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Soliton production and solutions to perturbed Korteweg-devries equations
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The author discusses the production of a secondary soliton when the wave equation describing the soliton
undergoes a small perturbation. Discussion is limited to the Korteweg-deVries equation, where it is found
that, for an appropriate sign of the perturbation, soliton production always occurs. The methods of inverse
scattering are used where this production can be clearly demonstrated. Previous authors have ignored the
production of secondary solitons and consequently have arrived at erroneous conclusions regarding the
conservation laws. Two examples of perturbations are discussed in some detail.

This paper is a result of an attempt to under-
stand in a simple way some of the features of
soliton production. I have in mind physical sys-
tems represented by equations that are perturba-
tions of equations that are exactly soluble by in-
verse scattering methods. There are several
reasons why one might be interested in describing
soliton reaction. One application of such an under-
standing is to the statistical mechanics ef a sys-
tem of particles. When a soliton is produced a
continuum degree of freedom is changed into a
di'screte one, and it is important to incorporate
correctly the counting of degrees of freedom. In
conventional quantum-statistical mechanics this is
treated by the introduction of Levinson's theorem
directly into the partition function. ' In my work
here I will use a corollary to the theorem, namely
that the scattering length changes sign through in-
finity as another bound state is created. The one-
dimensional version of that result states that one
piece of the scattering data goes through zero if
a new bound state (soliton) is created. In this
paper I do not actually look at a statistical system,
but rather show the importance of soliton produc-
tion and discuss the simple signature representing
a new soliton, which could then be used in a par-
tition function.

A second application is obviously just to under-
stand in a simple way what can be expected in the
way of soliton production. . This has not really
been addressed before other than to say that some
excitation may have a soliton content. I show how
for weak perturbations one can make a more quan-
titative statement. I first appreciated the impor-
tance of soliton production when I attempted to
apply the recently developed formalisms for per-
turbation theory' ' to a numerical analysis of the
perturbed Korteweg-deVries (KdV)' equation. I
could not give a correct description if I ignored
soliton production, as previous authors have
done. ' '

The methods of Refs. 3 and 7 cannot at present
treat a change in the number of discrete degrees

I shall treat the cases

F(q, t) = r(t)q,

F(q, t) =q„„,

(Sa)

(Sb)

although the general form for F is unimportant.
My work also applies to the equation

q, +6m(t)qq„+P(t)q„„=o,

which has been studied by a number of authors'

of freedom. The formalism of Refs. 2 and 5, how-
ever, are sufficiently general, and I will use their
methods.

In this paper I point out that the creation of a
new soliton has a unique signature and that soliton
production is very important for perturbations to
single-soliton solutions of the KdV equation, in
that one cannot understand correctly the changes
in the low-order conservation equations without
accounting for soliton production. The new soliton
may be important for some aspects of a problem,
say the momentum, but has no effect on the energy.
I shall make these statements quantitative for
short times, but for long times I have only a qual-
itative understanding. It will become apparent
that for an appropriate sign of the perturbation,
a new soliton is always produced. Consequently,
it is necessary to understand this production in
order to understand the long-time behavior of the
solution. Also, the new soliton represents the
creation of long-wavelength slowly varying excita-
tions which may cause difficulties in the multiple-
time-scale methods of Ref. 2. Previous papers"
have not correctly accounted for soliton production,
so their predicted long-time'behavior of the new
excitations is not correct.

I shall consider the KdV equation with a pertur-
bing term,

q, (x, t)+6qq„+q„,„=~F(q, t),
where g «1 and

q(x, 0) =2q', sech'q, (x- x, ) .
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In the following I suppress the time t. The co-
efficients a, b satisfy

a(-]) = a*(]*),
b(-&) = b*(&*),

fal'- lbl'=I, ( real;
(7b)

(7c)

a($) is analytic in the upper half-$ plane, and, in
the neighborhood of $ =0, a and b have the expan-
sions"

and can be transformed easily into Eq. (l) with Jl

given by Eq. (Sa). I shall demonstrate that for the
correct sign of & a secondary soliton is generated.
My results will be obtained within the framework
of inverse scattering theory, ' ' ' as that formal-
ism gives a clear meaning to soliton production.
The solitons correspond to discrete degrees of
freedom and the waves to continuum degrees of
freedom in the associated inverse problem. The
initial condition of Eq. (2) corresponds to one
discrete degree of freedom excited. At a later
time there will be, for the appropriate sign of e,
another discrete state as well as continuum states,
even for infinitesimal e. This is not the case for
other equations (nonlinear SchrOdinger, Sine-
Gordon, etc. ), which are soluble by the methods
of Zakharov and Shabat. "

In this paper I use the perturbation scheme of
Kaup and Newell, ' as their formalism is well suited
to understanding soliton production. In order to
make this paper self-contained, I repeat here the
necessary formulas. ' The inverse scattering
problem inovlves the Schrodinger equation

v„„(»,t) + [('+~(», t)] v(», t) = 0,
with the independent solutions (t), P

Fourier-transform methods, and it is easily
verified that the exponential behavior is valid at
later times. Thus Eq. (8) remains valid.

