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Optical rotary echoes
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The first observation of optical rotary echoes, the optical analog of rotary spin echoes, is reported. Rotary
echoes are produced in a quantum-mechanical two-level system which is driven resonantly (nutation eA'ect)

by a coherent field that suffers a sudden phase retardation. The initial nutation transient dephases, because
of an inhomogeneity in either the driving field or the transition frequency of the sample, and then rephases
to form an echo following the phase-shifting pulse. Hence, optical rotary and photon echoes are similar
processes —the former being an interference in nutation and the latter an interference in free precession.
Perturbative solutions of the Bloch equations are derived for the case where inhomogeneous dephasing arises
from Doppler broadening and the Rabi frequency exceeds the homogeneous damping rate. Observations of
the optical rotary echo in I2 vapor are facilitated by the technique of laser frequency switching, which
generates precise phase shifts in the optical field. The measurements corroborate detailed theoretical
predictions.

I. INTRODUCTION

In 1959 Solomon' reported a new coherent tran-
sient effect in nuclear magnetic resonance (NMR}—yofayy spin echoes. While this phenomenon re-
sembles the usual spin echo, ' important differ-
ences exist which make it particularly useful in
the measurement of long relaxation times. Where-
as the spin echo is a manifestation of free induc-
tion decay' (FID} and appears in the absence ot a
driving field, the rotary echo is a manifestation
of spin nutation4 and appears in the presence of
a driving field. In this article we report obser-
vations and a theory of optical rotary echoes,
which are the optical analog of rotary spin echoes.

A Bloch-vector-model' description of rotary
spin echoes (Fig. 1}provides a simple introduction
to the subject. Consider a two-level spin system
in the rotating frame where a static magnetic field

Hp lies along the z axis and a radio frequency field
H, lies along the x axis. We presume for the mo-
ment, as Solomon did, that the inhomogeneity in

H, is much larger than that in H, and thus deter-
mines the spin-nutation decay rate. In other
words, the distribution in the Rabi frequency is
much larger than the static inhomogeneous broad-
ening. Here and in the discussion which follows,
assume the rf pulse sequence shown in Fig. 2,
where the rf frequency 0, which is initially out
of resonance with the spin system, comes into re-
sonance at time t =0 owing to the frequency switch
O'-Q. This pulse causes a magnetization M,
which is assumed to be directed along the -z axis
at t = 0, to precess in the yz plane about the g

axis, where the angle of precession in time T is
0 = yH, T. For an inhomogeneous distribution in

H, the magnetization vectors will precess at dif-
ferent rates and therefore through different angles
6}, causing them to get out of phase.
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FIG. 1. Bloch-vector description of rotary echoes
showing evolution of magnetization vectors M before and
after the phase interruption. (a) The M vectors nutate
at different rates in the initial direction and dephase.
{b) After H& field reverses its direction, the M vectors
nutate at same rates as before but in the opposite dir-
ection and rephase to form an echo.
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FIG. 2. Lower curve: laser frequency switching
pulse sequence for rotary echoes; upper curve: com-
puter plot of the transient response showing nutation
signal and rotary echo formed at t =2T+7.
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Now assume that at time t=T the rf frequency
is switched out of resonance, 0 -9', for a dur-
ation 7, so that the rf field suffers a phase change

For the case Q = v the direction of H, in the rotat-
ing frame is reversed. At the end of the pulse at
t = T+ 7, the switch O'-0 brings the rf field back
into resonance with the spins, and they begin to
execute precessional motions about the x axis in
the opposite direction but at the same rate as be-
fore. The phase interruption thus acts as a mirror
which reflects the initial nutation signal backward
in time. Therefore at time t =2T+7. all magnet-
ization vectors mill appear in phase along the -z
axis, producing an echo. A computer plot of this
dephasing-rephasing behavior (see Sec. II for de-
tails) is shown also in Fig. 2.

It will be evident from the above argument that
an rf phase shift of /=0 or 2w will not affect the
spins, and consequently the echo amplitude mill
be zero. In general we can see that the

a maximum, Q =n, 3v, 5w, . . .echo amplitude =

0, /=0, 2v, 4v, . .. .

