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The quantum-statistical properties of the optical field of a two-mode laser with two coupled transitions
have been studied by means of a generalization of the Scully and Lamb theory. The photon number
distribution and the mode intensity distribution are obtained in the steady state for a system of
homogeneously broadened atoms in resonance with the laser field. It is shown that the mode-coupling
constant g is unity and that near threshold the results of earlier treatments are recovered. Furthermore, it is
shown that certain limit measures for the relative intensity fluctuations predicted by the semiclassical
Fokker-Planck treatments based on the third-order theory are valid even in the limit of arbitrarily high gain
levels.

I. INTRODUCTION

It is known that in multimode lasers different
modes compete against one another for contribu-
tion, partly from the same population of excited
atoms in the gain medium. Their interaction with
the atomic medium gives rise to a coupling be-
tween different modes and, depending on the
strength of this coupling, one mode can influence
the properties of the other modes to varying de-
grees. The simplest example of a multimode
laser is a two-mode laser where the effects of
mode competition show up most markedly in the
statistical properties of the light in the two modes.
In the bidirectional gas-ring laser, for example,
one mode grows at the expense of the other when
the cavity is tuned to the center of the atomic line. '
The stronger mode tends to become coherent as
gain is increased much above threshold; the weak-
er mode becomes completely chaotic and obeys
thermal statistics. Under certain circumstances
strong competition may lead to a bistable behavior
which may be reflected in the relative intensity
fluctuations of the weaker mode. Some of these
predictions have already been observed. '

In a two-mode laser with two-level atomic gain
medium, mode coupling arises because both modes
compete for gain from the same atomic transition,
viz. , the one from the upper level to the lower
level [Fig. 1(a)] with the possibility of emission
in either of the two interacting modes. However,
in a three-level gain medium [Fig. 1(b)], two
modes may be supported by two different transi-
tions. But, if these transitions share a common
atomic level, mode competition will arise, for
then both modes will compete for the atomic popu-
lation in the upper level ~a). In addition to this the
transitions are also coupled via a Raman or quad-
rupole-type interaction. A direct transition be-
tween the levels

~
b,) and

~
5,) is not allowed (we assume

this to be the case in our discussion), but a Ra-

man-type transition involving the upper level as
the intermediate state is possible. This process
provides additional coupling between the two tran-
sitions and hence between the two modes. Thus in
a three-level gain-medium mode, coupling occurs
because the two supportive transitions share a
common level and interact via a Raman-type pro-
cess. This situation, in practice, may correspond
to some two-mode Zeeman lasers or to a two-mode
ring laser where the counter-propagating waves
may be supported by the two transitions. ' In this
paper we treat a two-mode laser with the latter
type of gain medium.

The theory of two-mode lasers has been devel-
oped by many authors. Most of these treatments
have been semiclassical and deterministic, ' in
which a set of coupled Maxwell-Bloch equations
is solved, usually perturbatively, up to third or-
der in the field strength, for a system of two-
level atoms interacting with a two-mode electro-
magnetic field. To discuss the statistical proper-
ties of the light field, these theories have been
generalized to include the effect of spontaneous
emission noise, by replacing the Maxwell-Bloch
equations with Langevin-type equations which may
be converted into a Fokker-Planck equation. Many
such treatments have been given. ' There have
been one or two quantum-mechanical treatments
as well, but there a perturbative approach has
been used. ' Systems with two coupled transitions
have also been discussed using similar procedures
but the emphasis has been on such different as-
pects as application to sub-Doppler spectroscopy
and line-shape studies. ' The statistical nature of
the field in such media has been ignored.

In the following analysis we present a second
quantized treatment of a two-mode laser with two
coupled atomic transitions using a procedure simi-
lar to the Scully and Lamb treatment of a single-
mode laser. Starting from the equation of motion
for the combined atom-field density matrix, a
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master equation for the reduced density matrix
of the field is obtained. This master equation is
solved in the steady state to obtain the photon
distribution function. Analytic expressions for
various moments of the photon numbers in the two
modes are calculated. To make comparison with
semiclassical theories, the master equation is
converted into a "Fokker-Planck" equation using
the coherent-state-diagonal representation of the
density matrix. ' The resulting Fokker-Planck
equation is solved and the statistics of the light
field are discussed. It is shown that for equal
losses neither mode approaches a coherent state
as gain is increased. The relative intensity fluc-
tuations of both modes approach the value —,'. In-
tensity cross correlation has a negative value,
which reflects mode competition, and it approaches
the value ——', . For unequal losses the favored
mode grows and becomes coherent. The weaker
mode does not lase and obeys thermal statistics.
Finally, the results are generalized to the case of
N-coupled transitions and simple results are de-
rived for the moments when all the losses are
equal.

