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A general analysis is presented of free-electron lasers in which a static periodic magnetic pump field is
scattered from a relativistic electron beam. The steady-state formulation of the problem is fully relativistic
and contains beam thermal effects. Growth rates associated with the radiation field, efficiencies, and
saturated-field amplitudes are derived for various modes of operation. Effects of space charge on the
scattering process are included and shown to play a dominant role in certain situations. Scaling laws for the
growth rates and efficiencies at a fixed radiation frequency as a function of the magnetic-pump amplitude
are obtained. The shear in beam axial velocity due to self-fields is discussed, and various methods of
reducing it are suggested. Finally, a detailed illustration of a far-infrared (X, = 2 pm) two-stage free-electron
laser using a 3-MeV electron beam and a 2-cm-wavelength magnetic pump field is presented.

I. INTRODUCTION

The class of free-electron lasers (FEL's) in
which a pump field is scattered from a relativistic
electron beam is of great interest as a potential
high-power, tunable source of coherent radiation,
particularly in the infrared, visible, and ultra-
violet spectral regions. The concept involves the
stimulated backscatter of a pump wave from a
relativistic electron beam. The pump wave may
be either an electromagnetic wave or a static
periodic electric or magnetic field. For a static
periodic pump wave, the backscattered radiation
frequency from a relativistic electron beam is

&u =(1+P, )y', P,ck, =2y,'ck, ,

where cP, = v, is the axial-drifting beam velocity,
1',= (1 —P2) '~', k, = 2m/I, and / is the period of the
pump wave. The modulated source currents for the
coherent scattered radiation are generated by axial
bunching of.the electron beam at the radiation
wavelength through coupling of the scattered waves
and the pump field. The mechanism responsible
for this axial bunching is the ponderomotive force
acting on the electrons in the combined fields of
the pump and radiation waves.

Analysis and design considerations pertaining to
the single-particle scattering process have been
carried out, both classically' ' and quantum mech-
anicelly. "" When the electron beam is sufficient-
ly intense, collective effects become important and
indeed may dominate the process. Linear analysis
of the FEL has been performed, including collec-
tive effects, ' """"and scattering efficiencies
have been derived for various FEL scattering re-
gimes 3,5, 12,14,22

Free-electron-laser experiments with pulsed

intense relativistic electron beams have been con-
ducted at a number of laboratories. "" Submilli-
meter radiation at MW power levels were gene-
rated with electron beams of energies up to a few
MeV and currents in the multi-kA range. In these
experiments collective effects play a dominant role
in the scattering mechanism because of the high
beam currents.

In another class of FEL experiments at Stanford
University, ""relatively low-current, high-ener-
gy beams were employed (IO-2A, 24 MeV &Eo
&43 MeV). In these tenuous-beam experiments
collective effects are negligible, and single-parti-
cle scattering physics applies. Operating in the
oscillator mode, "peak powers of -7 k% Bt 3.4 p
were generated with an efficiency of &.01%.

In this paper we present a general analysis of
the FEL process utilizing a right-handed cir cular-
ly polarized, spatially periodic magnetic pump.
A schematic of the FEL configuration is shown in

Fig. 1. The analysis is fully relativistic and
performed explicitly in the laboratory frame.
Our formulation shows that, depending on the
beam and pump parameters, several distinct in-
tera, ction processes can be distinguished. Our re-
sults are applicable to both the tenuous- and in-
tense-beam-type experiments. Growth rates (or
gains) together with saturation efficiencies are
derived for the various FEL regimes. A condition
for the neglect of collective effects for the low-
gain FEL process is derived. Scaling laws for
the growth rates and efficiencies at a fixed output
frequency as a function of the pump amplitude are
given. The detrimental effect of axial-velocity
shear on the beam due to self-fields is discussed,
and various methods of reducing this shear are
suggested. In addition, an illustration of a far-
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FIG. 1. Schematic of the free-electron-laser model.
The adiabatic buildup of the pump field is not shown,
and occurs to the left of the figures where the unmodu-
lated beam enters.

infrared two-stage FEL using a 3-MeV electron
beam is presented. Here the output radiation
wavelength is decreased approximately by the fac-
tor By, compared to the pump wavelength, instead
of the factor 2y,' for a single-stage FEL.