Solomon noted that for liquids the envelope func-
tion of a rotary echo will be characterized by an
exponential decay rate n, which is the average
value of the longitudinal and transverse compon-
ents:

(1.2)

Furthermore, using a multiple-pulse sequence
consisting of m-phase-shift pulses, he showed that
dephasing arising from self-diffusion can be mini-
mized and very long dephasing times measured.
because errors in the w-phase-shift pulses are
not cumulative, as in a Carr-Purcell' experiment.

'The possibility of observing optical rotary echoes
had been suggested by Nurmikko and Schwarz, '
and such an effect has been detected recently in
the microwave region by Rohart et al.' for a mol-
ecular rotational transition, using the method of
Stark switching. '

Optical rotary echoes are observed here for the
visible transition of I, using laser frequency
switching. " This technique is ideally suited for
producing mell-defined phase shifts in a coherent
light wave, making the observation of optical ro-
tary echoes a simple matter. In contrast to ear-
lier NMR' and microwave' studies, our measure-
ments are performed in the low-intensity regime
where the Rabi frequency is much smaller than the
Doppler linewidth. The nature of the solutions to
the Bloch equations for both low- and high-inten-

sity limits is derived for an inhomogeneously
broadened optical transition subject to population
decay and homogeneous dephasing processes. We
see that essentially all of the characteristics de-
scribed above for NMR apply to the optical region
as well.

II. THEORY

A. Equations of motion

E„(z,t) = e„EO cos(Qt —kz), (2.1)

polarized in the x direction and propagating along
the z axis. This field undergoes laser frequency
switching with the pulse sequence shown in Fig. 2
and produces a rotary echo. We seek solutions"'"
of the density-matrix equations of motion

epik = tH, pj+ (damping terms), (2.2)

where the Hamiltonian

H =Ho+H'

consists of the free molecule term H, and the
electric-dipole interaction

H'=- p e„E,cos(Qt —kz) .
For an optically thin sample of length L the tran-
sient signal field

E»(z, t) =E»(z, t)e""' "'+c.c. (2.3)

obeys Maxwell's wave equation

" =-2vikN p,»&p»),
~Z

where the tilde denotes the slowly varying part and
N is the molecular number density. The polar-
ization

&p(t)) =» &l p(t)) (2.5)

is to be averaged over the inhomogeneous line

It is not immediately evident that the optical ro-
tary echo is described by the same theoretical
treatment which has been applied in NMR. '" For
example, at optical frequencies, inhomogeneous
broadening is often the dominant line-broadening
mechanism, the transition levels relax to a multi-
level reservoir, and spontaneous radiative decay
is usually important. However, for spins, the
lines are frequently homogeneously broadened,
there often are only two spin states, and spontan-
eous decay can be ignored. These differences have
prompted us to carry out a detailed calculation us-
ing the Bloch equations,

We assume a two-level quantum system, having
upper level

~

2) and lower level
~
1), which inter-

acts with a resonant laser field
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shape, which is a Gaussian in the case of Doppler
broadening. The angular brackets in (2.4) and

(2.5) denote this average.
We introduce the phenomenological decay rates

y~ and y2 to account for population loss from states
~1) and ~2), which are assumed to be in contact
with a thermal reservoir. The rate y» describes
radiative decay for the trans ition

~

2}- 1) and y
is the dipole-dephasing rate.

With the definition

transitions where radiative decay can be neglected
and the second to atomic ultraviolet transitions
where only a few decay channels exist. In both
cases there are only two decay parameters:

(2.9)

making it possible to express (2.7) in terms of the
Bloch equations:

~+ 4v+yu =0,

(+ t) —
P (t)ei& At kk)- (2.6)

and the neglect of nonresonant terms, the equa-
tions of motion (2.2) become

~ —~u —gee+ yv =0,

z&I+y2(uI —uI')+ Xv =0.
In (2.10) we have defined

(2.10)

p„= —.
'

z x(P„-P,.) —r, (p„p'„)+-r„p...
~ jp„= 2 zx(P„—P2, ) —yzp22,

P12 —. x (P22 pl 1)+ ( y' &-»» ~

(2.7)

P12 P21 t (P21 P12) I z+ P22 Pll I (

and ~ =- p» —p„ is the population difference at
thermal equilibrium in the absence of the laser
field.

Here the Babi frequency y, the tuning parameter
~, and the eigenenergies E,. of the free molecule
are given by

X =— t&»Eo/tz, tk=-0+kzt, + &d»1, E, —= )zv, , i =. 1,2,
where kv, is the Doppler shift and copy (02 (dy.

