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The recent theory of Raedt and Raedt (RR) is analyzed and applied to study the dynamics of a classical
one-component plasma. It is shown that this method is very similar to making the Lovesey approximation
(for the calculation of the memory function involved) at an appropriate stage of the continued fraction
hierarchy for the memory function. The expression for the density-fluctuation spectrum obtained by using
RR theory is then evaluated for the entire density range for which molecular dynamics data are available.
For smaller g values the results obtained are of similar quality to those obtained recently by this author
using a renormalized free-particle memory function, and compare well with the data. However, for larger g
values a shoulder appears at high frequencies whichis not observed in the molecular-dynamics results.

I. INTRODUCTION

Recently there has been considerable interest™®
in the study of dynamical correlations in a classi-
cal one-component plasma (OCP) which essentially
consists of an assembly of identical point charges
moving classically in a uniform neutralizing back-
ground which is assumed to be inert. This sys-
tem, which serves as a reference system for
charged fluids, is of direct interest in the study
of astrophysical plasmas where the motion of the
ions can be treated classically and the background
is provided by the degenerate electrons. The
thermodynamic state of the system is described
by the coupling parameter I' = (Ze)?/v k3T, where
7, is the radius of a sphere containing one single
ion at the given ion density and the other symbols
have their usual meaning; I'is effectively the
ratio of potential energy to the kinetic energy and
thus characterizes the system.

The stimulus for studying the dynamics of OCP
was provided by the molecular-dynamics (MD)
data of Hansen et al.' for the longitudinal and
transverse correlations. The main theoretical
attempts have been extensions of the kinetic
theory®* and the mode-coupling theory® of classi-
cal liquids. The latter theory gives a better
description of the MD data, especially with a
Lorentzian form for the relaxation kernel. These
calculations are very involved computationally
and are done only for selected values of I'. For
example, the calculation? using kinetic theory
could not be carried over for larger values of T,
since no self-consistency is achieved within a
reasonable computational time.

In a recent paper® (hereafter referred to as I)
the behavior of the dynamical structure factor
S(¢, w) has been studied, using its frequency-
moment sum rules. These sum rules are the

exact coefficients in the high-frequency expan-
sion of the correlation functions and can be cal-
culated from a knowledge of static correlation
functions and the interparticle potential only. In
I, the result is given for the sixth-moment sum
rule’ of S(g, w), which can be computed easily
for any general wave vector. In order to calcu-
late S(g, ), the third-order memory function in
the continued-fraction expansion® of the Laplace
transform of the density correlation function is
approximated by a renormalized!®:!! free-particle
memory function (MF). The renormalization
parameter is determined by using the sixth fre-
quency moment. The results obtained for the
dynamical structure factor are in reasonably good
agreement with the MD data. S(g,w) of classical
OPC has also been studied® by including the back-
flow effects through the effective-mass parameter
in mean-field theory. This parameter is deter-
mined using results® for the sixth-moment sum
rule. The results obtained for S(q, w) are quite
reasonable for the values of ¢ and T' shown there.
The purpose of the present paper is to analyze
the recent theory of Raedt and Raedt'?** (RR) and
to apply it to the system of a classical one-com-
ponent plasma. RR have successfully employed
their method to study the dynamics of the Heisen-
berg chain'? and of an electron liquid.'® However,
they have grossly approximated the fifth frequency
moment of S(g, w), which is not known for an
electron liquid. Furthermore, in all the moments
the terms involving the static structure factor
S(gq) were replaced by some adjustable parameters
which they chose after some consideration.!® The
quality of their results is better than that of earli-
er ones.'»' FHowever, it remains to be seen
how good these results are when instead actual
information is fed into the theory. It is with
this intention that I thought it worthwhile to apply
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this method to a classical OCP, where we are
better off because the higher (sixth) frequency
moment of S(g, w) is known® exactly and S(q) is
also available from a Monte Carlo calculation.'®
In doing so I also show that if the MF at the fourth
stage of the continued fraction is approximated
by its w =0 value, then the expression obtained
for the third-order memory function is almost
identical to the one obtained by following RR theo-
ry and that they hardly differ numerically, es-
pecially for small wave vectors. I then calculate
the dynamical structure factor for the entire
range of plasma parameters I', and the results
are compared with those obtained in I and also
with the MD data.