II. EQUATIONS OF MOTION

We consider a system of atoms having a level
structure shown in Fig. 1(b). The atoms a,re
pumped to the upper level ~a). An excited atom in
the state ~a) can make a transition to level ~b, )
(~ b, )) by emitting a photon into mode 1 (2) under
the influence of the laser field of frequency &o, (&o,).
In addition to participating in the laser action,
levels ~a), ~b,), ~b, ) can decay to a set of levels
~ c), td, ), ~d, ), respectively, via their interaction
with a set of independent zero-temperature reser-
voirs. The radiation emitted in the last processes
does not contribute to the laser radiation. The
Hamiltonian SH for such a system is

2 A A

H= g&(), ala,. + g W„At A„+g, «), aya,
n= a, b1., b2

C ~ 4] y42

2

+ QQ(o„ay a . + Q (g,at. tJ A, +H.c.)
f=l af i=&

+Q (g, at i(tA, + H. c.)
s
2

+ gg, (g, ay, A~~ A~ +H. c.)
f=& af I

=Ho + Ho"+ HD+ &0~2+ ~+ ~'+
s af

Here &(), (&u, ) is the frequency of mode 1 (2) and
a, (a,), at (at) a,re the corresponding annihilation
and creation operators; IW„ is the energy eigen-

value associated with the atomic level e and A~

represent the annihilation and creation operators
for the atomic levels; SH', , SIIO&, AHO2, are the
free Hamiltonians of the reservoirs interacting
with levels ~a), ~b,), ~b,), respectively. The res-
ervoir variables carry subscripts s, cr, , and 0, ,
SH, and IH,"describe free-field and atomic Ham-
iltonians. The atom-field interaction is described
by V. Similarly, the reservoir-atomic-level--in-
teractions are represented by p', p'~, and &~2.

s()&(()~&y' ) &(a»

with

h,.(r) = (h(o,./2e, V)"'U,.(r),
where ex, b. is the dipole matrix element connect-
ing state ~a) with ~b,.). U,.(r) describes the spatial
dependence of the field, which we shall ignore. In
general, g is a complex quantity but we shall take
it to be real because the final expressions for the
quantities of interest involve g'i, which in the case
of complex g,. can be replaced by ~g, ~'. Similar
expressions exist for g, , g~, , and g~, .

The equation of motion for the total density ma-
trix in the interaction representation is

A

= —i[f (t), p]-i F() )'+gP (v ) J, p),
s f af

(2)

where 0 is the operator 0 in the interaction pic-
ture.

We are interested in the following states of the
system:

(a, n„n„O,)=—o&; (c, n» n» 1,)=—y,

(b„n, + 1, n„O, ,) —=P, ;

(d„n, + 1, n„1,,) = 5„.

(b„n„n,+1, O. )=-P„.

(d„n„n,+1, 1, )=—5,.
The quantities in the definition of states refer to
the atomic state, the number of photons in mode
1, the number of photons in mode 2 and the num-
ber of photons in the reservoir state, respective-
ly. In what follows a prime over the Greek letters
signifies a prime over the field quantities, e.g. ,
&)"—= (a, n,', n,', 0,). Using Eqs. (2) and (3) we find
the following equations of motion for the relevant
matrix elements of the density operator:

lynn'= &ll'
& pl nni Q (l'ny pya' any'y'y'a')

(4a)
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FIG. 1. (a) Two-mode
competition for the same
atomic transition; (b) two-
mode competition for two
different transitions shar-
ing a common level.

A

p S' i[V 1 P]nS' i g (V yPyS' PnS' 3 S')1
Sj O1

(4b)

ps, s', =-2+ (V's', s, ps, si Ps, s-', Vs', s. )
O2

(41)

Ps n' 2[V ~ P]s n'

-i Q (Vs 3 ps n~-ps, y Vying),1(X 1$ g C

(4d)

p, &=- [',p], ,'

2 g (Vs' s Ps 81 Ps s(V i i ) ~ (4e)

A

Ps, s,' = -i[.V' p] s,s;

P s2~
= -i [V, P] „s,. ig-(V'„y Pys'2-Pnsi Vsb s, ),

S ~ O 2
'2 2

(4c)

where we have dropped the superscipt I in the
terms describing the atom-reservoir interaction
for typographical convenience. Similar equations
can be written for p ~, pz z i, p &. ~, p& z .. As

5 C

noted earlier the radiation emitted to reservoirs
is unobserved; we therefore trace Eqs. (4a)-(41)
over reservoir variables. In doing so we use the
assumptions and approximations of the Nigner-
%eisskopf theory and follow the procedure of
Scully and Lamb. ' This procedure yields the ef-
fective decay rates for the atomic levels. Then
using the following notation for the atom-field
states:

1= (a, n„n, ), 2-=~b, n, +1, n, ),
3=- ~b„nn, 1+), 4=- ~c, n„n, ),
5= (d,„n, 1+, n, ), 6=-(d2, n„n, +1),

Z (Vs 3 Ps O' Ps 3'Vs~sf)~
Ops O2

Ps, = 2[V', Pl-s,;
(4f)

where, as before, a prime over the state symbols
represents a prime over the field variables. %'e

obtain

/ I I I
Pll 4 12 P21 13P31 P12 2 1

(Vs s Ps n' Ps y' Vy'n')!
S ~ O2

(4g) YrIp, '. ,~ -) r.p„,- (6a)

th

Ps s [ & P]s sl

-i (Vs223 ps2sl —ps st V 1 ),

/ trI
P12 ("12P22 " 13P32 pll " 1 2 ) yab P12

(6b)

