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Theory of Compton scattermg by interfering electromagnetic fields produced by two
independent sources
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The interference effect produced by two independent sources can be understood in terms of the detection
process, owing to the inability of the detector to know from which of the two sources the photons come.
Detection based on the Compton efFect seems to be a powerful method for recording the interference
between high-frequency coherent fields. It is shown that by taking advantage of the uncertainty over the
photon momenta, the scattering probability for an electron in an interference fringe is very high when the
electrons are not relativistic. %hen the fields have the same frequency in the laboratory system, relativistic
electrons can "see" the interference only when the angles between the fields are very small. In general,
relativistic electrons see interference when the fields are suitably shifted in frequency in the laboratory
system.

I. IM'RODUCTION

The conditions under which interference effects
occur when the interfering beams come from in-
dependent sources have been considered in the
past. ' ' The classical explanation is quite simple:
each beam is a classical field and the intensity
pattern is proportional to the square of the sum of
the amplitudes of the two fields. In the quantum
picture, i.e., in terms of photons, the explanation
is not so obvious. ' In a conventional interference
experiment, like the two-hole Young experiment,
each photon is assumed to interfere only with it-
self~; we may in fact suppose that each photon
goes partly into each beam so that we are unable
to tell which of the possible paths is taken by the
photon. In interference effects between indepen-
dent sources this point of view is not really true,
because the beams come from two separate
sources. In this case the interference effect could
be associated with an indetermination in the detec-
tion process. ' ' The existence of the interference
effect is linked with our inability to know the ori-
gin, then the momentum, of the photon; the de-
tection process involves a localization of a photon
in a space-time point. Thus, the detection pro-
cess rules out the possibility of knowing the pho-
ton's momentum and our ability to tell from which
of the two sources it comes.

In a quantum-mechanical description the inter-
ference is described from a knowledge of the ex-
pectation values of the intensity in space-time
points. If the expectation values are made on a
set of pure states which are not an orthogonal set
of the radiation field, interference terms appear;
moreover, for "coherent" states the result is the

same as the classical treatment. A pure coherent
state describes the field of an ideal laser source.
For two independent beams a more realistic de-
scription of the field involves an ensemble of mix-
ed states, ' "for which the random-phase assump-
tion is necessary to describe a succession of in-
dependent trails. This assumption gives an expec-
tation value of intensity which indicates no inter-
ference effects. Interference effects are recover-
ed if intensity correlations at two space-time
points are considered; they are, however, random.
Jordan and Ghiemetti3 show that in a very short
time interval interference phenomena can be de-
scribed by interference terms in the average in-
tensity, since the average of the field operator
is not zero for laser radiation (i.e., coherent
states).

The radiation from two independent lasers would
be considered coherent in the same way as the ra-
diation from a single source, but this coherence
implies no relation between the density matrices
for the two beams. This is a property possessed
separately by each beam and depends on the mag-
nitude of the expectation value of each of the
annihilation operators of the field in the inter-
ference term. This point of view describes the
existence of stable interference fringes, produced
by two independent lasers when they operate con-
tinuously at a single well stabilized frequericy.

Let us now consider the detection process. Gen-
erally it is photoelectric and Mandel~ has calcu-
lated that the probability of photon absorption by a
detector contains interference terms which are
proportional to the photon number. We are inter-
ested in considering the proble~ of the detection
of the interference effect via the Compton effect,
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FIG. 1. Diagrammatic representation of the type of
interaction which contributes to the second-order scat-
tering process.

a necessary technique when the interfering fields
are at high fre(iuency (x or y rays). Therefore,
we generalize the photocounting probability to a
scattering probability for a Compton process by
free electrons with the hypothesis that the process
is detected in a time short compared with the co-
herence time ~=1/b&a of the laser sources, i.e.,
in a time in which the phase of the beams remains
fairly fixed. Thus, we can consider our source an
ideal laser, and we can average the field opera-
tors on a pure coherent state, using the same
method as Jordan and Ghielmetti. ' It must be re-
membered that in a detection process it is possi-
ble to consider the scattering by free electrons
only for radiation fields with wavelength much
smaller than the atomic dimensions.