I wish to emphasize the importance of Eqs. (7)
and (8). The discrete spectrum is determined by
the zeros of a($) in the upper half-$ plane. If a
is not zero, it is clear that a($) and b(() have
simple poles at $ =0. For the Schrodinger equa-
tion g, is in general different from zero. However,
if the potential is ref lectionless or vanishes iden-
tically, a0=0 and a, =+1. Almostany arbitraryat-
tractive perturbation about either a ref lectionless
potential or no potential will lead to a small a,
and a zero of a($) at $ = -ao/a, ($ is small and
pure imaginary). I will show below that this new
zero emerges from ( =0, and as time passes it
moves continuously up (or down) the imaginary $
axis. For small time the zero moves approximate-
ly linearly in t This .zero, if in the upper half-$
plane, represents a secondary soliton that will
eventually emerge from the original soliton. If
the perturbation is left on for a sufficiently long
time, more solitons may be. produced, but I have
nothing to say about them. Note that we are able
to make these qualitative statements as a result of
simple analyticity arguments, and no detailed cal-
culations are needed. Of course to make quantita-
tive statements we must do some calculations.
Many of the other inverse scattering problems
(e.g. , Zakharov-Shabat) have a plus sign in Eq.
(7c) and hence a vanishes identically. In those
equations small perturbations about single-soliton
solutions do not necessarily lead to new solitons.

Using the formalism of Kaup and Newell, ' one
can compute o in perturbation theory; this then
gives directly the size of any new solitons. The
initial condition of a single soliton correspond to

a(&) = ($ —i)l, )/($ +iR, ), a, = 0, a, = -I,
b(h) —o,

(9)
y(», ~) =[e""/(~ +tq, )][[+iq, tanhq, (» - ».)],
y(», ~) =a(~)y(», -t).

$ a($ ) = a, + $ a, + $' a2 + ~ ~ ~,

~b(~) =-~+~b, +~'b, +. ~ ~ . (sb)
The time development of a((, t) and b($, t) is given
by the following equations':

This analytic behavior of a($) is in disagreement
with the suggestion of Ref. 2 that a($) will develop
an essential singularity at $ =0. According to Ref.
ll, Eq. (8) is true if"

x((, &)
=x

. f x(x, &)d(x(, &)d(x, (,&)dx, (10, )

b,(g, t) = St~'b(~)

lv(», t) l(I+ I»l)&»&". E q, t x, $, t x, -$, t dx,

We are starting with an initial solution, Eq. (2),
that falls off exponentially at large x. As q is
small for large g, it is sufficient to consider the
linearized form of Eq. (I), which can be solved by

e(», t) =—,. h
&

't 4'(», h, t)&&+q,.i (I2)b(5, t)

We shall not need the explicit form of q„~.' The
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first two of the infinite number of conservation
laws for the KdV equation have a known time de-
pendence if F =qI'(t). For that particular case the
time dependence is given by

00 (
I,(t) = q(x, t)dx=I, (0) expl e r(t'}di'

l)

and

(13)

OO (
t, (t) tt'(x=, t)ttx t, (p)e=xp(pe r(t )ttt ) ''(t4. )

~OQ 0

The soliton parameter in Eq. (2) is defined by

6I", "= r'-n, & le I

6I,(q, ) = ~ri, ~f,

r

aq, et, c&0,
6I,((7,) =

0, e(0

(21)

(22)

(23)

The sum of these contributions should give Eq.
(13) to O(e) if our work is correct. From Eqs.
(13) and (20} we have

From Eqs. (16}and (18)—(20) it is easy to find
the following contributions to 6I, (the superscript
"con" denotes the continuum contribution):

a(i'„ t) =0.
6I,"' = 4g, et. (24)

The functions I, and I, can be written in terms
of the scattering data by

I, =4+ q, +—
Jl logl 1—,df (16)

and

I, = ~g q' —— $' log 1-, d$. (17)
4 ", b($) '

a(h
'

We now want to understand how the various contri-
butions to I, and I, change as a function of time.
For simplicity, we take 1 =1. Then, using the
form of (()) and P for single solitons, ' we can inte-
grate Eq. (10) to obtain

a, =-', ig, et. (18)

For small et the perturbation is dominated by
small $, and from Eqs. (8a) and (18) we see that
a second zero of a(g) appears at $ =iq, ,

=2
g2 = 3q~gt .

t

e, (t) e, (p) exp(+ —,'e p(t')tt ).='
0

(20)

This is in agreement with Refs. 2 and 7. The
problem has been to understand how Eqs. (13) and
(16) are satisfied. "

We now are in a position to examine the quan-
tities I, and I,. It is clear from Eq. (16) that the
continuum contribution to I, is always negative,
which is contrary to the estimate of Kaup and
Newell. They used Eqs. (12) and (13) and obtained
a result proportional to the sign of e. The error
comes from the small-& behavior of q as deter-
mined by Eq. (12). In fact terms with amplitude
e2, can, when integrated, give a contribution of
order e to I,. For small et, by using just a, as
given by Eq. (18), and with a, = -1, it is possible
to evaluate the continuum and discrete contributions
to I,.