Ps,s; =-i[V' P]s,s,'

-i Q(Vs,'s, ps s Ps, s V,"-,, ),
O 2

.~ / rrSP7y2(yVPnlnyPy/Yntnyt )p

(4h)

(41)

(4j)

/ I I
P13 ( 12 P23 13 P33 P11 1'3' ) tab2 P13

/ I I I
P21 1 21 Pll P22 V2'l~ p23' V3'1' ) tab P21~

P22 1 "21 P12 P21 " 1 2 ) Vbl P22

P23 = —i( 21P13 P21 ~ „,) —y 3 P2

(6c)

(6d)

(6e)

(6f)

(Vs s Ps 3 -Ps s'V 's )O

1 1 1 1 1 1 1 ~1
Ol

I I
P31 31 Pll P32 V2 1 P33 3 1~ )

&u2P31' ~
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P "2 ( 31 P12 P31 " 1 . 2 ) yblb P32 0 = —i (V21v13i —v21i V, i3i )

P33 ( 31P13 P31 "1 3 ) yb P332

I 44 ~a ~11 (6j)

i-(a, +a, - i y, , )v„, ,1

31 ll 32 21 33 3 1

(10f)

P-5! Pg @221

~66t ~b ~3St t
2

(6k)

(61)

+2 (a2+2y„)v31i,'2

(V31 12 31 Vl 2

(10g)

where the decay constants y„, y, , y, are
2

y. = 2170(~ )~ V;,.„~',

y, , =-2'(cub „)(V;&, &,~',. 2=1, 2; (vb)
1
t

Q(&u,
&

) is the density of the final states at the fre-
quency v, , =S; -8'& in the transition i- j, and

+ '4 (ib 1 + 6 2 + 2 yb b )v32 i 1byb2

0=- ( „„,— „,V..., )-, „,,

P.4 «3+ )=y. »

P3 '(tb+T) =yb, v22'

P«(t3+»=yb2v33"

(10h)

(10i)

(10k)

(101)

y„,=2(y, +y, , ), & =1,2, yb. b. =2(yb, +yb, )

XVe now replace p in Eqs. (6a)—(61) by e *"o'

P e'~o', where Ho=&~o+H~o and integrate the re-
sulting equations from time t, (the time at which
the atom is introduced in the excited state) to t,
+T. The time T is chosen to be large compared to
all atomic decay times involved but small com-
pared to the time for growth or decay of the radia-
tion field. If we introduce the following symbols
for the integrals

to+
v, ,' (t, + T) = p, , (t ')dt',

"
&o

Here V is the field interaction given by Eq. (1);
6, and 62 are the detuning of the mode frequencies
from the atomic transition frequencies given by

~, =[(W. -W, )-~,], tb, [(W. -W, )-~,]. (11)

In arriving at Eqs. (10a)-(101) we have used the
fact that I' is much larger than all atomic lifetimes
involved so that at time to+7 all the matrix ele-
ments of the density operator, diagonal in the
atomic states ~a), (bl)1 (&2), will be negligibly
small. Further, since at time to the atoms are
introduced in the upper state, all the elements ex-
cept p». (t,) will be zero.

The reduced density matrix p„„.„t„ofthe rad-
~

ttytl2 tl gtl 2
iation field is obtained by tracing over the atomic
states. This gives

en the integrated equations can be written as

Pll (t0) (V12 21 V13 31 12 2 1

-v13 V31 ) -y. v»

12 22 13 32 11 1 2

-i (6, —iy„)v„b,

(10a)

(10b)

= p„(t3+T)+p„.(t, + T)+p„(t,+ T)

+ P4g' (t3+ T) + P33' (t3+ T ) + P«' (t3+ T) ~

The matrix elements p»i (t, + T), p22i (t, +T) will
be negligibly small; then using Eqs. (10j)-(101)
we obtain

12 23 13 33 11 Vl 3

i (a2 —i y—„2)V13. ,

21 11 v22 V2 1 23 V3 1

(10c) =y, v». +yb v»b (n, n, —1, n,'-n,' —1)

+y, v„.(n, -n, —1, n,'-n,' —1). (12)

+i ( fbi y„) vi,21aha

' (V21v12' v21' Vl'2' ) yb v»'
a

(10e)

The initial condition gives

(13)



QUANTUM THEORY OF A T%0-MODE LASER %ITH COUPLED. . . 285

(2g'/y. y ..)(,+1)
1+(4g /y, y, )(n, +n2+2) (14b)

(2g'/y. y.~)(rz2+ 1)
1+(4g'/y y )(n +zz +2) (14c)

