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The problem of dispersive optical bistability has so far been treated only in the mean-field approximation.
A rigorous justification of the mean-field theory can only be obtained from exact solutions of the steady-
state Maxwell-Bloch equations which retain the spatial dependence of the field. In this paper exact analytic
solutions are presented for these equations. The authors demonstrate that the mean-field equation
connecting the input and the output fields follows naturally from these solutions in the limits T~0, SF~0,
and aL-+0 for the mirror transmission coefficient, the detuning of the field from the cavity resonance, and
the linear absorption, respectively, with aL/2T and 5FL/2cT remaining finite. The results are illustrated
with the help of graphs showing the output versus input intensity for different values of the relevant
parameters. The effect of these parameters on the phase shift of the output field is also displayed.

I. INTRODUCTION

The Maxwell-Bloch equations provide abasis for
theoretical treatments of a large variety of optical
phenomena. One of the interesting phenomena for
which a semiclassical theory has been developed on
the basis of these equations is optical bistability.
The prediction of optical bistability by Szoke et al. '
and McCall' was followed by the experiments of
Gibbs, McCall, and Venkatesan, ' who used a
Fabry-Perot cavity containing sodium atoms on
which a dye-laser beam tuned near resonance
with both the atoms and the cavity was incident.
Monitoring the input and output beams, they found
clear evidence of optical bistability and hysteresis
in the behavior of the output beam with respect to
the input beam.

Theories explaining different aspects of optical
bistability have since been developed by various
authors. The semiclassical theories' ' are
quite adequate for a description of the averaged
field, i.e., if ft.uctuations are ignored. The elec-
tromagnetic field must be quantized, or versions
of the semiclassical theory augmented by the
addition of noise sources have to be employed if
the fluctuations are to be accounted for."" %e
are concerned only with the semiclassical theory.

Much of the current understanding of optical
bistability came as a result of the development of
the so-called "mean-field" theories. The mean-
field theory of Bonifacio and Lugiato"" for optical
bistability in a ring cavity explained qualitatively
the essential features of the phenomenon. They
first considered purely absorptive bistability (the
laser in resonance with the atoms and the cavity)
and obtained steady-state solutions of the Maxwell-
Bloch equations in the mean-field limit, i.e. ,
ignoring propagation effects. It is important,
however, to be able to justify rigorously the

somewhat ad hoc approximations of the mean-field
theory and to determine under what circumstances
it is valid. This question was examined by- Boni-
facio and Lugiato " when they performed an explicit
integration of the steady-state Maxwell-Bloch
equations, including the space dependence of the
field. The exact solution was shown to reduce to
the mean-field equation connecting the input and
the output fields when L-0 and T-O, with aL/
27 =C. Here z is the linear absorption coefficient,
L, is the cavity length, and T is the transmission
coefficient of the mirrors.

Dispersive effects in optical bistability have
also been the subject of several papers. Here the
input beam, the atoms, and the cavity may all be
detuned with respect to each other. Mean-field
theories have been developed for this case by
several authors. "' "" However, exact solutions,
including propagation effects, have not been given
either numerically or analytically. The purpose
of this paper is to give exact analytic solutions
to the equations for the field and show the regime
of validity of the mean-field equations in the dis-
persive case.

In Sec. II we consider a ring cavity (Fig. I) con-
taining homogeneously broadened, two-level atoms
on which a laser beam is incident. The beam may
be detuned with respect to both the atomic and
cavity resonance frequencies. Unlike purely ab-
sorptive bistability, where the field is taken to be
real, we must account for a complex field ampli-
tude. Proceeding from the Maxwell-Bloch equations
for the slowly varying field, polarization, and in-
version, we arrive at the z-(space)-dependent,
steady-state equations for the real and imaginary
parts of the field, These are two coupled, non-
linear, ordinary differential equations. In Sec.
III we solve these equations analytically and pro-
ceed to calculate the relation between the input
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FIG. 1. Ring cavity with saturable absorber. Mirrors

M& and M2 have transmission coefficient T, while M3
and M4 are totally reflecting.

and the output intensities of the field. In Sec. IV
we plot curves to show the exact and mean-field
results and discuss the dependence of the exact
results on various values of the parameters in-
volved. In Sec. V we show that the exact solutions
reduce to the mean-field equations in the limits
T-O, 6~- 0, and eL-O, with 6zL/2cT =p and
eL/2T =C,. Here T is the transmission coef-
ficient of mirrors My and M, in Fig. 1, ~ is the
linear absorption coefficient of the medium, L,

is the cavity length, 5~ is the detuning of the in-
put field from the cavity resonance, and c is the
speed of light in vacuo.