As noted previously, "Eqs. (2.7) are not solved
readily, since they involve four coupled equations
in the variables p„, p», p„, and p„, and there-
fore approximations are required. To make the
problem tractable and yet retain the essential
characteristics expected for optical rotary echoes,
we restrict this discussion to two cases of damp-
ing:

B. Perturbative solutions

Solutions of Eqs. (2.10) are facilitated by ap-
plication of the Laplace transform'":

P(2) =
4p

p(t)e "dt,

2p(2) —p(0) = p{t)e "dt,

u(0)

v(z) = v(0)

where p(0) is the value at t =0. The transformed
equations of (2.10) in matrix form read

"II

2+y n 0 u(z)

y„y„=0
yy

0, y„=y, .
(2.8) 0 z+y, ,u (z). .uI(0)+ {y,/2)u'.

(2.12)

The first case corresponds to infrared molecular The inversion of (2.12) yields the solution

u(z)

.z&1(z).

(~+ r)(~ r+.)+ x'

n, (g+ y, )

u(0)

{~+y)(~ r,+) zl (0)

X(~+ r) (~-+r)'+ n'-' .u (0)+ (y2/&)u2. '

(2.13)

where the matrix determinant

D(~) = (~+ r.) [(~+r)'+ n']+ (~+ r) x'. (2.14)

The solution to D(z) = 0, which is a third-order
equation in z, gives the three poles of the trans-
formation needed to obtain u, z, and gg. Bather
than seek an exact solution to (2.14), which would
be unnecessarily complex, we invoke the reason-
able approximation that

where the effective Rabi frequency

P (x2+ ~2)l/2

(2.16)

I

This condition means that many nutation cycles
will appear in a dephasing time and of course is
a desirable case for monitoring optical rotary
echoes. Setting y = y, = 0 in (2.14), we find the
zeroth- order solutions

x»y, y. . (2.15) To first order in y/P, the first-order solutions
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z(»=-&„z,(»=i p -n„z,(»=zg&*, (2.17)

where

n, = (r-.&'+rx')lP', (&'. = [r&-'+ l (r+r, )x']lp'.
(2.18)

These roots are obtained by equating first-order
terms in (2.14) with corresponding terms in the

P(t) =
2 7TS

e "p(z)dz (2.19)

to (2.13), using the roots (2.17), yields the time-
dependent behavior

approximate relation

D(z) -=(z —z',")(z —z,"')(z —z."') .
Application of the inverse Laplace transformation

u(t) =u(0) e 'i'+, e '2'cospt
~

—v(0) —e '2'sinpt+w(0), (-e 'i'+o. n2'cospt)+w' ', (e 'i' —1),&x o& &x
P' P' i P

v(t)= (0) —e ' i jjst nv(0e)e' '
)jot os(0e) j—ve' 'stat(tete + ' ' e' ' —,e ' Icos(it),-ot -of x .. . rr, x (~, -r)r, x ., r.x

w(t) =u(0), (-e '&'+e 2' cospt) —v(0) —e '2'sinpt+w(0) ~', e &'+ —,e ~'cospt
i

+w'
i

' (1 —e &')+ '", e 2' sinpt
i
. (2.20}

Here we have consistently retained the leading
terms in u(0), v(0), w(0), and wo. Note that these
solutions' apply to optical nutation' or optical
free induction decay" (with x=0), provided the
above approximations are satisfied, and constitute
the principal result of this section.

C. Rotary echoes

Armed with solutions (2.20), we can readily
trace the evolution of the density-matrix element

t&„(t)= -,
' [u(t)+ tv(t)] (2.21)

in accordance with the laser frequency switching
pulse sequence of Fig. 2. To reiterate, at time
t =0 the laser field is suddenly switched from
O'-Q, thereby exciting a group of molecules
which exhibits damped Habi oscillations. The
excitation is interrupted over the interval T (t &

T+ ~ owing to the switch Q-Q', which introduces
in time 7. a phase shift

y=(fl -fl)~ (2.22)

in the laser field. Habi oscillations resume fol-
lowing the phase shift and the rotary echo appears
at time t=2T+v.