II. DERIVATION OF GENERAL FEL DISPERSION

RELATION

The pump is chosen to be a right-handed cir-
cularly polarized magnetic field given for z ~ 0 by

B,= Bo[e„cos(k~)+ e„sin(koz)], (1)

where Bo is constant and ko= 2&(/I (see Fig. 1).
The representation of the pump field in Eq. (1) is
a good approximation near the axis of an appro-
priate coil winding. The vector potential asso-
ciated with B, is Ao= -B,/ko. For particles in
the field given by Eq. (1) the canonical momenta
in the x and y directions, as well as the total mo-
mentum, are constants of the motion and are given,
respectively, by

g(n, p, u, z, t) =g'"(n, p, u) +g"'(n, p, u, z, t), (4)

where g' '(n, p, u) is the equilibrium distribution
and is an arbitrary function of the constants of the
motion, and g"'(n, P, u, z, t) is the perturbed part
of the distribution which is proportional to either
(t) or A. It is straightforward to show that the
perturbed part of the Vlasov equation for g'" is

~z) * ~
(z)

~e-itA1t +, C
at ym, a~

where

(5)

lel a - a aP H(n, p, u, z—) = i(d », —A —+—i-
2c (.

*
(&z „(&n Bp

+ zp A + ——g (o)
gz Q gQ

and the dependent variables are

v, = v, (n, p, u , z)=P, (n, p, u, z. )/r(u)m(), (7a)

Using the relativistic Vlasov equation we expand
the electron distribution function to first order in
the scattered fields E and B about its equilibrium.
It proves very convenient first to transform the
independent variables (p, z, t) of the distribution
functiontothenew independent variables (n, p, u, z,
t). The electron distribution is then written as

n(p„, z) =p„—(le I/c)A, „(z),

p(p„)=p, -(l l/ )A.,(),
u(p)= lpl,

(2a)

(2b)

(2c)

E(. t)=-'"=2 az

+—( )e(e(„e+ee„)}e "'+ e.e, (Se)
C

where p is the momentum.
We assume that the interaction between the

relativistic electron beam and the pump field has
reached the temporal steady state so that the ra-
diation fields are proportional to exp(-i(ot), where
v is the frequency of radiation. The radiation
and space-charge fields are given by

p =p (n, p, z)=p. +ip,
= n +i P —( I

e
I ao/cko) e"0',

p.=p, (n, p, u, z)=(u' p', p,')"',--
P.=P.(, )= +(l l/ )A,„( ),
P.=p. (p, z)= p+(lel/. )A (z),

y=y(u) = (1+u'/m', c')' '.
The general solution of Eq. (5) is

+ (1) g (j.)e-fvt + c.c.
where

g( && g (1&(n p u z)

g

dz'M(n, p, u, z, z')a(n, p, u, z'),
~ 00
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The beam has been taken to be unperturbed at z

, i.e., g'"(o, P, u, — ) = 0.
Rearranging Eq. (8), the Fourier transform of

the perturbed part of the distribution function be-
comes

X g.(dP Q~ ~Z A Z

(iob)

+ G,(n, p, u, z) —g(o&(o, p, u),
u

(9)

where

6,= dz'M(o. ', P, u, z, z')le l

2C

x~ i(d —v, (&, p, u, z'), ~A(z')
8&-

az'y

In Eq. (10a) we have integrated by parts, using the
fact that the radiation field vanishes at z = --~.
The expression for g'" in Eq. (9) determines the
first-order perturbation of the electron distribu-
tion function due to scattered fields with arbitrary
axial spatial dependence, is correct to all orders
in the pump field amplitude, and contains thermal
effects in g, .

The perturbed current density which drives the
scattered fields is given by

Z(z, f) = (Z,(z)e, +J,(z)e,]e '"'+c.c. , ,

~(z),lel-
2c (ioa)

where

J(z) -le( f „„f „u(;"'("a,)i, u, z) p.(a;)},z)

( )
p 0 oo ea l(u)pg( & p& &z)

( p )

with

and

= c(-ip —((e~a, ~ck, )e px(-ia, )z,

e, = -', (e, + ie, ) .
To evaluate the current density in Eq. (12), we

take

g'"(&, p, u) = u.~(~)~(p)g.(u),

where no is the unperturbed beam density, assumed
to be uniform in space, and g, (u) is arbitrary but
subject to the normalization condition ), d'ug, (u)u/u,
=1. The delta functions for n and P arise from
assuming that the equilibrium transverse momen-
tum is due solely to the pump field, i.e., that
transverse thermal effects can be neglected. Us-
ing the distribution function (13), we find, after
some lengthy algebra, that the Fourier coeffi-
cients of the current densities given in Eq. (12)
are