We first perform the scattering calculation in
general and then in two particular cases: scatter-

FIG. 2. Interfering fields which come from tyro separate
laser sources.

ing from nonrelativistic free electrons, corre-
sponding to a scattering between an electron beam
and low-frequency interfering fields, and scatter-
ing from relativistic free electrons (Compton scat-
tering), relative to inner atomic electrons of a
detector, ,or to an accelerated beam. We will show
that, the Compton scatter'ing being a second-order
process (see Fig. 1), new interference terms not
present in first-order processes may appear in
some cases.

II. GENERAL CASE

W'e wish to define in general the scattering prob-
ability for an electron in a space-time point (r, t),
when the interfering fields come from two separ-
ate equal sources having the same frequency and
polarization and meeting at an angle of g (see Fig.
2). We are interested in the way in which the scat-
tering depends upon the radiation field. For this
reason, we derive the scattering probability as
function of the expectation value of the field opera-
tors first in a generic state ~Rg, then in a pure
coherent state. We use the general form of the
transition probability for a second-order scatter-
ing:

t t i2
Zf, d4Z„[(f/a, (t,) /m)(m /e,'(t, ))i)+(f/Jf,'(i, )/m)(m)H, (4)/g)]

tp t

where )i)=~P„RQ=)PQIIRQ is the initial state of
the electron plus the field, ~Pg is the initial state
of the electron, ~Rg is the initial state of the ra-
diation field,

~ f) =~P)~R) is the final state of the
electron plus the field, ~P) is the final state of the
electron, ~R) is final state of the radiation field,
~m) = ~P)~R ) are the intermediate states of the
electron plus the field, and H~(t) is the interaction
Hamiltonian. For the moment, we do not specify

the kind of the radiation field.
The time integration is made on a time interval

shorter than the coherence time of the sources.
In Eq. (1) each matrix element contains also a
spatial integration over the detector volume. By
writing explicitly this spatial integration and fac-
torizing the matrix elements relative to the elec-
tron and the radiation field, we obtain:

P...=d —,P &z J~ dP f dr dt, dt &(M II(did' '(P ) )I '& &P'I (( d&)I~&0
V v' to - to
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where M~,. is the matrix elements relative to the
electron interaction, A(r, t) A& &(r, t)+A&'&(r, t)
are the field operators, A& &(r, t)-a~ is the emis-
sion operator, and A" (r, t) a-is the absorption
operator of the radiation field.

Using the completeness property of the radiation
fields, which is valid for each state of the field,
squaring the matrix elements relative to the ra-
diation field, and using the commutation rules we
have

t' t2 t t~
P«, =

4
—

4 dr2dr~ dr~dr~ dt dt, dt, dt ~ M;
V' V' T F tp tp tp

&& ((RolA' '(r2 t')A"(r'» t&)A& '(r» t&)A&'&(r2 4)IRg

+&R olA&-&(r'„ t,')A&'&(r'„ t.')A' '(r., t.)A"(r» t, )IR g

+«.IA' '(r', t.')A" (r& 4)A& '(r2 4)A" (r&, t&)IRg

+(RolA' '(r t )A"(r t')A' '(r„ t,)A"(r, t )IRg). (3)

For fixed polarization,

A(r, t)=A&-&(r, t)+A&'&(r, t)

=Z»[A» exp(-&&d»t+&, K r)a»

+A» exp (& &d» t —&, K r )a» ] q

where

A& &(r, t)-a~~, A"(r, t)-a„.
The initial state of the field is the superposition
of two states corresponding to the fields, which

come from the two sources:

IRo& = IR o»Raa) = IRo&IRo2) ~

We can separate the field operators which act on
the IRo,) state and IR~) state:

A(r, t)=A, (r, t)+A, (r, t)

~».[a»&f».(» t}+a»&f»&(» t}]

+Z»,[a,f»2( r, t)+a,f*,( r, t)] .
Equation (3} then becomes

P«, =
4
—

4 z~ dt2, dr, dr, dr2 dt2

(&Roll A&& &(r2, t')+A2& '(r' 4)][A&'&(r', t&)+A2&'(r,', t,')][A,' '(r„ t, )+A2& &(r„ t,)]-
[A", (rm ")+A2&'&(r. 4)]IR 4+&Rol[AI '(r' t& }+A2& &(r& t& )1[A&&"(r,', t') +A'2&( 'rt2)1

"[AI '(r. t )+A& '(r. t.)][A&'(r t»+A&'(r» t&)]IRg+«ol[AI '(r.', t.')+A'. '(r.', t,')]
&&[A&'&(r,', t,')+A,"(r,', t,')][A,'-'(r„ t, )+ A- o&(&r„ t,)][A&'&(r„ t, )+A&'&(r„ t,)]IRg

+«.II A', '(r,', t,')+A& '(r,', t,')1[A&'(r.', 4)+A&'(r.', t.')1

&&[A& &(r& t&)+A2& '(r»t&)I[A&&'(ro 4)+A2&'(r2 4)]IRD]. (7)

Equation (7} is the general scattering probability
between a free electron and a radiation field,
which is a superposition of two fields.