II. STEADY-STATE EQUATIONS FOR THE FIELD

dF, 5~F, nF, —5„aF,/y~ (10)

These are the steady-state equations for the
field; they are coupled, nonlinear ordinary differ-
ential equations which account for the propagation
of the field in the dispersive medium.

With these equations we require the boundary
conditions at the ends of the cavity. '"' At the far
end of the cavity (z = L), taking the output field
to be E~, we have

E(L,) =E,/vv,

Decomposing the rescaled field I' into its real and
imaginary- parts I', and E„we then obtain

5zF2 o'Fi+ 5~o'Fa/r~
dz c 1+F', +F',

and

The basis of our treatment is the set of Maxwell-
Bloch equations for an electromagnetic field in a
dispersive medium. These equations involve the
polarization I', the inversion S, ,

and the field E,
where P and E are complex quantities. The con-
stants occuring are the longitudinal and trans-
verse atomic decay rates y ~L

and y~, the detunings
5„=co,—~ and 5~ =~& —~ of the laser frequency ~
from the atomic and cavity resonance frequencies
v, and (d&, the dipole moment P of the atomic
transition, and the number of atoms N; &' is the
permittivity of the medium. The equations are"

while at the input end (z =0), the condition is

E(0) = v T Ei +RE(L),

where E~ is the incident field and g = 1 —T.
Rescaling the output and input fields via the

definitions

and

2lpl (r~
[T(y', +&')]"' '

(12)

(14)

P=-(y +f5„)P—(i/8') lpl'ES,

S = -y i (
—'N + S) + (2i/8 )(EP*—E+P),

BE 1 BE i i(a)P—+ ——= ——5 E+
Bz cBt c 2c c

(1)

(2)

we transform the boundary conditions to the
simple equations

X=F(L)

In the steady state,

P=[ flpl'/~(r +&-5 )]Es (4)
y = (1/T)[F(0) -RX] . (16)

K, +l 4[pl'r, lEI'
~l

2 i@'(yi +6'„)

and hence

(5)
The problem now is reduced to obtaining solutions
of Eqs. (9) and (10) with the boundary conditions
Eqs. (15) and (16); X and F are complex fields
with X=Xy+iX, and Y= Y, +iF,.
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III. ANALYTIC SOLUTIONS OF STEADY-STATE
EQUATIONS

we obtain the following relationship between u(z}
and v(z) and z:

To obtain solutions to Eqs. (9) and (10), we first
form the equation between the two physically
r elevant quantities

u(z) =K, +K,z+K, tan 'v(z),

where

(26)

u(z) = Z', (z) +S', (z)

v(z) =Z, (z)/Z, (z) . (18)

[lnu(0) +u(0) —lnK],
C 'y j. y

(26)

Here u{z) and v(z) are the intensity and the cotan-
gent of the phase at any point z in the medium.
We note that from Eqs. (9) and (10)

2y, O, S~a
5~ C y~

K, = -(2r, /6. ) .