The paper is organized as follows. In Sec. II,
I start with basic definitions and give a few es-
sentials of the RR method as applied to classical
OCP. In the last part of Sec. II, the similarity
between results obtained using the RR method and
those with the Lovesey approximation (at an ap-
propriate stage) is shown. The numerical results
are given and discussed in Sec. III. Section IV
contains some concluding remarks.

II. GENERALITIES
A. Basic definitions

The dynamics of longitudinal correlations
can be conveniently described in terms of a
density-density correlation function

S(d, t)=(1/NXp"(d, t)o(d, 0) , 2.1

where N is the total number of particles of the
species under consideration and the angular
brackets denote the thermal average; p(d, ¢) is
the density-fluctuation operator and is defined as

N
p(d, 0= jZ exp[-id- 7,(t)], (2.2)

where T, () is the position coordinate of the jth
particle at time . We are interested in the study
of the dynamical structure factor S(g, w), which
is the Fourier transform of S(q,t); i.e.,

1 [ ‘
S(q,w)-——ﬁf dt e*“tS(q, t). (2.3)

Owing to rotational invariance of the system,
S(g, w) and the other averaged quantities depend
only on the magnitude of the wave vector g.

In the memory-function formalism?® it is con-
venient to work with the Laplace transform of
the density correlation function, which is defined
as

Sa,2)= [ " dtets(a, ), (2.4)

where z=w +1ie, € being a positive infinitesimal.
It follows from (2.3) and (2.4) that

S(Q,‘*’):(l/ﬂ)Res(q, Z). (2-5)

In order to make a connection with the method
and notation'® of RR, it can be seen by integrat-
ing (2.4) that

S(q,z):(i/NB)¢,,,(q,z), (2'6)

where ¢, ,(q, z) is the Laplace transform of the
density-density relaxation function'® and is given
by

b5,0(0, 2)= (p(q),z—i—Lp(q)) - (2.7)

Here L is the classical Liouville operator which
generates the time evolution of any operator
according to G(t) =ei£!G(0). In Eq. (2.7) and all
following equations, the scalar product of any
two operators is defined as

(G,F)=B(G'F). (2.8)

It is because of this relatively simple definition
of the scalar product (as compared to that for a
quantum plasma) that the simple relationship
(2.6) exists between the correlation function and
the relaxation function of the same dynamical
variable. i

Before going to the actual MF formalism, I
give the expressions for the various frequency-
moment sum rules which appear in this method
in a natural way. For S(q,w) these sum rules
are defined as

@a) = dowS(g, ). (2.9)

Hereafter ¢ and v are measured in units of 7!
and 7,, respectively, and various moments are
expressed in the appropriate powers of the class-
ical plasma frequency of the ions. The results
for the low-order®” moments are

(W?(q) =wi(q)=¢*/3T, (2.10)
(w*(q) =w?[1+ 3w +2I(q)], (2.11)

“dy j
6 —_— 42 2 2 . —_
{w (q»—wo(15w0+-351)+36w0f0 - [g(») 1](;}
= d o
+%fo ,,,—1;8(7’)(1—]0"’]2)

+[1+21(q)F +1,(q) . (2.12)

In these equations the argument of the Bessel
functions is understood to be g7, and

I(q)szff;z[g(r)—lljz. (2.13)
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Further, I,(g) is the explicit three-body contribution to the sixth frequency moment of S(g, w) and

is given by®

I,(q) =% f] ar dv'(l - 4j, +;1§; il)[ll dy (37" = 1)gy(r, 7', v) - g(r)g(r")]

v v’

+% jo‘f dv dv' f_: dyl g,(r,7",v) - gR)g(r")]

1 /3. 3 . 3r?
xﬁg(7<]0—-é;]1)(1—372)—?—{

Here R=|T-1"|; g(r) and g,(r,7’,7) are respec-
tively the static two- and three-particle distribu-
tions functions of the system. In what follows
we shall use these results frequently.