If the initial set of radiation states is an ortho-
gonal set, the expectation value of the mixed terms
of the field operators (interference terms), rela-
tive to the two sources and obtained by developing
the products in the Eq. (7), vanishes. It does not
vanish if the initial state is a set of coherent
states (nonorthogonal set) and if the time integra-
tion is made on a time interval shorter than the
coherence time of the sources, because with this
condition the phase of the fields can be considered

fixed. We will come back to this point at the end
of this section. Now if in Eq. (7} we perform the
space and time integrations for the terms relative
to the radiation field over a time much shorter
than the coherence time of the beams and over a
volume much smaller than the coherence volume
of the beams we note that the four average sets of
field operators coincide. Then, developing the
products and assuming that the initial state of the
radiation field is a coherent pure state (i.e., ideal
laser source), we obtain for the total electron
scattering probability in a space-time point (r, t)
which belongs to an interference fringe:
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I„r,t+I~'„VZ„+ I„, r, t i„r,t+"-~,', VZ„
+(A', , '(r, t))&A2&;)(r, ]}))&A, ',)(r, t))&A&, ) ( r, t))&A&,.}(r, t)) &A&,;.}(r,t))&A2&;) (r, t)) &A&, „)(r, t))

&A&&;.
) (r, t))&A2&;. )(r, t))&A2(;)(r, t))&A&,;)(r, t))+&A2&;. ) (r, t))&A&,;. ) (r, t))&A,;)(r, t))&A2&,) (r, t))

+(l(», t )),.(l„(rt) + r, t», /vtc J» (t„(r,t)) .(t. (»t),+,
VK

1

+((A],.t(r, t))(A',. '(r, t)+(A' '(», t)).,(A];.t(rt))](l„, (»t)+,
VK, ,

t

+((A],.t(r, t))(A',. '(r, t))+(A''(rt})(A,. ', ;. ',(r, t))] (l,(r, t)+ rt»'. ,
PK2

+(I„(r,I))[&A&;)(r, t))&A(;)(r, t))+&A&;)(r, t))&A&;)(r, f))]

+(l.;(' l))((A] (», t))(Al. '(», t))+(Al."(», t))(A].'(», t))]I

where we have labeled with i and s the field opera-
tors relative to the incident and scattered fields.
In Eq. (8)

M', = ]I dr,' dr,' J/dr, J/dr (M,.), (9)
V. 'U V V

and Y(r, +) contains the terms given by the space-
time integration of the fields terms.

%'e have supposed that the incident and the scat-
tered fields and the fields from the two separated
sources are statistica/ly independent. For this
reason we have factorized the fields operators:

&A~", (r, t)A~, ) (r, ]&)) =&A~,. ) (r, t))&A~, ) (r, f)),

(A'„.'(r, t)A,',.)(r, f)) =(A&,.)(r, t))&A~&;.)(r, f)) .

I
are also other interference terms, which are not
zero if the average is made on a pure coherent
state of the radiation field. The interference
terms

&A&;)(r, i))&A&, )(r, t)) &~„)&~,',.)
can have a value between zero and a maximum val-
ue given by

Q ~ Q Q ~

In our case, i.e., a pure state, we have the maxi-
mum value. These interference terms are, on the
contrary, zero for thermal sources and for mixed
states if the time intervals of integration are long-
er than the coherence times of the sources, i.e.,
when the phase of the fields wanders appreciably.
For a real laser the interference terms will be a
fraction of the maximum interference value.