2 « I I

J.(z)= —— du (1 ——,
'

p', )A(z)+-, m, p,e'""' dz' ~, e '"' ~"&+ 'A(z')e «("& —g, , (14a)
c gu

J' (z)= —'m due'"'~". dz' -" ' -«"~".+ ' ' g( &)
-««'&(d

Bn' ()Z
'

C pu
(14b)
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where

(u, =.(4)(n,
~

e
~

'/m, )' ~',

P, = P,(u) = ~l,/y(u) v, (u)k. ,

Qo —
i
e

i
Bo/moc' p

rent in the wave equations for A and (t):

(d2 2 -4m-
, + —, A(z)= Z.(z),

2& C C

8(f)(z) 4' -
( )

gZ GO

(15a)

(18b)

g(z) = ((o/v, (u) —k„)z,

u, =u, (u)=p. (n=0, P=O, u, z)

= (u' —m', n', /k', )'",

v, =u, /y(u)m, .
The limits of integration over z' are from 0 to z
and not from -~ to z, because the amplitude of the
various fields, i.e., Ao, (iI), and A) are assumed
to build up from zero at z =- —~ to their initial
values at z = 0 in a distance which is small com-
pared to (k, + k, —v/v, ) ', where k. is the wave
number associated with A(z). The limits of inte-
gration over z' can therefore be changed from
(-~,z) to (O, z) without loss of accuracy. Because
the characteristic length (k+ ko —(d/v, )

' is much
longer than the wavelength of the pump field, this
situation is necessarily satisfied in any experi-
mental configuration. The driving current density
in Eqs. (14) contain: (i) the ponderomotive poten-
tial manifested in the term P, A(z); (ii) collective
effects from the scalar potential; (iii) arbitrary
axial variation of the excited fields Q and A;
(iv) ballistic terms propagating from the boundary
at z =0 associated with the lower limit on the z'
integral; and (v) arbitrary thermal. nature of the
bea, m manifested in g, (u).

The analysis is closed by taking the perturbed
current density of Eqs. (14) to be the source cur-

A number of different scattering regimes can be
distinguished using the general form for the driv-
ing currents expressed in Eqs. (14). We shall
discuss in detail those regimes which appear to
be important for the development of efficient,
high-power FEL.

III. LOW-GAIN LIMIT

The first case we consider is the low-gain or
short-cavity regime, where collective effects do
not play a. dominant role and the electromagnetic
wave is nearly of constant amplitude. By low-gain
limit we mean that the total integrated gain of the
radiation field is much less than unity. This li-
mit corresponds to the para. meter regime of the
experiments carried out a.t Sta,nford University""
with highly relativistic (&48 Me&), low- current
(~2. 4 A) beams. Neglecting collective effects im-
plies that &f&(z) «A(z) ( P,); the condition on the
bea, m density for this inequality to be s'atisfied is
given later. Taking the electromagnetic -field to
be of the form

A(e)=A(p)exp(i f p.(e')de'),

where
~

Im(k, )
~

«Re(k, ) and expf () dz'Im[k, (z')] =1.
With this representation, together with (14a) and
(15a), the dispersion relation takes the form

k'„—(u'/c'+2k, ,M(z)= — -
du~ y„- (1+-',P', ) —2' P',u)v, ' " ' ——g, (u),(u, m» 1 —exp[i[(() /v, (ko, + k())]zi—8 (17)

where k,(z) = k„+5k(z))
~

5k
~

«ko„and ko, =-2y', ck, is real and constant. Solving for the imaginary part of
5k(z) we obta, in

~',/c " mp, sin[(u/v, —(k„+k,)]z 8go
1m[5k z ]=—— du

2 P,co (18)

The total integrated gain in the wave amplitude
over the interaction region of length L, is defined
as Gl, = f o~ 1m[5k—(z')]dz'. It is straightforward
to show that if the thermal energy spread of the
beam, E~, is such that

E /E «y y/I.