(27)

(28)

The equation connecting g and v is thus

dQ = —2Q
dv

—F -~ a+jul(1+v'}.
C y~ C ]

Qg -2(XQ
dz (1+u)

and
1

dv 6F 5-~ (1+v') + —u(1+v') (1+u).6F
dz c C

(19)

(20)

(21)

Equation (20) for v(z) can thus be written as

+ z (1+v')/(1. +u)
dz c yg c

+sr, ~+rc.~ a+re, ' tan 'v(z))—5 5~Of 5 5 5F
C yg C C C

x [1+v (z)]/[1+K, +K,z+K, tan 'v(z)] . {29)

Letting

This equation is readily integrated, and we obtain
a simple relationship between the intensity and
phase at any point in the medium:

-2e tan v =~j 5F ~+A
lnu

C

+~u- ~-I5

C C y~

where K is a constant of integration determined by
the boundary conditions. Since X=E(L),

tan 'v(z) =q(z),

we obtain

dq 5~ 5„a 6 6F 6F+K,~ +K2 —z +Ks~]lc y, 'c 'c 'c&

x (1+K,+K,z+K,q) '.
%e transform now to a new variable

$ = 1+K, +K,z+K,q,

(30)

(31)

(32)

K=(2P, +X', )exp —(X', +X',6F

x exp 2atan '
X2

&r

~5 5~a
C

(23)

and Eq. (31) becomes

ds
(2n s + 2a)/-s,

with the solution

(33)

We now obtain the solutions for u(z) and v(z). The
equation for u(z), Eq. (19), gives us

z = (-s/2 a —(1/2n)ln(1 —s)) *, , (34)

lnu(z) +u(z) = -2nz +lnu(0) +u(0) . (24)

Substituting for lnu(z) from Eq. (22) into Eq. (24),

Vfhen we take the upper limit to be z = L, and use
Eqs. (22), (26)-'(28), (30), (32), and (34), we ob-,
tain, after some tedious algebra, the equation

1 6~ 5„n l~ u(0) &Ftan 'v(L)+——~ — "
lnl( +u(0) —2aI, + ~ u(0)exp — ' "L,—tan 'v(L) ———

C 2y~ 5g c 2Q C

xln F ~p =p.

Defining the constants C„C„and P by

C„=nL/2T,

C, = n6„L/2y~T,

(36)

(37)



BEYOND THE MEAN-FIELD THEORY. OF DISPKRSIVK. . .

and

5~L/2cT = P,
we can show that Eq. (35) becomes

2C,T =2PT —
2

'
inl& —

2
u(0) —tan 'v(L)

1 1

~ exp — ' 2PT —tan 'v(L) —
I

'
I ln — u(0) —1

~ .C u(0) ~ 2C, , ~ p-C, & u(0) p
2C, t C, l 2C, i K 2C, j

The constant K can now be eliminated by using Eq. (23}, and the resulting equation is

2C,T =2pT —
2 [u(0) —u(L)] —

2
'

1n~
p (p -C, ) (u(0)

2C, , 2C,

C,u(0) f 2C, P (P —C, ) u(0) l
~

exp — ' 2pT —
2

[u(0)-u(L)] —
2

' ln

(38)

Here u(L) and v(L) are of course given by

u(L) = X, +X'„v(L) =X,/X, .

Also, taking z =0 in Eq. (22), we obtain

v(0) =tan~ ' 1n — u(0)),
(C, —P u 0)
l 2C, K 2C,

and using Eq. (23), we can rewrite this as

u(0) = tan tan 'v(L) — [u(0) —u(L)]2C,

P —C, u(0)~~
2C, u(I, ) &

We now use the boundary condition Eq. (16) to
express the comments F, and F, of the output
field in terms of u(0), v(0), u(L), and v(L):

1 & [u(0)]'"e(0)
1

v(L)[u(L)]"'
' T l[1+&(0)]'" [1+~(L)]'"

and

1 [u(0)] ~

1
[u(L)]'"

T [1++(0)]'" [1+~(L)]'" '

(40)

(41)

(42)

(43)

v(0) =tan[tan 'v(L) -y]
=[v(L) —tany]/[1 +v(L)tany], (46)

( ]„.I[ (o)1'"[ (L) o y-

—(1 —T)5(L)[u(L)]'"};
1

)],&, ([u(0)]" [v(L)siny+cosy]

(47)

—(1 —T)[u(L)]'"}, (48)

where we have substituted for v(0) from Eq. (46)
into Eqs. (42) and (43). It is now easy to see that

I —7 +F1 2

=—,-fu(0) +(1-T)'I„=1-

then these equations become

C,u(0) ( 2C,
2C,T=2pT-y- ' expl — ' (2pT-y) I -1

2C, k C, J'

(45)

This last step completes our solution of the prob-
lem. Taking a given value of the output intensity
I„=-X',+X', =u(I, ), we determine the intensity u(0)
via Eq. (39); v(0) is then known from Eq. (41),
where we also use the given value of v(L). Equa-
tions (42) and (43) then give ns the corresponding
real and imaginary parts of the input field. The
input intensity is simply I„=F', + F2.