Our problem now reduces to solving Eqs. (10a)-
(10i). It is possible to solve these equations under
general conditions but the expressions are lengthy
and complicated. Furthermore, not much is to be
gained in terms of the understanding of the statisti-
cal properties of the optical field by keeping the
most general expressions. We shall make certain
simplifying assumptions. Both modes will be con-
sidered to be in resonance with corresponding
atomic transition frequencies, i.e., b, , =6,=0.
Mode frequencies ~, and ~, may be unequal and
may correspond to two different longitudinal modes
of the cavity. For equal frequencies two modes
will be considered as having two different polariza-
tions. These conditions are not difficult to meet
in practice. We shall also assume that the two
coupling strengths g, and g, are equal and will be
denoted by a common symbol g. These assump-
tions hold for many systems of practical interest'
and in Sec. III we shall comment on the ease g,
4 g, . In many cases it may be a good approxima-
tion to take y, =y, =y~. With these simplifica-
tions it is straightforward to solve Eqs. (10a)-
(10i) for the diagonal elements (zzz=rzz, n, =zz,')
and the result is

—'"&'" '~'"""""
p(n ~ ) (14.)1+ (4g'/y, y, )(zzz+ zz, + 2)

Similarly the equation for the losses is found to be

~

—„p(n„n, ))
fd

loss

= —Czzz, p(n„n, ) —C,zzy(zz„zz, )

+ C,(zz, + 1)p (rz, + 1,zz )+ C, (zz + 1)p(n, n, + 1) . (1 6)

The loss parameters C,. are related to the cavity
Qby

C, =z/Q, i=1,2.
We have assumed losses to be linear in photon
numbers and independent for the two modes.
Finally, defining the A and B coefficients by

(17)

A =r 2g /y y ~, & =r 8(g /y y~)(g /y y ~), (18)

it follows from Eqs. (16), (17), and (19) that
p(zz„zz, ) satisfies the following equation

where P(n„zz2) = p„„.„„ is the probability of
finding n, photons in mode 1 and n, photons in
mode 2.

If x, is the rate at which atoms are introduced
into the cavity in the excited state and each atom
has the same line broadening (homogeneously
broadened gain medium), the rate of change in
the diagonal elements of the coarse-grained den-
sity matrix of the field is found from Eqs. (12) and
(13) to be

d
p(+z +2) =r.[r,&»+y /+22(+z +z 1)

gain

+y, (r33(n, - rz2 —1) —p(n„zz, )] .

d—p(zz„n, )

p(zz„zz, ) —
1 &

'
2)

p(zz„zz2) + Cz(n, + 1)p(nz + 1,zz2) + C,(rz, + 1)p (g „n2+ 1)
A. (rzz+ 1) A(rz, + 1)

An An2
+

( / )(' )
p(nz —l, zz2)+

( / )(
'

)
p(n„zz, -l) —C,zz,p(n„zz, ) — 2ng(n„zz2) . (19)

'fhis is the desired master equation that we set out to derive. Various terms on the right-hand side of this
equation can be interpreted as outflow and inflow of probabilities in two dimensions (see Fig. 2).

A(n, +I)
p(n~

I+ —(n ~+n~+2)
A

n, +I,nz

+I) p(n~+I, n2)

{np+I) p{n)n~
A(nz+I )
+ (n~+n&+2)

n), np+I

p(n(, np}

FIG. 2. Probability flow
diagram for a two-mode
laser.

p (n~-I
An)

I+—(n~+n&+ I ) ~p(n~, n&)

Cznz p(n~ nz)

p(n~, n~- I )
+

A
(n~+np+I )

n), n~-I



286 SUREÃDRA SIR GH AND M. S. ZUBAIRY 21

III. STEADY-STATE SOLUTION AND PHOTON STATISTICS

In the steady state of the system P(n„n, ) is independent of time and obeys the equation

P (n„n, ) — '
P (n„n, ) + C, (n, + 1)p (n, + 1,n, ) + C, (n, + 1)!()(n„n, + 1)

A (n, + 1) A. (n, + 1)

An, An,
)
p(n, —l, n, )+

1 ( /A)(
'

)
p(n„n, —1) —C,n,p(n„n, ) —C,np(n„n, ) = 0. (20)

In view of our interpretation of Eq. (1S) it follows
that Eq. (20) represents the steady state of the
two-dimensional probability flow. It can be shown
that Eq. (20) is equivalent to the following equa-
tions:

An,
C,np(n„n, )=

( /A)(' )p(n, —l, n, ),
(21a)

C An,,np(n„n, ) =
/

p(n„n, —1),

(21b)

which have a. common solution

(,(e„e,)=Z '(
'

)"'( ')"' !'(—+e, +e,+e),
(22)

where

&n, (n~ —I). . . (n, —(((, + 1)n~(n2 —1).. . (n, —v+ 1)&

BC, ~BC,

e,(!(,+ 1, v+ 1;A/B+ p, + v+ 1;A'/BC „A'/BC)
4,(1,1;A/B+ 1;A'/BC„A'/BC, )

(24f)

The expressions for the moments (24a) (24f)
do not tell us much since 4, is not a tabulated
function and, when expressed as a. series, it con-
verges rather slowly. However, a qualitative
understanding of the statistics can be gained by
considering Eq. (22) directly. We consider two
cases:

(i) C, = C, = C: The distribution function depends
only on the sum n, +n, and, above threshold, it
peaks at

A' ") A' "~ I"(n, + 1)I'(n, + 1)
BC, BC, n, !n,!I'(A/B+n, +n, +2)

= 4',
I » I) +Ii— (23)

n, + n, =A(A C)/BC. (26)

%hen the laser is operated much above threshold,

&n, + n, & -A'/Bc

is the normalization constant and 4, is the de-
generate hypergeometric series in two variables
A'/BC, and A'/BC, "' With ex.pression (22),
factorial moments are easier to calculate and we
give the results for the first few factorial moments

A' ye, (2, 1;A/B+ 2;A'/BC „A'/BC, )
CJC,(l, 1;A./B+1;A'/BC A'/Bc, )

'

(
A' e, (1, 2;A/B 2;A'/BC„A'/BC, )
BC C,(1, 1;A/B+ 1;A'/BC„A2/BC, )

'

A C,(3, 1;A/B+ 3;A2/BC„A2/BC, )
BC, C,(I, I;A/B+ 1 A'/BC„A2/BC, ) '

(24c)
A' ' 4,(1,3;A/B+ 3& A'/BC„A'/BC, )

BC, C,(1,1;A/B+ 1;A'/BC„A'/BC, )
'

(24d)

A' A' C,(2, 2;A/B+ 3;A'/BC„A'/BC, )
BC, BC2 C,(1, 1;A/B+ 1;A2/BC„A2/BC )

'

(24e)

In general,

and n, +n, far exceeds A/B. Under these condi-
tions

tl y +Fl2

P,(e„e,)-( e"""/(e,+e,)!

= (&n, +n, &)'~ "2 e & "~ "2)/(n, -.+n,)!, (26)

which is a Poissonian in n, +n, but not in n, and n,
separately. This indicates that neither of the
modes becomes coherent even at gains that are
much above threshold. This is clearly a result
of mode competition. That the two modes will be
correlated is evident from Eq. (26). Actually we
can do better than that. By considering ((n, +n, )
&& (n, +n, —1)) over the distribution (26) we can
establish

&&n, r) n, & &(&n, )'& 1 &(bn ) & 1
&.,&&n. & &n, &' &n, &

It can be shown that &(bn, )'&/(n, &'o-0. The quantity
1/(n, & will be negligibly small above threshold.
This leads to another result that the two modes
may be anticorrelated and the limit of &An, &n, &/

(n, )(n, & is the same but opposite in sign to the
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limit of ((hn, )')/(n, )' at high gains. We shall see
that these conclusions are borne out by computer
evaluation and in agreement with the results of
Sec. 'lJ' for %=2.

(ii) C, 0 C, (C, —C, & 0): In this case, when the
laser is above threshold, the distribution peaks
at

n, = (4/IIC, )(A —C,) A'/-IIC, as A/C, —~

and n, is very much smaller than Qy Then we can
neglect n, compared to n, in the denominator of
Eq. (22), so that the distribution approaches a
poissonian in n, . Two conclusions follow: (a)
The stronger mode does approach a coherent
state, and (b) Both modes become independent
and cross correlations tend to die out much above
threshold.

It is easy to see that, when both modes are below
threshold, g, and n, can be neglected compared to
A/B (typically-10') and that the distribution

P,(n„n, ) goes over into a product of two Bose-
Einstein distributions. Near threshold it can be
shown, by using Stirrling approximation for the
factorials, that p, has the same form as derived
by Smirnov and Zhelnov' using a fourth-order
quantum-mechanical treatment. As we shall see,
these are also the predictions of the third-order
semiclassical Fokker- Planck theories. '" In
Sec. IV we establish the connection with these
theories, which give an excellent account of the
statistical properties near threshold.

converting Eq. (20) into an equation for 4 con-
siderably. Noting that in the steady state 4 will
be independent of the phases of the two modes,
we obtain the following relation for the diagonal
elements of the density matrix in the steady state:

8$ Pg2 t
(29)

where I, =
~

P, ~' (i =1,2) are the associated inten-
sities and P(I„I,) which is simply related to 4,
corresponds to the semiclassical intensity distri-
bution function. We also introduce an auxiliary
function W(I„I,) by"

with

I"3- I"2
Pl]

(30)

8 8 — C~ C2(I +I )W+ I +I —W+ 'I + 'I —P=.O-'8I, '8I,
(32)

1 ——I, +I2 Iy I2 W P.8 8
(33)

These equations can be solved for W by eliminat-
ing P; the result is

[1+(&/A)(n, +n, + 2)]W (n» n, ) =p, (n~, n2) . (31)

Using Eqs. (28)-(31) we find that Eq. (20) is equi-
valent to the set of coupled differential equations