the beam can be considered to be monoenergetic

in Kq. (18). In the above inequality E,= (y,
—1)m,c' = y,m, c' is the total kinetic energy of each
hearn particle, y„= (1 —v'„/c') '~' and x = 2m/ko,
is the wavelength of the radiation field. For future
use we note that &,„=happ p~p~ p~ghp
the beam thermal velocity. Assuming Eq. (IS)
to be satisfied we can use the distribution function
g, (u) = (u, /u)5(u —u, ) and find that
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Gz, ——8
m0mL'

0+

sin k0, + k0 —u v, L 2 '
Bg0

(k„+k, —(u/V, )L, /2 Bu

=—P' (k L)'— «1sinS, '
Oj. 0 861 g0

(20)

where k= k + k0 and k ls complex. Substituting
the potentials represented by Eqs. (24) into Eqs.
(14), in conjunction with the cold-beam assump-
tion, and making use of the wave equations (15)
we obtain the following dispersion relation for co

and k:

D(od, k —k, )[(u) —v„k)' —Cd', /y'. oyo]
where $ = ~,/(v y,cko), y, = y(u, ), y„=y, (u, ), P„
= P,(uo), 8o = (u/v, o

—ko, —ko) L/2, and u, is the
magnitude of the total particle momentum. The
function B(sin&o/eo) /Boo has a maximum value of
0.54 when 0,= -1.3, hence, the maximum total
gain is

G. .., = (&/4)'P„(k.L)'

where

2
', —'- D((u, k),

2y0 ck0

D(co, k) =—(d —c k —(do~/y

y.= y(u. ), v.,= v, (u.), y,.= y.(u.) .

(25)

and is much less than unity. Using Eq. (15b) in
conjunction with Eq. (14b) we find that the condi-
tion for neglecting collective effects, i.e., P(z)
«A(z)(P, ), can be written as

1 —exP(z[(d/v —(k, + ko)]z) Bgo
2~ ', (u/V. —(k„+k, ) Bu

which reduces to

The electromagnetic wave approximately satisfies
the dispersion relation D(a&, 'k, = k —k, ) =0; hence,
we carr replace D(~, k) on the right-hand side of
Eq. (25) by -2kk, c'. Also, since k, =&@/c, we ap-
proximate D(&d, k, ) by -2c'k, [k, (uP —&u'„/yo)'~ '/c].
The dispersion relation can now be put into the
simple form

[k —(If+ k, )][k —((u/v„+ K)][k —((u/v„—K)]

((I k,)', i (22)
1=-2+ ko~ (26)

The L' dependence in Eq. (22) is due to the depen-
dence of the perturbed density on length. The
density modulations on the beam can be shown to
increase as z' in our present limit.

It will be necessary to obtain the difference be-
tween the phase velocity of the ponderomotive wave
and the axial electron velocity when deriving the
saturation efficiency in Sec. V. From the defini-
tion of 6}» this velocity difference is simply

Cu ~OC
~ph —~go= -+ ~ = -~so=k,-+k ' y, Lk (23)

IV. HIGH-GAIN LIMIT

In contrast to the first case we now consider the
long-cavity limit, where the excited-field ampli-
tude spatially exponentiates several times within
the interaction region. Under these conditions
the terms containing the boundary conditions at
z = 0 can be neglected, i.e., P(0) «P(z) and A(0)
«A(z). We assume that conditions appropriate
to a cold beam are satisfied, hence g,(u)= Iu,
/u)5(u -u, ); we shall return to this point later.
The potentials can be represented by

P(~) = p(0)e"*,

A(z) =A(0)e'""
(24a)

(24b)

where k0, =2y~k0»k0 and the value of 6 extends
from 0 to =-3 for the domain of maximum positive
gain.

where

A = (uP —(u', /yo)"'/c,
Z/2~ —a/ ~g040y 0

&' = (halo/&ko)'(~o/y ov'„.o) = ( $ Po,ko)',

I oi = ~o/yov oko ~

f = u&, /V y, ego .
Further simplification of Eq. (26) is obtained by
setting

k = (d/Vgo+ K + 5k i (2'7)

where 5k is in general complex and
~

5k
~

«k.
Since v„=c and u» e„/Wy„we find that If =&u/e

(ok /(4y' ), K = $ko/y, o, so that Eq. (26) reduces
to

5k(5k+ 2 )k,/y„) (5k &k) = n'ko/2, (28)

where 6k= k, —&o/2cy'„ is a mismatch parameter.
At this point it is convenient to evaluate the differ-
ence between the phase velocity of the longitudinal
wave and the initial axial beam velocity in the
high-gain limit. This velocity difference is given

by

v,„—v.,=- -&v= ~/Re(k) —v,,= -[K+ Re(5k)]c
2 y,0k0

(28)
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where we have used the expression for k in Eq.
(27). The expression for 6 v in Eq. (29) will be
used later to obtain an estimate for the saturation
efficiency and maximum radiation field. Vfe now
discern two important limits of the dispersion
relation (28).