The transition matrix elements do not vanish if
we take advantage of the uncertainty over the pho-
ton momentum in the interference region. Ne dis-
cuss this point later in Sec. III. We remember
that the initial state of the radiation field is a set
of coherent states ~(o,r))=li~~or); since the photon
emission occurs in one of the modes of the field,
the scattering is a stimulated scattering, if we
suppose that the mode in which the photon is scat-
tered is not ~~=0, in the initial state of the field.
Then Eq. (8) is more properly the stimulated scat-
tering pro/ability in an interference region, which
also contains the spontaneous scattering contribu-
tions I&d'/vK. We note that Eq. (8), which is the
total probability for electron scattering in an in-
terference fringe, contains the usual term of in-
terference (A', , '(r, ])))&22&;.)(r, t)) in the same way
as in calculations performed usually, but there

III. NONRELATIVISTIC FREE-ELECTRON SCATTERING

%e now specify the previous relations for the
case in which the electron is in a defined final
state after the process. In this case the interac-
tion Hamiltonian is

0,„,= —(e/me')(P A), (18)

if we neglect the second-order term ~e'A'. The
initial state of the radiation field is a coherent
state. The matrix elements are not zero if the
laws of energy and momentum conservatlons are
respected. They impose that for energy conserva-
tion

E ~ + 8,(d &
=E&+ Sco ~

F.;+k(d2=E~ + S(d2, ,



M. BERTO LOTTI AND C. SIBILIA 21

mentum. If the electron is in a fixed final state
P, we can have K„=K„=K,if we consider the un-
certain AK which exists in the interference region
for the photon momentum which comes from the
two sources (it has been said that the interference
is linked with the electron inability to know the
origin of the photon). The conservation law of the
momentum becomes then

where E =electron energy, Sw=photon energy, and
the labels i, p, s stand for initial, final, and scat-
tered. Xf the final state' of the electron is fixed
and if the fields have initially the same frequency,
the law of energy conservation becomes:

E&+ @+=Ep+Se,

SQP ~= S(d2= S(0& S(0~~= SGD2~= S(d ~

For the momentum conservation 5,. +b, K=Pk+K, . (1'f}

For long times but always t &I/b, ~ the time inte-
gration of E(I. (V} gives a 6(E& -E,} term; then de-
riving with respect to the time, we have a scatter-
ing probability per unit time:

(16) .

P, +K,=P2+K „
where P=electron momentum and k =photon mo-

I

pp™p&+ pp" ppt - ~ y p

x [(akl,.ak„)(1+a„,,ak„)+(,~k„.)(ak2,.)(akl,)(a„2k&+(akl,.)(ak2,.)(1+a», ak, k&+(a», akl, )

(akl )(ak2 ) (a%2')(akl()(ak2 )(akl )+ (ak2')(a 2')( +ak2 a»2 )+(a 2'a 2')(akl )(a 2 )

(ak2')(ak1') (1+a 2 ak2 & (ak1 ' ll )(ak2 &(a lk& (a 1~)( k2 )( ak ak2k&

+(alii)( 22')(ak2k&( kl ) ( kl'akl')( ak2 ak2 )+( k2')(akl')( kl akl )

+(a 2)a 2')(a lk)(a 2k)+(a 2'a 2') (1+akl aklk& (a 2')( kl')(akl )( k2s) I 6 (Ef @ o(Ef} (18)

where

M~2, =- 2(e,} ,
'~$2* —. &/~dr,

(a )(ak )(ak 3(a
We know from previous considerations that each
average is not zero, and that

(akl') (2kl'- Ilk»;I = (n „„)'",
&ak2~&= ~k2;= I ~k2;I =(nk2;}'"

so that we can write

(21)

Mq.,=—,(l)j tl~. —, Tl(,,.dk. , &akl;)&ak2;)=c(kl;c(k2 =I (2llkl(2I2=2I(2;I = n;,

~~y= Ep+ Rd~ p Eg=Ef-+Scdp

where we have used E(lt (6). We now must look at
the average values of the fields operators in Eq.
(18). In the first term we have (a„,.a»,.)(l +akl, a», ).
It is

(akl'akl ) ( nkl. ) = I12»; I'= n kll nkl,

because the average is made on coherent states,
and ln», l

is just the average numbers of the pho-
tons in the incident mode.

Moreover, we have for the number of scattered
photons

where n, is the average number of photons in the
interference fringe.