IV. FOKKER-PLANCK APPROACH

In semiclassical theories intensities serve as
field variables rather than photon numbers. It is
therefore appropriate that, in order to establish
a connection with earlier treatments, we convert
Eq. (20) into an equation which corresponds to the
Fokker-Planck equation for the classical intensity
distribution function. This can be done by using
the coherent-state representation of the field,
which allows a representation of p„„.„,„, in terms'
of the quasiprobability function 4 (p„p~ p, p*).
The two are related by

Pff yn&tff&ff'
@ ~l & ~1

BC, BC,W(I„I,) = const
~

1 —,'I, —,'I, e~~'~2,
2 1 ~2 2

BC, BC2
2 I, +---2 I2 ~ 1,

=0, BC& BC,'I,+,'I, &l. (34)

The intensity distribution function is then found
from Eqs. (33) and (34):

TABLE I. C2-C(=0.0. Variation of (Ig), @pal, and pg2
against the ratio (A-C&) vrhen both modes have equal
losses. In this case (I&)= (I2) and p&&

= @22. We have
taken A/B=108, 4= @sec '.

&~ C,~/~

I, P~'P~ 'P2'P2 '
d2P d2P (23)(n!n tn!n!)' '

Here P, and P, are the complex field amplitudes
of the two modes in the coherent states of the field.
Since our interest is confined to the steady-state
distribution, we can simplify the procedure of

0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.1022
0.2084
0.3192
0.4348
0.5556
0.6818
0.8139

0.3365
0.3341
0.3336
0.3335
0.3334
0.3333
0.3333

-0.3317
-0.3329
-0.3331
-0.3332
-0.3332
-0.3333
-0.3333
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.A/8 -1BC, . BC~ I~ +I2P(I~, I2) =N 1 — 2 I~ ——2 I2

BC, gC,' I + —2 I ~1

BC, BC,,'-I, + „-.,'I, &1, (35)

where N is the normalization constant. Equation
(35) is the two-mode analog of the single-mode re-
sult. "'" Note that if we set I, =O, Eq. (35) re-
duces to the single-mode result.

Near threshold average values of I, and I, are
small and the inequalities (BC, /A') I,«1, (BC,/A )I,
«1 are satisfied. The factor in front of the expon-
ential in Eq. (35) can be approximated as follows:

(i BCB,C, }"'

A aC, aC2=exp ——I ln 1-—' I —— '-'I
A2 1 A2 2

C, C,=exp ——' I — ' I—
A A' 2A

C~ 2 C2 2 C~C2x- I, A I2 —2 ., I I (35)

If we introduce the pump parameters

a,. =(A -C,.)(2/AB) ", i =1, 2,

and the dimensionless intensities

I',. = (2 B/A) "'I, , i = 1, 2,

it follows from Eqs. (36)—(38) and (35) that

P(I'„ I', )

=Q 'exp(aaiIi+ aa2I2 4 Il ~ I2 2 I1I2)

(39)

where we have put C, =A=C, in the quadratic
terms in the exponent of Eq. (39). This is justi-
fied because in the neighborhood of threshold, at
a,.-10, e.g. , A-C,. -10 ' —10 ' for A/B-10' from
Eq. (37). The restrictions on P in Eq. (35) can
now obviously be removed, for the distribution
(39) never really sees the boundary and both I, , I,
can be taken to run from 0 to ~. Distribution (39)
has the same form as the intensity distribution
function in the third-order semiclassicaL theories
of Fokker-Planck type. ' In particular this is the
same as the function derived by M-Tehrani and
Mandel for a two-mode ring laser if we put $ = 1
in their expression. " It is seen that our case cor-
responds to two neutrally coupled modes (the cou-
pling constant $ being 1). At this point a few com-
ments are in order. We have considered a homo-

geneously broadened three-level gain medium. In
principle both standing and running wave fields
can be incorporated into the theory by defining g,-
appropriately, but the coupling would never ex-
ceed unity. Actually the choice g, =g, =g led us to
the upper limit g =1. Basically, the system that
we have considered is a system of two weakly cou-
pled modes. If g, wg2, coupling would be smaller
and would be even smaller still for an inhomo-
geneously broadened medium. It has been pointed
out that in the homogeneously broadened ring laser
with two-level atomic medium, $ can have values
greater than unity and this has a significant in-
fluence on the statistical properties of the radi-
ation field. '4 To search for the reason why this
does not happen in the present case, we go back
to Eq. (12). We note that for two-level atoms ad-
ditional terms like a 23. and o» would also enter
in the evaluation of the elements of the reduced
density matrix. Such terms are obviously absent
in the present case. These additional terms are
responsible for the enhanced coupling between the
two modes in the former case under certain cir-
cumstances.

Since, near threshold, the distribution (35) co-
incides with those obtained in earlier treatments,
nothing new can be said about the statistics of the
two modes. High above threshold, Eq. (35) will
have to be considered. Unfortunately, it is not
possible to express the moments of the light in-
tensities in terms of simple functions except in
the case of equal losses (see Sec. V), although
they can be expressed in terms of an. infinite ser-
ies of degenerate hypercometric functions of one
variable which is hardly of any use. It is, how-
ever, possible to evaluate them numerically.
Tables I and 1I show the variation of (I,) and (I,)
against the ratio (A —C,)/A. When C, =C, , it is
found that the average value of both I, and I, in-
creases as A(A —C,)/2BC, . For unequal losses
(C, —C,&0), the average intensity (I,) of the
stronger mode grows as A(A —C,)/BC, , whereas
the intensity of the weaker mode approaches a
constant value.