Beginning at time t =0 the initial conditions
u(0) = 0, v(0) = 0, w(0) = -1, and u)' = -1 allow us to
evaluate (2.20) at t=T, namely,

u(T)=w ' (e 'r 1)+w(0}-, (e ~2rcospT-e '& ),.r.~x &x
o(&p' P'

v(T) =w(0) —e 2 sinpT,

I
During the phase-interruption pulse, FID solu-
tions follow from (2.20) by letting X= 0. At t = T+ z
we have

u(T+ 7) =u(T)e "',
v (T+ r) = v (T)e "',

(Tw7+) =w'(1 —e &')+w(T)e "2'. (2.24)

E„(z,t}=e„E,cos(At+ Q —kz) . (2.26)

The equations of motion and the solutions are of
the same form as (2.10) and (2.20) when we replace
(2.6) by

(z t) pi (t) i(Get - est()&&j (2.27)

Thus in the new representation each off-diagonal
density-matrix element is transformed according
to

ti;, (t) = t&„(t)e-" . (2.28)

For times t )2T+ v we retain only those terms
in (2.20) that rephase at t =2T+ q., i.e. , echo terms
are retained. The solutions now take the form

Q2
II'(t)=e I

( ( v) IsTceastj(t —T —v)

For the sake of simplicity we have introduced in
(2.24) the approximation

(2.25)

which will apply for sufficiently brief pulses.
At t=T+7 the laser field has now acquired the

phase shift (2.22), and therefore, for t )T+ 7., it
is necessary to replace (2.1) by

y +2
w(T) =w ', (1 —e ~ir)

ot p2

+u)(o)~ e ' +, e 2rcospT~.iP' P' (2.23)

-v'(T+ T) —sinp(t —T —7)
P

+w(T+7) cosp(t- T g) i,
nx

j
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u'(T+ 7) = —,
'

[u(T) +iv(T)]e '~ "'+c.c.,
v'(T+~) = (i/2)[u(T) —iv(T)]e'o "'+c.c.,

(2.30)

which are easily derived from the definitions
(2.11) using the transformation (2.28) and with the
aid of (2.24).

A further simplification results if we allow the
initial laser frequency to match the Doppler line
center:

0=002~.

This condition causes the echo terms which are
odd in the tuning parameter a to vanish upon in-
tegration of the echo signal over the Doppler line
shape.

Inclusion of (2.23), (2.24), and (2.30) in (2.29)
produces the resulting echo terms

u,'(t) =0,

v,'(t) =u)(0)()t'/P') sinP(t —2T —T)e

x[sin'(-,'(t()+ 2(e" '2' —1)],
which we see assume a remarkably simple form.

Now recall that the echo-field amplitude in a
sample of length L is given by (2.3)-(2.5):

E',2(L, t) = -2)(ikNL))»(pf2(t)),

where the Doppler integral

1
(p' (t)» = pe (t)e

- (((/))(( P d n
kuM))

(2.32)

(2.33)

u being the most probable molecular velocity.
Expressing p»(t) in terms of (2.31), we find

p'„(t) = e' o[u,'(t) +iv,'(t)]

and the echo amplitude is

E;2(L, t) = (Mwlu)NLt)»e(+u)(0))t e ,
"'

x [sin2(2(t))+ 2(c
()' »)'- ].)]

v'(t) =e 2(' "u'(T+ T) —sinp(t —T —T)e P

+v'(T+ T) cosp(t —T —T)

+w (T + v ) —s in(((t —T —v )j,x
p (2.29)

where the index e denotes "echo." It is apparent
from (2.29) that we require the terms

E»(L, t) = (~m/u)NLy»e'~u)(0))t' sin'(-,'Q)

"" sinp(t —2T- T), ( „p„

where
(2.35)

D. Characteristics

Before considering the Doppler integral in
(2.35), which must be handled numerically, cer-
tain properties of (2.35) can be identified immed-
iately. First the factor e'~ merely indicates that
the signal field is retarded in phase to the same
extent that the driving field (2.26) is.

The sin'(-,'(t)) factor in (2.35) supports (1.1)byre-
vealing that the echo amplitude

ge a, maximum, (j) = v, 3)(, 57(, . . .
0, (t)= 0, 2)T) 4((, . . . .

(2.36)

Hence the echo amplitude can be precisely con-
trolled by adjusting the phase retardation (t). This

' precision is not ordinarily available with photon
echoes, "unless y»ku, since the laser-field rad-
ial profile is Gaussian and hence the optical-pulse
area assumes a continuous distribution of values.
Furthermore, for a rotary echo each transition of
a degenerate set will experience the same phase
shift, independent of the distribution of transition-
matrix elements. '

The sinP(t —2T —T) term of the integral shows
that the echo appears at time t =2T+T, at which
point the signal vanishes: E»(t =2T+ T) =0.