Clearly from Eq. (17) the continuum is at most
O(e')a) and q23 is O(e't'); so, to O(e'f'), I, is satis-
fied entirely by g„which gives immediately

2. a() F(qt t) ((x, $, t) d
' ' dx.dy(x, &, I)

00 ~.=o
(25)

The integr al is eas ily done, and, if we assume
that the coefficient of the term is one, we obtain
a correction to Eq. (10)

(26)

I

where x0 is the distance the original soliton has
traveled during the interaction. This estimate of
the size of the secondary soliton is in qualitative
agreement with the numerical integrations of Eq.
(2) by Wingate. " Since xo~ t and a ~t, we expect
that the second-order corrections come in at least
by

eg-1.
Once the secondary soliton separates from the
original soliton and any continuum radiation, its
size q, (t) will be given by an equation similar to
Eq. (20).

If we add Eqs. (21)-(23) we independently obtain
the same total contribution to 5I,. Thus it is
clear that the secondary soliton has twice as big
a contribution to I, as the continuum. For later
times more terms in the expansions of Eq. (8) are
needed and the integrals must be done numerically.
The continuum appears to gain on the secondary
soliton for later times. As previous estimates"
ignored the new soliton their estimates cannot be
correct.

ff a, (t) is calculated from Eq. (10) or (18), we
see that if I"& 0, it will increase indefinitely to
O(e}. This increase must, of course, stop, when
higher-order corrections are kept. Without doing
the second-order calculation, it is possible to
estimate the value of a, obtained when growth
stops. Assuming that the dominant contributions
are from )=0, we will see a in the combination
a,/$ on the right-hand side of (10). This pre-
sumably leads to a term of the form
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A final point which needs some further study is
the extension of these results to times longer than
0(l). The implicit assumption is that the multiple-
time-scale or averaging methods can be used.
This assumes the unperturbed motions are "fast."
However, if $ =0 dominates, this is no longer the
case as the phases are proportional to exp(8it'f)
and a($) can change more quickly than that. Note
that this is true even when no solitons are produced.
We expect some small long-wavelength excitations
due to the dominance of $ =0.

We now turn to a different perturbation to the
KdV equation that has been discussed recently"'"

&~+ 6~&x +&xxx = &&~x ~ (27)

This equation is referred to as the Kdv-Burgers
equation. The perturbation provides damping for
q) 0. If the initial condition is a soliton as given
by Eq. (9), the dissipation slows down the initial
soliton and generates a new soliton. For the op-
posite sign of q, no new soliton is produced. The
analysis proceeds as before except that now only

I] ls known exactly. It is easy to see directly from
Eq. (2I) that

1 (f) 0
dt

(28)

From Eq. (16) we see that the net soliton com-
ponent must increase. We now proceed to demon-
strate how that happens. Again all the corrections
to I, except the change in the original soliton are
O(e'). We find

(28)

From Eq. (IV) we have

d 11 8 8

dt M5e 11 t 11 M5~91t ll( (30)

This gives the rate of decay of the soliton. Clearly
to satisfy Eq. (28) a new soliton must be generated.
Substituting the appropriate E in Eq. (10), we
easily find g .

Qg —~5&E'g t,

and then

16
02 15 ~0 lt (32)

From Eq. (16), we calculate the continuum con-
tribution to I„

(33)

Combining the contributions and using the relation-
ship between I, and given by Eq. (16), we get, as
expected

It is clear from the above discussion that any
attempt to discuss the production of a shelf behind
the soliton, "should take into account the new
soliton component. In particular, Eqs. (13) and
(16) show that the secondary soliton creates a
positive shelf, while the continuum creates a
predominantly negative shelf. Note the curious
feature that for the perturbation of Eq. (3a), if the
original soliton increased in size a new soliton
was generated, whereas for Eq. (3b) the opposite
effect is noted.

In this note I have explained some qualitative
predictions of soliton production in the KdV equa-
tion. I find that up to a sign, if a single soliton is
perturbed, it will. generate a secondary soliton
which is at least as important a contribution to I,
as the continuum. Other equations, nonlinear
Schrodinger, Sine-Gordon, etc. , do not have this
feature of instant soliton production, but the domin-
ance of the perturbation by small $ should still be
the main feature when there is soliton production
in those equations. I am currently making detailed
quantitative calculations and comparisons of per-
turbation results with exact results over long time
scales. I will also present some numerical ex-
amples of soliton production. "
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