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Optical second-harmonic generation in n-InSb
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(Received 16 October 1978)

The phenomenon of nonlinear second-harmonic generation of laser radiation in n-InSb contained inside a
rectangular waveguide is investigated. The nonlinearity arises through the ponderomotive force on electrons.
The power conversion efficiency is resonantly enhanced at some optimum values of waveguide density and
size such that 2P, = P» i.e., n m'/b + (m —4)m /a' = 3cop /c; P, and P2 are the propagation constants of
fundamental and second-harmonic modes, a and b are the x and y dimensions of the waveguide, and n and
m are integers. For a typical 1-kW CO2 laser the second-harmonic efficiency takes on values as high as 1%.

I. INTRODUCTION

The phenomena of harmonic generation and non-
linear mixing of laser radiation in n-InSb have
attained considerable importance in the past. ' "
The nonlinearity responsible for these phenomena
arises through the energy-dependent relaxation
time of electrons and the nonparabolicity of the
conduction band. This nonlinearity, in the absence
of any dc electric field, gives rise to the genera-
tion of third-harmonic and second-order sum and
difference frequency (2', a e,) waves, whose yield
is substantially low. The application of a suitable
dc electric field (2300 V/cm) gives rise to the
generation of second harmonic; however, again
the yield is poor.

In this paper, we have investigated a different
mechanism of nonlinearity, viz. , the ponderomo-
tive force and employed dimensional resonance
effects to enhance the efficiency of second-har-
monic generation of laser radiation in n-InSb. The
ponderomotive force on electrons due to a plane
uniform beam is purely longitudinal (i.e., aligned
in the direction of propagation of the laser beam)
and hence, gives rise to purely electrostatic os-
cillations. How'ever, a beam having a nonuniform
distribution of intensity along its wavefront gives
rise to a transverse ponderomotive force driving
a transverse second-harmonic current and thus
producing a second-harmonic laser beam. The
nonuniformity in the intensity distribution of the
laser pump (and hence the large values of the
transverse ponderomotive force) could be easily
obtained by propagating the laser through a wave-
guide configuration. For waveguide dimensions
of the order of a few laser wavelengths, the pon-
deromotive nonlinearity is much higher than that
due to an energy-dependent relaxation time and
nonparabolic energy bands.

Furthermore, one would expect resonant en-
hancement in the efficiency of second-harmonic
generation when the propagation constants P,

= p(tc) and p, = p (2tc) of the fundamental and the
second-harmonic mode satisfy the resonance con-
dition 2P~ =P„ i.e., when the phase velocities of
the fundamental and second-harmonic waves are
equal. For a laser pump propagating in the TEyo
mode P, is given byt'

P~ = (to'er/c' - &c,'/c' - tt'/a')' '.
The propagation constant of the second harmonic
(for the general TE„„orTM „modes of propaga-
tion) may be written

p, = (4''ez/ce - (c,'/c' -m'tt'/a' -n'tr'/5')'t'.

Whenever, the condition 2P, =P, is satisfied for
a given set of m and n, that particular mode is
resonantly excited, while others remain of low
magnitude. Thus there are many possible com-
binations of m, n, and to~/&o values for which re-
sonance condition is satisfied.

In Sec. II we have obtained the expression for
second-harmonic current density due to a laser
pump propagating in the TE„mode in a rectangular
waveguide filled with n-InSb. Indium antimonide
is specifically chosen here, because the effective
mass of electrons is very low (0.01 times the free
space mass) and hence high nonlinearities are
expected at relatively much lower powers. In Sec.
III we have obtained the power conversion ef-
ficiency of second harmonic by using appropriate
boundary conditions on the field components. Nu-
merical estimates of the power conversion ef-
ficiency have been made in the same section. A
brief discussion of results is given in Sec. IV.

II. SECOND-HARMONIC CURRENT DENSITY

%e consider the propagation of an electromag-
netic wave in the TE„mode in a rectangular wave-
guide, filled with n-InSb,

E = yA sin(ttx/a) expi(&ut —P,z), (&)
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where
V ~ E,= —(2wi/c (2&v)(u)V ~ J,"~ . (8)

p, = [((o'/c') e ((u) —w'/a']'~',

E ((d) = E I, —I'dp/(d

e~ is the dielectric constant, v~ = (4wNe'/mo)' ',
and -e, m„and N are the electronic charge,
mass, and equilibrium electron density, re-
spectively.

In the presence of the pump wave the response
of electrons is governed by the Vlasov equation
(for v«&u, v is the momentum-transfer collision

.frequency of electrons)

(2)

Using Eq. (8) in Eq. (7), we obtain the following
equations for the three components of the second-
harmonic electric field:

(4„~l
& E~+ I, ]le(2(u)E~&c'i

=-i ~ A 5~sin lexpi(2&et-2p~z),
lv~l . 2' l
c -' a )

(9)

4~'
V E„+ ~ e(2(u)E,~ =0,

where 8 =

-coax

E/i~ is the magnetic field of the
pump and E, is the self-consistent electric field
of the second harmonic.