Finally we rephrase Eqs. (39), (41), (42), and

(43) in a form which will be convenient for their
reduction to the mean-field-theory equation. If
we define

y = [u(0) -u(I, )]+ ' ln

X

—2(1 —T)[u(0)I„]'"cosy} . (49)

IV. OUTPUT VERSUS INPUT

The questions of interest which confront us now
concern the variation of the output intensity with
different values of the input intensity and the

It is therefore clear that the relationship between
the input and the output intensities, Eq. (49), does
not involve the phase, since both y in Eq. (39)
[which determines u(0)] are independent of the
phase.

%e now proceed to give plots of I„vs I, for
different values of the parameters C„C„P, and
T. The parameters C, and p are a measure of the
detuning of the field from the atomic and the cavity
resonance frequencies.
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FIG. 2. Output intensity I„vs input intensity I~ for
C&

——20, C&
——1, P=l, and different values of T.

IO—

IOO 200 500 400 500 600 . 700

change in the nature of these curves when we take
different detunings 6„and 6F (C, and P). The
structure of the equations constituting the solution,
Eqs. (44)-(49), is such that we find it convenient
to take a given value of f„nad find u(0) from Eq.
(45), and by substituting u(0) in Eq. (49), we find
the corresponding I,.

In plotting our curves, we have kept C„which
corresponds to the Bonifacio-Lugiato bistability
parameter C, at the fixed value of C, =20.
Figure 2 shows how I„varies with I, for different
values of T, with C, and P kept constant at C, =1
and P =1. These values of P and C, correspond to
6~ =6 MHz and 6„=1MHz (for T =0.01, L =1 m,
and y~ =2x10' sec '). The situation is similar to
that in the purely absorptive case. For T =0.0001
the mean-field-theory curve is almost exactly re-
produced. As 7 is increased, the deviations from
the mean-field plot become more and more prom-
inent. The degree of hysteresis decreases, and at
g =0.25 there is comparatively little sign of
hysteresis. For 7' =0.5 no hysteresis andbistability
are observed.

In Fig. 3 the effect of changing P is examined

FIG. 4. I„vs I~ for C&-—20, P=l, T=0.1, and differ-
ent values of C&.

90—

60— T =0.25

for C, =20, C, =1, and T=0.1. On increasing P,
i.e. , the detuning between the laser and the cavity
resonance, the bistable behavior becomes less
pronounced. We consider both positive and nega-
tive values of P, i.e. , the laser frequency is below
or above the cavity resonance. A forward shift
of the hysteresis loop is noticed when we take P
=-1 instead of +1..

In Fig. 4 we have kept C, =20, P =1, and T=0.1
constant, while changing C,. In this case the bi-
stability is more pronounced for larger values of
C,. We note here that actually both C, and C, de-
pend on 5» C, through its dependence on n and C,
through the term o.6„.

Finally we may study the phase of the output
field, 8, =tan 'Y, /Y„with respect to the phase
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FIG. 3. I„vs I~ for C~=20, C&=1, T=0.1, and differ-

ent values of P.
FIG. 5. Phase difference 8„-8 „output intensity I„

for C&=20, C~=l, P=1, and different values of T.
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The right-hand side of (51) is independent of
v(L) and hence of 8„.

%e show in Figs. 5-7 how the phase shift 8, —8„
changes with I„. In Fig. 5 C„C„and P are
constant while 7.

' is varied; in Fig. 6 Q„C„and
T are constant while p is varied; and in Fig. 7

C„T, and P are constant while C, is varied. It
is clear that when the output field intensity displays
bistability, i.e. , makes a discontinuous change, so
will the phase of the output field.