~k(8k —~k) = n'y„-/4~,

with the growing root given by

~k = —,'~ k ~ —,'f [~'y.,/~ —(~k)']"'.

(3o)

(31)

The condition for instability is clearly &'y,o/$
& (&k) and the maximum spatial growth rate oc-
curs when &4=0 and is

r,„=—-im(vk), „=—,'P„(~y, )'~'k .
Using Eq. (32) we see that the condition

~
5k~

«2)ko/y, o is equivalent to the weak-pump condi-
tion, i.e., Po, «P„«. In this FEI regime we find

(32)

v, —v„= -b, v= [((k,/y„+ &k/2)/2y', „k,], (33)

where Eq. (31) has been used for Re(5k) and &k

B. Strong-pump limit

In this regime the pump magnetic field amplitude
is sufficiently strong to satisfy the inequality P»
» P„«——4($/y', 0)'~ . The ponderomotive potential,
which is proportional to the pump amplitude, com-
pletely dominates the space-charge potential in
the strong-pump regime' and

~
y «1. This is a

single-particle scattering regime where collective
effects are negligible. For P»» P„«we neglect
2)k, /y„compared with 5k in Eq. (28) with the
dispersion relation becomes

A. Weak-pump limit

For a pump magnetic field amplitude such that
$»«P„« ——4($/y'„)'~' the space-charge potential
dominates the ponderomotive potential and collec-
tive effects a.re important. ' That is, in this case
the electron susceptibility

X = —(~ - ~, k) '(~;/y' y, ) = -1

and the electrostatic wave is nearly an eigenmode
of the system. This regime of scattering corre-
sponds to setting ~5k

~

«2)k, /y, o in the dispersion
relation (28), which becomes

The real pa.rt of 6k, which is a. function of &k, has
the maximum value Re(6k),„=($P~) ~'k, when &k
= 2()P„)'~'k,. The velocity difference in Eq. (29)
also attains its maximum value when Re(5k)
=Re(5k),„which is the point where the growth
rate vanishes. As we shall see in Sec. V the en-
ergy extraction is proportional to ~ v, and hence
the maximum efficiency is attained close to the
point of va.nishing growth rate.

V. SATURATION LEVELS

To obtain estimates for the saturation levels in
the different FEL regimes we resort to arguments
based on electron trapping. " In the cold-beam
limit, we assume that saturation occurs when the
beam electrons become trapped in the total longi-
tudina. l wave, i.e. , space charge plus ponderomo-
tive potential. The difference between the longi-
tudinal-wave phase velocity and the axial electron
velocity is initially v,„—v,o= -&v, where the dif-
ference & v is greater than zero for instability and
depends on the particular FEL regime as well the
frequency mismatch parameter &k [see Eq. (32)].
Assuming all the particles to be deeply trapped,
we may estimate that at saturation v,„—v, „,= & v,
where v, „,is the average axial electron velocity
at saturation and vph ls assumed to remain fixed.
The maximum decrease in the axial beam velocity
is -2~v corresponding to a change of particle kine-
tic energy by an amount

2v o+vmoc = -2yoy omov o v ~

g

(38)

The energy-conversion efficiency is, therefore,

q= -&&KE/(yo —l)mac =2y', o& v/c. (37)

Similar arguments have been used to obtain good
estimates for efficiency in two-steam interaction
processes. " The vector potential at saturation,
z =z„„canbe found by applying the conservation
law for total energy flux. The result is

In the low-gain FEL limit described in Sec. III
the efficiency, which is given by Eq. (37) together
with Kq. (23), is

(m)'(8k —~k) = --,' o'k, . (34) 2O, /I.k„-
The maximum spatial linear growth rate occurs
for exact frequency matching, i.e., &0=0, and is
given by