More interesting is the behavior of the relative
intensity fluctuations (Tables I and 11). For equal
losses, both p, , = ((b,I,)')/(I, )' and p.» = ((b,I,)')/
(I,)' approach the value 3 with increasing gain
Actually these quantities are already close to this
value when the laser is only 2% above threshold,
which corresponds roughly to gain parameter val-
ues a, =a2=30. Thus fluctuations do not die away
even in the high-gain limit and neither beam ap-
proaches a coherent state, which is regarded to be
the characteristic of laser light much above thresh-
old. Similarly the cross correlation p, » = (EI,EI,)/
(I,) (I,) (Tables I and II) has a negative value and
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TABLE II. Cz-C& -—0.005. Variation of (I&), (I2), pqq, p22, and @&2 against (A-C&/A) when
the second mode is a little more lossy. The parameters for this table are the same as for
Table I.

(A-C()/A (It) x 10-5 (I2) x10~
@gal

~ 10 @&2 X 10

0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.2021
0.4147
0.6364
0.8677
1.1093
1.3618
1.6261

0.1959
0.1919
0.1879
0.1839
0.1799
0.1759
0.1719

0.2543
0.0603
0.0255
0.0137
0.0084
0.0055
0.0039

1.0004
1.0005
1.0006
1.0007
1.0009
1.0011
1.0013

-0.9750
-0.4655
-0.2971
-0.2133
-0.1632
-0.1300
-0.1064

approaches ——,'with increasing gain. This neg-
ative correlation is a result of mode competition
and the fact that this approaches a constant value
shows competition between the two modes persists
no matter how large the gain is.

For unequal losses the situation changes dras-
tically. In this case the intensity fluctuations of
the stronger mode (1) do go to zero rapidly above
threshold, whereas that of the weaker mode ap-
proach unity. These conclusions are in agreement
with the qualitative inferences drawn in Sec. II. It
is remarkable to note that M-Tehrani and Mandel"
predicted the same limiting values for various mo-
ments, starting from a Fokker-Planck equation
based on a third-order theory. We emphasize,
however, that those predictions are for a two-
mode ring laser in an inhomogeneously broadened
medium but, as noted before, the terms that cause
increased coupling in a homogeneously broadened
two-level system are absent in the Doppler limit.
These terms are already absent in the present case
because we have considered two nondegenerate
lower levels. The conclusion that the predictions
of the third-order semiclassical theories hold
even in the high-intensity regime is not as sur-
prising as it may seem, for it is the ratio of cer-
tain quantities predicted by earlier theories that
continue to hold even beyond the range of the val-
idity of these theories. There are, of course,
quantitative differences between the predictions
of the two types of theories, e.g. , the two inten-
sities grow faster than predicted by third-order
theories and the absolute values of various quan-
tities differ (see Sec. V). Much more interesting
things happen near threshold and we refer the
reader to Ref. 11 for a discussion of the statistics
near threshold. Finally, we expect that in the lim-
it of high intensities the role of fluctuations will
become negligibly small and the results of the
deterministic semiclassical and quantum treat-
ments would agree. In the semiclassical theories,
the relatively more interesting quantities are the

mode intensities. We "derive" the semiclassical
equations of motion for the two-mode intensities in
order to facilitate a comparison with semiclassical
perturbative treatment of Najmabadi, Sargent, and
Hopf. ' The details of the derivation and compari-
son are given in the Appendix.

V. N-MODE LASER

The treatment given above will now be extended
to the case of N coupled modes. This problem for
N&2 seems to us of only academic interest, for it
seems unlikely that the conditions for the realiza-
tion of such a system can be met. Nevertheless,
it does bring out some useful features of multi-
mode lasers. We consider a gain medium consist-
ing of atoms having one pump level and N lower
levels. It is assumed that the upper level is con-
nected to each of the lower levels by a dipole tran-
sition and that each transition corresponds to a
distinct mode of the electromagnetic field. Then
under the conditions of exact resonance for all the
modes and equal interaction strengths, the steady-
state photon distribution will be given by a straight-
forward generalization of Eq. (22):

p, (n„n„.. . , n„)

A' I"
1&i I gc o )i

where Z is the normalization constant formally
expressible in terms of the degenerate hyper=
geometric series in N variables fA'/BC, .). In
writing Eq. (40) we assumed independent losses
for the modes. It is possible to calculate factorial
moments which come out in terms of degenerate
hypergeometric series of higher orders. We shall
give the expression for the most general case:
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(41)

N ~c A/8" & E g
p(r„r„.. . , 1)= Q'(1 —g X,'1, —xx:p Pr, , g -X,'r, ), .-

i=1 i=& i=&

(n, (n, —1) (n, —p, + 1)n, (n, —1) ~ n„(n„—1) ~ ~ ~ (n„-p, „„))
A i 4»(/~+11@2+1, . . . 1P»+1)A/B+N„—1++Pgr LA /BC)})
BC,. e„(1,1, . . . , 1;A/B+N 1;P'/BC,.)