B. Three-variable theory of RR

I briefly give here the essentials of the method
of RR as applied to classical OCP. For details,
the reader is referred to their papers.'?:!3 This
method consists of using a set of slow variables
as the relevant variable in the generalized
Langevin equation and then determining the MF
involved from its equation of motion in z space,
using a sum rule. Total density being a conserved
quantity, I also chose’® the set of slow variables
as

E@)={0@, Lp@, A} . (2.15)
where
A(Q) =L?p(q) - (Lp(d), Le(@))/ (p(@), p(@)p(q) -
(2.16)

This particular form of A(q) ensures orthogonality
among different elements of the set (2.15). For
simplicity of notation, hereafter the arguments of
E, p, A and various frequency moments are sup-
pressed.

The Laplace transform of the generalized
Langevin equation for the E-E relaxation function
is given by®

(21 - S(q) +iM(q, 2)] - $(q,2)=NBS(q), (2.17)

where S(q)=(E, E)/NB and 1 denotes a unit matrix.

Further,
Qq)=(E, LE)+ (E,E)™ (2.18)

is the frequency matrix, where the dot indicates
matrix multiplication. The matrix of relaxation
functions is given by

¢(q,2)=(E, (z - L)E),

and the memory matrix A}(q, z) is the Laplace

(2.19)

rioo 2 LA P
o ]O_q,},jl _q1,71 7<]o+q_,r ')’/

_ o3\, 33 2 ) .3
[2""<Jo 7 Jl)+ T(Ju ~gr 71)]7 2t 3"’(]0" Y 8 )

(2.14)
"transform of
M(q, t)=(f(t),f)- (E, E)™. (2.20)
Here
f(t) = et P (1- P)ILE (2.21)

is the random force vector associated with the
variable E. In Eq. (2.21) P is a projection oper-
ator which projects any operator G on the three-
dimensional subspace E, according to'

(p,G) (Lp,G) (4,G)
(p,p) " (Lp,Lp) (4,4)

The expressions for the matrices S(g), Q(g), and
M(q, z) are simplified by means of the time-re-
versal invariance of the correlation functions
involved and further by using the fact that the
different vectors of the subspace E are orthogonal.
The results obtained for classical OCP are given
by

PG= p+ Lp+ A (2.22)

10 0
S@)=s(@)]o 82 o |, (2.23)
0 0 5262
(0 1 0
Qq)=|62 0 1], (2.24)
(0 520
(0 0 0
M(q,2)=[0 0 0 , (2.25)
0 0 —iZ(q,2)
where
2 _<Cl)2> 62__(004) _ <w2>
"5 T Ts@- (2.26)
Further,
E(q,Z):(A_lA)(QLA,Z_:‘?LQQLA>, (2.27)
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where @ =1-P. Employing Egs. (2.23)-(2.25)
in Eq. (2.17), one obtains an expression for
b, (@, 2) by solving three equations simultane-
ously. Using this expression in Eq. (2.6), we
obtain the following expression for the Laplace
transform of the density correlation function:

S(q)[2* +22(g, 2) - 8]

Z'Z(w%—zz)_’_iz(q, z)(éﬁ—zz)’ (2.28)

S(q’ Z) =

where w? =(w%/(w?. We now proceed to deter-
mine Z(q, 2), following the prescription of RR.
The identity
z2(z-QLQ)'=1+QLQ(z-QLQ)™,
when applied twice on Eq. (2.27), yields the fol-
lowing equation of motion for the MF:

(2% + 62+ 62)=(q, 2)

=207 - (A,A)"(QL‘*A, —

-—-—mQLA>, (2.29)

where

(w9 (w‘*))z] /
2 _ 2
53_[<——w2> o) | /% (2.30)
The last term on the right-hand side of Eq. (2.29)
involves higher-order derivatives and is re-
placed'?:!® by a frequency-independent constant R.
Taking the limit z2=1i¢, ¢ —~0 in Eq. (2.29) yields
(6§+5§)sli_.n52(q,ie)=—R. (2.31)
From symmetry'? it can be seen that the real
part of lim,_, Z(q, ¢€) is zero, so that R is purely
imaginary. It is calculated by means of Eq. (2.29)

and the following sum rule'® for the memory
function:

(QLA,QLA)
4,4)

1 .. e R .
e dw([Z(q, w +i€) - Z(q, w - i€)].