The distribution function can be expanded as'~'

24'

Iv i (2wx
A ' 6,+6, cos

l
expi(2&et-2p, z),c ' ' (a

f=f,+f, exp(i&et) +f, exp(i2+t),

where

(3)

where

f,= N(m, /2w T)'~' exp -m, (v'/2T)

(4)

and

is the unperturbed part of the distribution function
and T is the electron temperature in energy units.
Assuming f, &f, &f„ the response of electrons at
the fundamental and second-harmonic frequencies
could be obtained from Eq. (2) as

eE ' Bfo 2efo
)

moZ(d ~V mo(d V~

5, = [(g'/c'+ (w'/a'+ P,')/c (2(g)] (wc/2a(u),

5, = [~'jc'+ P,'/e (2(u)] (cP,/2ur),

5, = [~'/c'+ (w'/a'+ P',)/e (2(u)] (cP,/2(d),

v~l = eA. /m, u.
The solution of Eq. (10) can be taken to be E~ = 0
as it is independent of the pump wave. The z
dependence of E~ and E~, in compliance with
Eqs. (9) and (11), can be taken as exp[-(i2p, z)].
Subsequently Eqs. (9) and (11) simplify to give

where v, = (2T/m, )'~'. If we use Eqs. (3)-(5),
second-harmonic current density can be written

J,=-e v 2d'v
27rx

5~ sin expi(2&et —2p~z),a (12)

Ne'E, Ne' ~E „
2moiw 2mo~' Bx (8)

8 E~ 8 E~
2 8/2 2 2Z

lg, l l I'2mx

III. POWER CONVERSION EFFICIENCY

Substituting Eq. (6) in the wave equation, we
obtain

2

V'E, -V(V E,)+, e(2~)E,

x expi(2~t —2P,z),
where

k& = [(4(d /c )E (2(d) —4pg ' E (2(d) = Ei —(d&/4(0

(13)

2

The second term is Eq. (7) can be simplified by
using the Poisson's equation and the equation of
continuity,

(7)

The solutions of Eqs. (12) and (13) with approp-
riate boundary conditions

E~=O at y=0, b

E~ = 0 3,t x =0, a and y = 0, b

could be written
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=i( / )'A(l
I

c

x cos g ) —1][ o (P'y)+g, sin(P', X—
x sin(2wx/a) expi(2u)t —2,z,

~„=( l/ 'N(l"I/c)e( )

X (- COSPP +g, Sj P,P'n +1)

x expi(2~t —2p, z),
where

p' =(k —4w /a )'

g = (1 —cos/,'b)/sinP', b,1

(14)

(i6)

(16)

k' 1+4w'/a'g) cos(2wx/a)j,

x = Q cos km'+ Q2 sin
+ [6,/@+ 6, k; 1+ w a

1 2

u, = a, (1 —cosk,a)/sink, a,
2 2 2 ~ 1/2. mP, =(4w'm' a-

g = (cosP~b-b —1 sing, b .
hth g d can be

d it o theobtained by integrating the power en '

c ' f the waveguide ascross section o e

o&Ivul
I (16wu)) ( (u'c

where

i 2p,'b 3b 2 S illa',

w' —a' k' sink a(l +a, k,a' —n k~a]

1g, (cosp,'b —1) sin(p,'+, b
(1 )

x '+ ' —(g g)
)2(II. r3,')
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FIG. 2. Variation of Pt/P& with the x dimension of
the waveguide for (vz ~/c=10 ~, m=4, bee/c=3x/2. The
value of cu&2/co2 for, 0—0—0 and ————curve
is 4, 6, and 5, respectively.

These values correspond to laser powers ™1kW.
Figure 1 shows the variation of P,/P, with ~a~/aP

for a fixed dimension of the waveguide. It is found
that P,/P, is resonantly enhanced for some op-
timum values of &as~/e'.

Figure 2 shows the variation of P, /P, with the
x dimension of the waveguide. P, /P, decreases
with the increasing x dimension of the waveguide
for low values of ~a~/uP & 4.0. For higher values
of &@a~/&o' the conversion efficiency shows minimum
at some optimum values of (a&a/c).

Figure 3 shows the variation of P,/P, with the

y dimension of the waveguide (b&a/c) The con-.
version efficiency is resonantly enhanced at some
particular values of the y dimension. As the
density of the plasma increases resonance become
narrowe r.

IV, DISCUSSION

A high-power laser beam propagating through a
rectangular waveguide gives rise to large yields

10'
3.0 I,.p 5.0 6.0 7.0 8.0 9.0

Q4)
C

FIG. 3. Variation of P&/P~ with the y dimension of
the waveguide for )v„(/c~10 2, m =4, a~/c=3m/2.
The values of ~&/cu for 0—0—0 and ————curve is
6 and 4, respectively.

ACKNOWLEDGMENTS

The author is grateful to Professor M. S. Sodha
and Dr. V. K. Tripathi for various stimulating
discussions during the present investigation. This
work was supported by the NSF.

of second-harmonic generation due to pondero-
motive effects. The power conversion efficiency
is greatly enhanced by the dimensional resonances.
For a typical 1-k% CO, laser the power conver-
sion efficiency in an n-InSb sample at room tem-
perature takes on values as high as 10 ' (for
~vJ/c=10 '). The optimum size of the waveguide
for harmonic generation is of the order of a few
wavelengths, and &ca~/uP lies between 3 and 8.
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