I',„=-—Im(5k) -- (v 3/2'~ ')((8»)'~ 'k, ,

while at this frequency Re(5k) = ()PO„)'~'ko/2 ~'.

for the highest-gain band; Oo ranges from 0 to -3.
The maximum gain occurs when Go= -1.3 and is
given in Eq. (21). The amplitude of the vector
potential at saturation is

= o)
I
(1+G.) ~
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Comparing Eq. (38) with (40) we find that the input
signal needed to cause saturation at z =L is

~"+~=(2 *' i'i')(2o )
"' (41)

with G~ given by Eq. (21).
In the high-gain, weak-pump FEL regime dis-

cussed in Sec. IVA, the efficiency is

q= (~/y„+ ~k/2k, ), (42)

VI. GROWTH RATE (GAIN) VERSUS Bp

FOR FIXED OUTPUT FREQUENCY

It is of interest to determine the scaling laws for
the growth rate (or total gain) and efficiency, for a
fixed output frequency, as a function of the mag-
netic-pump amplitude Bo. To obtain these
scaling laws for a fixed-output frequency co

=2y,ocko, i.e., fixed y«and k» we note that the
total gamma can be written as

(46)

Therefore, when B, approaches and becomes lar-
ger than the critical magnetic field amplitude

B„«——(moc'/le l)ko= (10.6/l) kG, (47)

where we have used Eq. (33) in conjunction with
(37), noting that the mismatch parameter is Lk
~ (f&,0)' 'p, ,k, Eq. uation (42) is valid in the high-
gain, weak-pump-parameter regime and hence,
the second term is somewhat smaller than the
first. The amplitude of the vector potential at
saturation in this case is

2

yco

where Eq. (38) was used together with the condi-
tion lA(z =z„,)l» lA(0) l.

Finally, we consider the high-gain, strong-pump
case. The efficiency, using Eqs. (29) and (37), is
given by

Re(6k)
'l1 =

0 . y20

where Re(6k) & ($Po,)'~'k„ the equality holding
where the spatial growth rate vanishes. When the
growth rate is maximum [see Eq. (35)] the effi-
ciency is

(45)

The second term in Eq. (44) is small compared to
the first in the strong-pump limit. The saturated
value of the vector potential is given by Eq. (43)
together with (45).

(where l is in cm), the axial gamma y„becomes
significantly smaller than the total gamma yo.
For fixed y„and k„when B,«B,„.„ the total
gamma is nearly equal to y,o; when Bo»B„«
however, y, =y„B,/B„„.

In the low-gain FEL regime, Eq. (21) shows
that the maximum total gain is proportional to Bo
for B,«B„«and falls off as B,' for Bo»B„«.
The efficiency given in Eq. (39) is independent of
the pump magnetic field a.mplitude for fixed y„
and k, .

In the high-gain, weak-pump FEL case the max-
imum spatial growth rate [see Eq. (32)] is propor-
tional to B, for B,«B„«and decreases as B,' '
for B,»B„«. The efficiency, on the other hand,
[see Eq. (42)] is independent of Bo for Bo«B„«
and falls off as B,' ' for B,»B„«. For the high-
gain, strong-pump case Eqs. (35) and (45) show
that, for Bo «B,«, both the maximum growth rate
and efficiency increase as Bo ', whereas, for Bo
»B„«, both the growth rate and efficiency fall
off as B,' '. These scaling laws for fixed output
frequency indicate that, for all the FEL regimes
which have been considered, the optimal magnetic-
pump amplitude is one where Bo=B„«.

VII. DISCUSSION

A. Energy shear

In the preceding formulation of FEL's, me have
neglected any effects of energy shear across the
beam. Such a shear arises owing to the self-elec-
trostatic-potential drop within the beam. This
leads to a radial dependence of the beam kinetic
energy in the equilibrium state. The energy shear
results in a shear in the axial equilibrium velocity
across the beam and, therefore, is equivalent to a
beam temperature. For an axially propagating
beam of radius ro the effective beam temperature
is of the order

~E =
l
e

l
~ y = (~k,r,/2)'E„

where & P is the self-potential drop across the
beam from r= 0 to r= ro, and Eo= (yo —1)moc' is
the kinetic energy of the electrons. A necessary
condition for the validity of the cold-beam approx-
imation in all the FEL regimes which have been
considered is

6E/E «q.
This inequality may be invalid at sufficiently high
beam densities.