For equal losses, these expressions simplify considerably and all the moments are expressible in terms
of an ordinary hypergeometric series of the single variable A'/BC. We shall discuss this case in terms
of the intensity distribution function.

The mode-intensity distribution function corresponding to Eq. (40) is

(42)

which is the N-mode quantum version of the single-
mode intensity distribution. It seems difficult to
extract much information from Eq. (42) in general.
But for equal losses considerable simplification
occurs. If we write the intensity I, of the ith mode
in terms of the real and imaginary parts x, , y, of
the corresponding field

Ii =xi+ y,

(A'/Bc)'
(N+A/B+1)(N+A/B)

4(N+ 2;A/B +N + 2; A'/BC )
4(N; A/B+N; A'/. BC)

-2
1

— as A/C-~, i =1, 2, . . . , N,
(A'/Bc)'

(4V)

and make use of the hyperspherical coordinates'"""
xg = x cosOg ~

y, = rsin8, cose„

x, = x sin6, sin8, cos83,

(I; Ig) =
p (I,)
(A'/BC)'
N(N+1)

i, j=1,2, . . . , N;iQ'-j. (48)

x» = r sin8, sin8, sin8„, cos&f&,

1)» = rl sn8s1in82 ' ' sln8» 2 sin(t)

(48)
Using Eqs. (46)-(48) and denoting aI, =I, —(I,.), .
we obtain for large A/C

((aI;)') N —1
(I;)' N+1

((as, )(as,))
(I ) (Ig) N+1

with 0 & r «, 0 & 8, & 7) (i = 1, 2 N 2), and 0 &(I) &—2w,

the steady-state distribution (42) can be written as ((as,.)(as, )) 1

[((as,)') ((as, )')]"' (49c)
A/B- &

p(r)=Q '(1—,r exp(r'') ', r'-1,

=0 , r'&1, (44)

where

Q =1( Q ) p(rr, )p()rrrr, ). (45), —
Using Eq. (44) to evaluate moments of the intensi-
ties we obtain

C (N+1;A/B+N+1; A'/BC)
BC(N+A/B) C (N;A/B+N;A'/BC)

As noted earlier, interesting things happen near
threshold. It can be shown that near threshold Eq.
(44) reduces to the N-mode problem discussed by
Bloc. It is significant to note that in the limit of
large gains absolute values of various moments
given by Eqs. (46)-(48) differ from the asymptotic
values for large a =(A —C)(2/AB)~' given by him,
but the normalized fluctuations have the same lim-
iting values. We shall not discuss the N-mode
case any further and refer the interested reader
to Ref. '15.

VI. SUMMARY

-A'/NBC as A/C - ~. , i =1, 2, . . . , N,
(46)

We have investigated the statistics of the optical
field emitted from a two-mode laser in a homo-
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geneously broadened medium consisting of three-
level atoms via a generalization of the Scully and
Lamb procedure. It is found that our system cor-
responds to a system of neutrally coupled modes.
For equal losses the relative intensity fluctuations
of both modes approach the finite limit —,', which
is a reflection of the fact that competition between
modes persists even at high intensities. A com-
parison with earlier treatments near threshold
shows that these are also the predictions of some
of these treatments. Our analysis then shows that
some of these predictions extend up to arbitrarily
high-gain levels.
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X(n, +1)

x P(n„n, ). (A2)

If we neglect the correlations, i.e., we assume

(n",) =(n, )", i=1, 2,
(n"&n"2) = (z,)"&(n,)'2,

then Eq. (A2) reduces to

d(n, ) A(n, )
dt 1+(B/X)((n, ) +(n, ))

(A2)

(A4)

=(A -Ci)Ii —B(Ii —Ij I2), (A7)

In deriving Eq. (A5) we have assumed (n,.)»1. In
a similar manner, we obtain

d(n, ) A(n, )
dt 1+(B/A)((n, ) +(n, ))

In order to show a comparison with the existing
third-order perturbative semiclassical treatment,
we consider the case (B/A)(n, )«l. Under this
situation Eqs. (A5) and (A6) can be written

APPENDIX

(n, ) = g p n, p(n„n, ),
nq=o n2=0

satisfies the following equation

(A1)

Here we derive the equations of motion for the
intensities of the two modes when the quantum cor-
relations are neglected. Et follows from Eq. (19)
that the mean number of photons in the first mode,
1.e. ,

„'={A-C,)I, -B(I',-I,I,),

where we have made the correspondence I, (n,.)
for i=1, 2. It is apparent from Eqs. (A7) and (A8)
that the coupling constant ( =1 which is in strict
agreement with the results of the semiclassical
theory of Najmabadi, Sargent, and Hopf' in the
case of homogeneously broadened running-wave
two-mode laser.
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