Really the fieM modes have the same frequency
and intensity, but have a different wave vector.
However, we can accept relations (21}by consid-
ering that the modes of the incident fields are in-
definite in the interference fringes, and each
mode has an uncertainty in the number of the
photons proportional to b, n =

I c(I =@~. The term
(akl, )(a~k2$ for the conservation of energy and mo-
mentum is

( 1+akt„a», ) = I+(ak~, a„)= 1+(nk, ) =1+(a~a,)=1+I(2,l
=1+n, , (22)

=1+I~„I2=(1+n„}=(1+n, ), (20)

where the term 1 is due to the spontaneous emis-
sion and n, takes account of the stimulated emis-
sion. The second term is an interference term:

where n, is the mean number of scattered photons.
We can make the same considerations for each
term of E(I. (18}and so arrive at the final expres-
sion for the transition probability:
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W = 16[(2v)'(c's)'/av'&o, (u, ](1+ i n, i')

x ((o.;(')) ~ ('6(@, &,-)p(&, ), (23)

for the electron. ' Of course if in the laboratory
system two fields have different frequencies, be-
1ng

if the two sources have equal intensities so that

&nit

IU. SCATTERING BY RELATIUISTIC ELECTRONS

%'e have said that the interference effect is link-
ed with the impossibility of knowing the origin of
the photons. To have interference fringes it is
necessary that the position of a photon be within a
length: Ax& y/sinH, where 8 is the angle between
the sources. The uncertainty on the photon mo-
mentum is accordingly

5g„= Ng sing. (24)

If the electron which must "see" the interference
is relativistic, the uncertainty in the photon mo-
mentum becomes

&x'=&x/y - a/y sing,

hP„= ynK sing, y =E,/n e',
(25)

i.e., the uncertainty is increased by a factor y. It
is this uncertainty which preserves the momen-
tum.

Let us now consider the energy of the incident
photons. If in the laboratory system the fieMs
have the same frequency, in the electron rest
system the energy will be different, due to the
Doppler effect:

&u,=~(1 -0 cosg) y,

(u, = (u(1+P cosg}y. (26)

In the electron rest system we have two kinds of
scattering, and in the calculation of the scattering
probability, the matrix elements associated with
the interference terms are zero.

However, if the angle between the sources, in
the laboratory system, is very small (cosg-90'},
in the electron rest frame the frequencies of the
fields can still be considered equal and in this ap-
proximation the total scattering probability is giv-
en by

~=16(2~)'(e'@)'(1+
( ~,~')() ~;(')

&
( ~ ~ ~ ('5(&z &.)p(&q)- (27)

Equation (2V) is similar to Eq. (23), but differs
from it in the interaction Hamiltonian

H =-en ~ A ~int (28)

Also the electron matrix elements are different
because they contain the relativistic wave functions

&o,=[(1+0 cosg)/(1 I:'-I cosg)] ~,
in the electron rest system, the electron "sees"
fields of equal frequency. Also in this case the
scattering probability is given by Eq. (27).

V. CONCLUSIONS

For two interfering beams, Eqs. (23) and (27)
show that the Compton scattering probability re-
spectively for nonrelativistic electrons and equal
frequency fields or relativistic electrons and
fields shifted in frequency according to Eq. (29) is
much larger than would be expected by assuming
it as simply proportional to the classical intensity
squared in the fringe region. An increase by a
factor of 16 is apparent from Eqs. (23) and (2V).
Therefore, in studying interference between two
phase-locked laser beams, the Compton effect is
much more effective than the photoelectric effect.
This result comes out from the quantum descrip-
tion of the Compton scattering process, which is a
second-order process in perturbation theory. On
the other hand, the photoelectric effect is a first-
order process involving the combination of a num-
ber of field operator products, connected to the
number of the superimposing fields, higher than
the combination number in the photoelectric or
scattering effect by only one field. The main
issue is that all the matrix elements in the scat-
tering probability do not vanish due to the uncer-
tainty in the photon momentum in the interference
region and due to the state of coherence of the ra-
diation fields. This is a result connected to coher-
ence which is not realized by radiation from ther-
mal sources, and it depends only on the magnitude
of the expectation values.

Therefore, the behavior of the electron scatter-
ing in the interference region that we have shown
depends essentially on the kind of interfering
fields. We think that this effect couM be observed
in the interaction between a relativistic electron
beam and two powerful optical laser beams locked
in phase.

The high scattering rate obtained can be used in
the project of a free-electron beam laser at;

very high frequencies (x- or y-ray frequencies)
in which the periodic magnetic field is replaced
by the periodic scattering grating produced by two
powerful laser beams locked in phase. A calcula-
tion for such a system will be presented in a paper
to follow.
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