(2.32)
The result obtained is
R=-id%13, 71R=(62+062)/2, (2.33)

Using (2.33) in Eq. (2.29) leads to the following
expression for the MF:

Z(q,2)==0%/(z +it7). (2.34) |

Thus 75 is a relaxation time determining the de-
cay of the memory function. Further, the quan-
tities 62, 52, and 52 are the = 0 values of the
first-, second-, and third-order memory func-
tions in the continued-fraction expansion ob-
tained using the density-fluctuation operator as
the only variable.

2169
C. Connection with earﬁer work

As the set of different variables in the multi-
variable theory of RR is constituted by the main
variable and its subsequent derivatives, their
method is formally equivalent to a single-variable
method®°™%17 in which one goes lower in the con-
tinued-fraction hierarchy:

S(q’ z) =S(q,t=0)/[—iz+M,,(q, z)]; (235)
Mn(q: Z):M"(q, tZO)/[-ZZ +Mm1(q, Z)] . (2'36)

Here M,(q, 2) is the Laplace transform of the MF
entering at the nth stage of the expansion, when
only one variable, p(g), is used in the Langevin
equation. In fact, even for quantum electron
liquid, it can be seen that the expression for the
relaxation function as obtained by RR!? using
three variables is exactly the same as that de-
rived earlier by myself and co-workers.!* Thus
their remark!? that only two variables were used
in the calculation in Ref. 11 is incorrect. In fact,
in that calculation! we used the density-fluctua-
tion operator as the only variable and carried out
the MF expansion up to the third® stage.

Similarly the expression for S(g, z) employed in
I is identical to that given by Eq. (2.28), since
the exact expressions for M,(q, z) and Z(q, 2) are
related by

My(q,2)=-1iZ(q, 2). (2.37)

However, as we see in Sec. III, they lead to quite
different results for the density-fluctuation spec-
tra, since the approximation for the memory
function is entirely different in the two cases.
Prior to that, we show that if the fourth-order
MF is assumed to be a constant, the resulting
expression for M,(q, 2) is identical to the one ob-
tained in the RR approximation.

From Eq. (2.36) one can write

Ms(q,z)=M3(q,t=0)/[-—iz +M4(qy Z)]. (2-38)

Assuming that M,(q, z) decays faster than M,(q, 2),
we approximate M,(q, z), following Lovesey,'” by

a decay constant whose value is given by the 2=0
value of the MF; i.e.,

M(q,2)=15(q)=M,(q,2=0). (2.39)

77 can be estimated by relating M (g, 2=0) to
M,(q,z=0) through Eq. (2.36) and further assum-
ing'™ M,(q, t) to be a function of M,(q, t =0),
which amounts to incorporating correctly the
short-time behavior of the MF. We consequently
obtain

T = £d,, (2.40)

and thus expression (2.38) in this approximation
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becomes
M,(g, 2)=02%/(—iz + 13). (2.41)

The constant £ in Eq. (2.40) can be fixed through
any physical property of the system.'”!® We
determine it by demanding that S(g, z =0) [ob-
tained by substituting (2.41) in Eq. (2.35)] correct-
ly reproduces its free-particle limit. This yields
£= (kn)* /2.

The similarity between the memory functions
given by Eqs. (2.34) and (2.41) is worth noticing.
They differ only in relaxation times. In Sec. III
we see that there is only a little difference
between the numerical values of 73 and 73, so
that the quality of the results obtained using these
two approximations is exactly the same.

III. NUMERICAL RESULTS AND DISCUSSION

We now evaluate numerically the dynamical
structure factor, the expression for which can be
written from Egs. (2.5) and (2.28) as

S(q, w)

S( ) GfM,(Q» w)

m [(w2 "6§)—le/(‘17 w)]2+[le(q’ (‘-’)]2 ’
(3.1)

This is intentionally written in terms of a lower-
order MF, M(q, 2), since we shall be discussing
the results in terms of this MF. Its real (M') and
imaginary (M”) parts can be calculated from

M(q,2)=183/[2z + Z(q, 2)]=63/[~iz + M,(q,2)]. (3.2)

The calculation of S(g, w) obviously requires the
knowledge of its frequency moments up to the
sixth, which are calculated from the exact ex-
pressions (2.10)-(2.12). The data for g(r) re-
quired in the calculation of (w% and (w®% are taken
from the Monte Carlo study'®2° of this correla-
tion function. Since no comparable information
is available about the triplet correlation function,
the last term in (w% is evaluated by using® the
superposition approximation for g,(#,7’,y). This
approximation is quite good for the calculation of
frequency moments in classical liquids, as is
shown by the recent* molecular-dynamics calcu-
lation, and there seems to be no reason to expect
the opposite in the present case. For the remain-
ing static quantity S(q), the Monte Carlo numbers
obtained by Hansen'® are used.