A more refined analysis taking account of the
-energy shear should also consider the radial gra-
dient of the pump field, which is necessary to sat-
isfy V 'Bo= V'x B0=0. The radial dependence of
the pump produces a shear in the equilibrium

I
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transverse velocity which will tend to compensate
for the shear in axial velocity due to self-field ef-
fects. Other possible approaches which may be
considered to eliminate the axial velocity shear
include: (i) establishing Brillouin flow in the
beam by applying an axial magnetic field, or
(ii) creating the beam on a nonequipotential surface
so that the applied-potential shear just cancels out
the self -potential shear. In the following example
self-field effects will be neglected.

2nd STAGE

OUTPUT
RADIATION h2

VlMr
E-BFAM

EM PUMP

)st STAGE

STATIC MAGNETIC
PUMP

REFLECTOR

B. Two-stage FEL

As an illustration of a far-infrared radiation
source we consider a two-stage FEL generator.
In a two-stage FEL, two consecutive and distinct
scattering processes take place within a single
electron beam. The output radiation from the first
stage, in which the pump is a circularly polarized
static magnetic field, is reflected back on the
beam and used a.s the pump wave in the second
stage. This configuration is schematically de-
picted in Fig. 2. The final wavelength of the out-
put radiation, from the second stage is X=l/8y4
instead of f/2y'„as would be the case in a single-
stage device. Hence, in a two-stage FEL, far
shorter output wavelengths can be realized for the
same electron-beam energy. The pump field in
the second stage is a circularly polarized electro-
magnetic wave and not a circularly polarized static
magnetic field as in Eq. (1). Our results for a
magnetic pump, however, also apply to a circular-
ly polarized electromagnetic pump if the electron
beam is highly relativistic. To see this we note
that, in the beam frame, the two pump waves are
equivalent if we set B» ——2E,(s =z„,) and k»
= 2k,„where B02 and k02 are the magnetic field am-
plitude and wave number of the equivalent mag-
netic pump in the second stage and E,(s =s„,) and

are the saturated ele ctric field amplitude and

wave number of the reflected output radiation from
the first stage. The relevant parameters for this

FIG. 2. Schematic of the two-stage free-electron-laser
concept. The electron beam enters at left. Radiation
scattered at wavelength Q from the static magnetic pump
of wavelength l in the first stage is reflected to act as an
electromagnetic pump in the second stage. The final
scattered radiation is at wavelength Q - llgy~4.

example are contained in Table I. The results
outlined in Table I demonstrate that in principle
a rather low-energy electron beam (E,= 3 MeV)
is necessary to generate far-infrared radiation
using a. 2-cm-wavelength magnetic pump. The
radiation to beam power efficiency of 0.085% may
be greatly enhanced by adiabatically varying the
longitudinal wavelength of the electromagnetic
pump in the second stage. Contouring the pump
period for the purpose of enhancing efficiency has
been suggested in Ref. 14.

Recent nonlinear calculations have shown that
efficiency enhancement factors greater than 100
can be achieved by varying the wavelength of the
static magnetic-pump field. ' In the case of an
electromagnetic pump the axial wavelength may be
contoured by varying the waveguide wall radius.
Work is now underway at the Naval Research
Laboratory to evaluate this approach fully.
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TABLE I. Illustration of a far-infrared (X= 2 p) be-stage FEL. Electron beam energy:
Ep= 3 MeU (pp= 7); current: Ip= 10 kA; radius: rp = 0.3 cm.

First stage Second stage

Pump amplitude
Pump wavelength
Longitudinal gamma
Beam-strength par ameter
Transverse velocity
Critical velocity
Output wavelength
Spatial growth rate
Efficiency
Output power

Bpg=5 kG

lpga=2 cm

y@ = 5.1
E)= 0.61
P()l = 0.135
Pcr~t, g=o 27

Q = 0.038 cm
I' ~ &

= 0.37 cm

q, =12%
Ppg = 3.6 GW

p2
= 2E~ (z = ss ~)= 15.7 kG

lp&
= X&/2 = 0.019 cm

vg2-7
$2= ]&/(4y, &)= 5.g x 10
pp~ 2

-—0.4 x 10 2

pc~(t 2=1.65 x 10"2

X2=2.0 p,
I' 2= 0.13 cm ~

g2 = 0.085%
Ppg= 25 MW
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