In the case C, =P =0 our results for the output
versus input intensity are in very good agreement
with the curves of Ref. 4(b). There is of course no
change in the output intensity with a change of the
input field phase. The phase shift also is zero.

FIG. 6. 8~ —8„vs I„ for C&=20, C~=l, T= 0.1, and
different values of P .

of the input field, 8„=tan 'X,/X, . It can easily
be shown that for given values of the parameters
C„C„p, and T, 8, —8„depends only on I„. In
fact,

8„—8, =tan 'y'. /I', —tan ' 1/v(L)

+ )I.)), )50)

and on substituting for F, and y, from Eqs. (4t) and

(48), we obtain

90"

V. REDUCTION TO MEAN-FIELD EQUATION

y = Pe/2C, +(P C, )~/2C, u-(L) (52)

Substituting this expression for y in Eq. (45), we
obtain

ac,r aPrf +~)( )I =l—

(&z +)z * ~)i+~(1)I .

In this section we undertake to reduce the results
embodied in Eqs. (44)-(48) to the mean-field equa-
tion. The conditions required for this reduction
are T-O, 5F-O, nL-O, with nL/2T =C, and

5I,L/2cT =P remaining finite. Also, the difference
between the intensities u(0) and u(L) must be
small, which we can see to be true for g-0 from
the plot of u(L) —u(0) = e vs I„shown in Fig. 8.

With these assumptions we find from Eq. (44)
that, on keeping only the terms linear in &,

60

30

C = —202 It therefore folloms that

e = 4c,u(L)T/[1+u(L)] . (53)
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FIG. 7. 8~ —e„vs I„ for C&=20, P=l, T=0.1, and
different values of C~.

FIG. 8. e vs I„ for Cq=l, P=l, and different values
of T.
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[u(0)]'"= [u(L}]'"[1+s/2u(L)],
X', =[u(L)]'"/[1+v (L)]' (54)

Combining these two equations to form the com-
plex fields X and F, we obtain

Y=X+2C,X/(1+ [X)') +2iPX —2iC,X/(1+ [X('),

(59)

which is precisely the equation obtained from the
mean-field theory. ' ' " It is worthwhile to mention
that no constraint has been imposed on 5„ in this
der ivation.

%e have thus been able to provide a rigorous
justification of the mean-field equation (59) on the
basis of our exact solutions, Eqs. (44)-(48).

Hence, by expanding siny and cosy only to first
order in e, Eqs. (47) and (48) result in

X, I v(L) pu(I. )+p-c, 'I
T i. 2u(L} 2C,u(L}

X, 1 v(L)[P +Pu(L) —C, ] IT 2u(L} 2C,u(L)

By substituting for e from Eq. (53) and for v(L)
and u(L) from Eq. (40), Eqs. (55) and (56) lead to

Y, =X, —2PX, +2(C,X, +C,X,)/[1+(X', +X',)], (57)

Y, =X2+2pX, +2(C,X, —C,X,}/[1+(X',+X',)] . (58)

VI. CONCLUSION

In conclusion, we have shown how to obtain
exact solutions for the steady-state dispersive
optical bistability equations for the field in a ring
cavity. Graphs demonstrating the relationships
between the intensity and the phase of the input and
the output fields are shown. Finally the mean-
field equation is derived as an approximation of
the exact solutions when T- 0, 5~ - 0, and eL,- 0,
with aL/2T =C, and 5FL/2cT =P. Thus the mean-
field theory of dispersive optical bistability is
rigorously justified. We note that these conditions
for the validity of the mean-field theory are pre-
cisely the same as those mentioned by Bonifacio
and Lugiato in Ref. 4(e).

Note added in Proof Th.e authors are grateful
to Professor Bonifacio, Professor Gronchi, and
Professor Lugiato for a helpful communication.
We were made aware of Refs. 17 and 18. We also
wish to mention that Eq. (3) is valid when &~ is
small compared to the spacing of the modes in the
ring cavity.
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