The calculation of S(g, w) is carried out for the
entire range of the plasma parameter I' and the
wave vector 4, using different approximate forms
for the MF in Eq. (3.2) as given by Egs. (2.34)
and (2.41). The results obtained are presented in
Figs. 1-3 for three different values of I'. They
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are compared with the molecular-dynamics data'
and the corresponding results obtained® using the
renormalized free-particle form of M,(q,2). For
all T, results of S(g, w) obtained using the MF
(2.41) are of the same quality as those obtained
from the MF (2.34) and are therefore shown only
for I'=9.7. This is because these two memory
functions differ only in their relaxation times 7,
and T, whose values are very close to each
other, especially at small wave vectors. Thus
these two results hardly can be distinguished for
all T for small values of q. As g increases, the
values of 75 and 7, begin to deviate from each
other, but the quality of the two results remains
essentially the same (see Fig. 1). Therefore we

2.16
3 3
g o
> (2]
0.72
3 3
S G
= (2]
3 -
& 3
> c
= »n

FIG. 1. Real part M’(q,w) of the memory function
(3.2) and the corresponding dynamical structure factor
S(g,w) for T'=9.7. Results are shown as a function of
w for ¢ =1.384, 2.315, and 6.187. Solid curves show the
present results obtained using the RR method [MF
(2.34)]. Dot-dashed curve represents results obtained
using Lovesey approximation [MF (2.41)] at one stage
higher than usual. Dashed curve represents results ob-
tained by using the renormalized free-particle MF (Ref.
6). Centered circles are MD results for S(gq,w) taken
from Ref. 1.
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are concerned only with the results obtained using
the RR approximation, i.e., those obtained using
the MF (2.34).

For the smallest ¢ for which MD data are avail-
able, the plasmon peak in the present calculation
is sharper as in I also and is shown only for I’
=110.4. For other values of I', the quality of
the results is similar. For the next-higher
values of ¢ (i.e., ¢=1.384 for I'=9.7 and ¢=1.856
for I'=110.4 and 152.4), the present results are
a little better. But for the remaining large values
of g, the renormalized MF gives a better repre-
sentation of the MD data. This is because for
large g the renormalized MF leads to exact free-
particle behavior of S(g, w), which does not occur
in the present case.

The characteristic feature of the present results
is the two-peak structure of S(g, w), one of which
appears as the main peak and the other as a shoul-
der which is clearly visible for large wave vec-
tors. The main peak is reminiscent of the collec-
tive plasma oscillations and occurs at a frequency
where the denominator on the right-hand side of
Eq. (3.1) is minimum. The origin of the shoulder
can be traced back to the maxima in the real part
M’(q,w) of the memory function (3.2). It can be
seen that M’(q, w) can always exhibit a maxima on
the positive w side if the condition

262> 772 3.3)

is satisified (where 7 can be 7, or 7). By using
the actual values of the frequency moments we
find that this condition is always satisified when 7
is given by either (2.33) or (2.40). Therefore

M’ (g, w) exhibits a maxima on the positive side
for all values of ¢ and w. The position of the
peak when 7=1T, is seen to be given by

Wha=5(65-53). (3.4)

