4) mustbe cir-
cumvented. The spectral representation of the
Feynman propagator reads (cf. Fig. 2)

v. (x)v. ( ', ;.„,,
2m dc n ~ &n0

&tl(x)&n(x ) -l~(t t)-
2m „~u) —e„+i(e„/i ~„I)~

(A,5)

f rom which we infer

tr In[-i(Q —m)]

T +oo

=—
J d~g I [-ni(v - c„+i(&„/( e()&)]. (A6)

An integration by parts' yields, up to-a constant
which can be absorbed in the normalization con-
stant N occuring in Eq. (2.1),

f t2
3d xy„, (A2)

T r~ (d
tr In[-i(Q —m)) = —— d&u

2m &c0 'r

(A I)

t
dt d'xy„', ,y0 —m y„

where

y'[-iy'&, + m+ ey"A„]y„=~„y„.

We thus obtain

Deforming the contour C0 to encircle the negative-
energy poles leads to the result quoted in Sec.
II (cf. Fig. 3):

trlrr[-r'(dr —I)]= f drog- —
0

En ~

Ag

Using Eqs. (A3) and (A5), we may express the
trace as

Cp

Re la)

Kn& &nN
In) " ng

Re~

FIG. 2. Integration contour for the Feynman propaga-
tor. FIG. 4. Contour for an N-electron bound state. .
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tr in[-i(P —I)]

T-Jt d'x tr [(-iy's,. + m + ey"A. „)S(x, y I A )]

The energy levels e„are obtained as eigenvalues
of the Dirac operator in a "classical" potential
A"

APPENDIX B

(A8)
y' [ iy-'s; + ~ + ey "A; ]Pn = ~n c'n i

which is determined by minimizing the energy
functional (Bl):

(B2)

E )elfl ~ ~ ~

N

A~8+ + Q +
tt(

(Bl)

The method employed by Dashen et al. ' to de-
rive variational equations for bound states pro-
ceeds as follows. The starting point is the effec-
tive action for static potentials A„(g [cf. Eqs.
(2.4)]. The effective action of an N-electron bound
state is obtained by replac'ing the contour C, byC„. „(cf.Fig. 4). The result for the energy
of the N-electron state is

A. '„'(x) =A'„*(x)+ a„(x),

-&a„(x)=Pep„(x)y„y„(x)—ie tr [y„S(x,x ~A")].
t=l

(BS)

Equations (B2) and (B3) are relativistic Hartree-
Fock equations incorporating vacuum polarization
effects. As is most easily seen in the case of one
bound electron, they lead, however, to a classical
self-interaction which is not experimentally ob-
served in atomic spectra. .
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