A numerical calculation of the integral in (2.35)
is shown in Fig. 3, which exhibits a damped Rabi
oscillation with the expected crossing at the time
origin. Numerical values of the parameters are
given in the caption of Fig. 3. To understand the
damping behavior, first note that the 1/p' factor
is sharply peaked about a=0, so that the principal
part of the integral arises from the low-frequency
components. This observation suggests the ap-
proximation

It may be useful at this point to recall the assump-
tions and conditions which apply in obtaining
(2.35), namely,

g»y, y, 47 «1 and yT«1, Q=~».

c', =—2 (&+r,). (2.37)
(2.34)

Since the phase-shifting pulse can be sufficiently
brief that the decay will be insignificant, we can
set yT «1 to obtain a slight simplification in (2.34).
The final result is

When (2.37) is included in (2.35), the dashed curve
of Fig. 3 results. The close agreement in the two
curves, particularly at long times, supports the
approximation (2.37), which we now see is a valid
description of the damping rate.
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III. DETECTION OF ROTARY ECHOES

lA

L
(0

AJ

0.20 0.40 0.60 0.80
Time (t-2T- r ) (@sec)

1.00

FIG. 3. Solid line is a computer plot of the rotary-
echo solution of Eq. (2.35), while dashed line is one of
the same solution using approximation Eq. (2.37), with
ku/2&=500 MHz, X/2x =5 MHz, y=3 @sec, y2-—2
@sec ~, T=1 @sec, and g=m.

o'2=(r&'+ 2 [r+2 (r, +y. +r.,)]x']lP'. (2.38)

Therefore the echo damping rate (2.37) becomes
1 12=—r[r+2 (r, +r2+r2, )] ~ (2.39)

It is worth mentioning that rotary echoes arising
from either an optical-field inhomogeneity or a
Doppler-line-broadening inhomogeneity are not
fundamentally different processes. This point is
suggested in the effective Rabi-frequency para-
meter

p (~
2 + g2 )1/2

where the Rabi frequency and the tuning parameter
appear on an equal footing. Hence we expect that
a distribution in either y or 6 will lead to the same
transient behavior, which the above analysis
shows.

Note that the damping rate (2.37) applies also in
the strong-field limit, the NMR case, ' where

x' » (ku)'.

This can be seen without numerical integration as
c., reduces to Eq. (2.37) immediately. Therefore
our results yield the same decay rate as Eq. (1.2),
which is the original result derived by Solomon
for NMR.

If we relax the restriction (2.8), we are still
able to obtain the echo damping rate for arbitrary
y„y„y», and y. Employing the perturbative
method as described in Sec. II 8, again assuming
g»y„y„y», y, we see that Eq. (2.18) is replaced
by

Rotary echoes are observed by the method of
laser frequency switching. " A cw dye laser is
frequency switched by an intracavity electro-optic
phase modulator, an x-cut ammonium dideuterium
phosphate crystal (AD*P) that is driven by a dc
voltage pulse generator. The beam of this laser
passes through a sample of I, vapor before strik-
ing a P-I-N diode photodetector (HP 5082-4227),
where the transient signals are monitored with a
7904 Tektronix sampling oscilloscope and there-
after are displayed on an X-Y recorder.

The selected I, transition,

(v, t) = 2, 59 —15, 60 of X'Z' -B3vo,„,

falls in the visible region at.16956.43 cm, the
wavelength being determined to 1/10' or better by
a digitalwavemeter. The I, vapor is contained in
an evacuated cell of 20 cm length having a ther-
moelectrically refrigerated cold finger for regu-
lating the I, vapor pressure. Except for self-
broadening studies, a 30 m Torr I, vapor pressure
was maintained. A 580A Spectra-Physics dye
laser (Rhodamine 66) delivered to the sample cell
-30 m% in a collimated beam of 0.5 mm diameter.
A laser frequency shift (0 —0')/2w-30 MHz re-
sulted when a 50 V dc square-wave pulse, from. a
Hewlett-Packard 214A generator, was applied to
the intracavity AD*P phase modulator. Additional
detailes can be found elsewhere. "