For I'=9.7 the results for M’(q, w) are shown in
Fig. 1 and are compared with the corresponding
results obtained using the renormalized free-
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particle approximation, which do not show any
such maxima, exhibiting instead maxima at w=0.
The behavior of M'(q, w), as depicted in Fig. 1,

is typical of other values of I" also. It may be
noted that the maximum at w=~0.7 in M’'(g, w) for
q=1.384 does not show up in the corresponding
results for S(g, w). It is suppressed because of
the comparatively large magnitude of the denom-
inator in Eq. (3. 1) for this frequency range.
However, as g increases, this peak gives rise

to an apparent shoulder in the curves for S(g, w),
as can be seen in Figs. 1-3. For example, when
'=9.7, the results® obtained using renormalized
MF show only one peak for ¢ =2.315 and 6.187 and
are in agreement with the MD results, but the
present results using the RR method show a high-
frequency shoulder.?®* For I'=110.4 the behavior
of S(g, w) for ¢g=6.187 (not shown in Fig. 2) is of
the same type as the corresponding results for
I'=152.4 (shown in Fig. 3) and does show a shoul-
der around w=0.9. The only indication of a
shoulder in the MD results is for ¢ =3.094 for
I'=110.4 and 152.4. In the present calculation
these shoulders are stronger and occur at slightly
lower frequencies, compared to the MD data. I
have not given here the results for I =0.993,
since they also show similar behavior: for small
q agreement is reasonable with the MD results,
but again a high-frequency shoulder appears for
large values of q. /

I have ascertained that the shoulder in S(g, w) is
not a consequence of some error due to the use of
the superposition approximation in the numerical
evaluation of (w%. This is because the explicit
three-body contribution I;(g) (it is only this term
which is evaluated using the superposition approx-
imation) to the total moment is very small.>* The
most dominant contribution for large wave vec-
tors comes from kinetic terms. For example,
for ¢=6.187, I,(q) is even less than 1% of (w9
for I' <10 and increases to about 10% of (w9 for
I'=152.4. Therefore a larger error in I,(q)

-

FIG. 2. Dynamical
structure factor S(q,w) as
a function of w for indi-
cated values of g for T’
=110.4. Curves have same
meaning as in Fig. 1.
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q=6.187

FIG. 3. Same as Fig. 2,
but for I'=152.4.

would lead to a very small error in {(w%. We
have seen that changing I,(q) by as much as 30%
of its value (calculated using the superposition
approximation) leaves the quality of results for
S(gq, w) unchanged.

IV. CONCLUDING REMARKS

I have analyzed and applied the theory of Raedt
and Raedt for studying the dynamical structure
factor of a classical one-component plasma. The
calculation is carried over a wide range of den-
sities and wave vectors, and the results are com-
pared with those obtained in I and with the molec-
ular-dynamics data. For small g they are in
reasonably good agreement with the MD data.

But this agreement is lost for large wave vectors,
owing to the appearance of a side shoulder in the
spectrum. We note that this shoulder emerges
as a consequence of the peak in the MF (3.2) at a
nonzero frequency. On the other hand, there is
no such peak when this MF is evaluated by means
of a renormalized free-particle approximation,®
which consequently gives a better description of
the data over the entire range of ¢ and I'. This is
in contrast to what is found in studying S(g,w) of
electrons in metals for which the RR method
seems to work better.’® This might be due to the
fact that an experimental S(g, w) of electrons in
metals does exhibit a two-peak structure which is
built into the RR approximation, whereas in the
case of classical OCP the density-fluctuation
spectrum essentially contains a single peak.

It is also shown that the RR prescription of cal-
culating the MF is similar in spirit to making a
Lovesey-type!” approximation at one stage higher
than usual, in the continued-fraction expansion
for the correlation function. That is why the re-
sults obtained using the latter approximation are

essentially of the same quality as those obtained
using the RR method and are shown only for T’
=9.7. However, the arguments given by RR are
more convincing once the last term on the right-
hand side of the equation of motion (2.29) is
assumed to be constant. It may be further noted
that all three approximations discussed satisfy
the same number (i.e., up to the sixth) of frequen-
cy-moment sum rules of S(¢, w) and do not involve
any adjustable parameter.

We have confined ourselves to the study of
longitudinal correlations. For studying trans-
verse-current correlations I feel that the RR
method (or the Lovesey-type approximation for
the fourth-order MF in the continued-fraction
hierarchy) should be quite suitable. This is be-
cause the transverse-current spectrum C,(q, w)
exhibits® a two-peak structure for large ¢ which
is in principle built into this approximation using
three variables. However, for that one would
require the knowledge of the sixth frequency mo-
ment of C,(¢q, w), which involves complicated four-
body correlations. Still, it might be worthwhile
to keep this moment as a parameter and fix it
through the best fit of the results for C,(g, w)
with the molecular-dynamics data.
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