A typical optical rotary echo is presented in
Fig. 4 and, as we shall see, confirms our expec-
tations. However, additional characteristics not
discussed yet require explanation. First note that
the frequency switch (0 —6')/2m=30 MHz is ade-
quate for observing coherent transients, since it
far exceeds the homogeneous width of -3 MHz.
Since the shift is much smaller than the I, Doppler
width of 500 MHz, there will always be two rele-
vant velocity packets, one which is resonant and
one which is nonresonant with the laser field.
Each packet will generate its own set of coherent
transients throughout the pulse sequence. For
example, the rotary echo arises from a p'acket
which is nonresonant with the laser field for times
t (0 preceding the initial switch. This velocity
group becomes resonant at t =0, when the fre-
quency switch takes place, exhibits nutation, and
thereafter produces the nutation or rotary echo
in the fashion already described.

The second velocity packet is resonant with the
laser field for t (0. It becomes nonresonant at,
t =0 and exhibits FID. The switching pulse which
commences at t = T causes this packet to be ex-
cited resonantly and generates an FID or photon
echo at t=2T+ T (Fig. 5).
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Fj:G. 4. Lower curve: dc voltage pulse sequence;
upper curve: optical transient response of I&, where
arrow marks the rephasing point of rotary echo.

Thus the rotary and photon echoes precisely
overlap in time. They can be distinguished, how-
ever, because the shape functions are different.
The rotary echo looks like a damped sinusoid
where the oscillation frequency is -X, the Rabi
frequency, and the FID echo displays a beat signal
where the beat frequency is the shift 0 —O'. In
addition, the FID echo can be suppressed by re-
ducing the pulse width T as in Fig. 4. The rotary
echo can be suppressed by selecting a phase-in-
terrupting pulse with /=0, 2w, 4n, .. . , as in Fig.
5. Finally, by switching completely outside the
Doppler linewidth, "either rotary or photon echoes
could be observed alone.

We wish to emphasize that optical rotary echoes
will occur simultaneously with photon echoes in
Stark or laser frequency switching whenever the
frequency shift is less than the inhomogeneous
linewidth. This point was not realized in previous
studies

Now consider some of the other characteristics
of the rotary echo which are revealed in Fig. 4.
First the echo has the shape of a damped sinusoid
which assumes a zero value at t =0.66 p, sec and
resembles the theoretical result in Fig. 3. This
crossing point identifies when the echo has re-
phased and agrees well with the predicted value
8=2T+7.=0.64 p.sec, where the pulse delay time
T =0.3j.0 p, sec and the pulse width T = 0.020 p.sec.

Preliminary studies of the rotary-echo damping

sec

ec

ec

-k & I

0.2 0.4 0.6 0.8
time (@sec)

I

1.0
I I I I I I

0.2 0.4 0.6 0.8 1.0 1.2 1.4
time (@sec)

FIG. 5. Dependence of rotary-echo amplitude on pulse
width 7'. These measurements support the sin (~III) de-
pendence of Eq. (2.35), where 7 =20 nsec and a fre-
quency shift of 26.7 MHz correspond to p = 1,077I. .

FIG. 6; Lower curve: dc voltage pulse sequence for
two-pulse echo; upper curve: optical rotary and photon
echoes superimposed, where arrow marks the rephas-
ing point. .
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rate yield

~ =0.63+0.051p(mTorr} p, sec ', (3.1)

where p is the I, vapor pressure, but it remains
difficult at present to test the relation (2.37) or
(2.39).

In Fig. 5 the rotary echo sin'( Q) dependence in

(2.35} is tested by varying the pulse width r. For
r =20 nsec and a laser frequency shift (0 —0')/2v
= 26.V MHz the phase retardation of the laser field
Q =1.0Vw. Clearly the echo shape function is a
maximum for odd multiples of 7t and tends to zero
for even multiples of m, as predicted. Note that
the accompanying photon echo which consists of
small-amplitude, high-frequency oscillations
(26.7 MHz) clustered about f = 2T+ 7 exhibits a
different behavior with pulse width, which is well
known.

Finally we have observed rotary (and photon)
echoes, using a two-pulse laser frequency switch-
ing sequence (Fig. 6). Now the velocity packet
which is excited resonantly in steady state for
times t &0 experiences an initial phase interrup-
tion arising from the first pulse. This procedure
merely establishes an initial condition which dif-
fers from that used in Eq. (2.23). Thereafter the
rotary-echo problem is precisely the same as the
above treatment.
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