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Equations of motion in nonequilibrium statistical mechanics of open systems
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In this paper the method of Robertson and that of Zubarev, which have been applied to isolated systems,
are modified by using a special projection operator or a special density operator so that they become
applicable to open systems. As a result, exact equations are obtained in the form of coupled integro-
differential equations with expectation values corresponding to a set of operators of an open system S as the
only unknowns. The variables of the system R, which interacts with the system S, are completely
eliminated up to the expectation values taken over the initial state of R, .The differences between the above
mentioned two methods are discussed. It is shown that for special choice of the initial conditions, sets of
operators and properties of system R, significant simplifications of the equations of motion can be made.
Moreover, an expansion of the equations of motion in powers of the interaction and an approximation of
the second order are made. Finally, a Kawasaki-Gunton modification of our projection operator is made in
the Appendix.

I. INTRODUCTION

Open systems have been investigated by many au-
thors (see for instance Refs. 1-7). In general, a
system $ is considered to be open when it interacts
with its surroundings, that is to say with any other
system R, where the total system $'+R is isolated
(i.e. , the systems S and ff are considered to be
subsystems of the isolated system S+p). In the
above-mentioned references the Zwanzig projection
technique' "has been used to obtain an equation of
motion (EM), the so-called master equation, for
the reduced density operator pz(t) of the system of
interest $; i.e., the dynamics of the irrelevant
system R has been eliminated by an Argyres-Kelley
projector, which is time independent.

Some authors" "
have indicated the necessity of

introducing time-dependent projector s. They have
introduced such projectors which no longer elimin-
ate the dynamics of one of the subsystems, but lead
to two coupled equations of motion (EM's) for the
reduced density operators" or for the coarse-
grained diagonal parts of the reduced density oper-
ators of $ and&."

However, in this work we shall limit ourselves
only to cases where the dynamics of only one of
the subsystems (system S) is of interest and the
dynamics of the other subsystem (system R) is to
be eliminated. In most cases it is not even neces-
sary to know all the information which is contained
in the reduced density operator pz(t) of the system
S. Instead, all we need to know are the expectation
values (EV's} of a given set of operators (SO's} of
the system of interest S: (E~, n=1, . . . , mj. In
none of the above-mentioned articles have the au-
thors obtained closed EM's for such SO's.

We are of the opinion that the problem could most
conveniently be solved by modifying the method of

Robertson"' or that of Zubarev, ""which have
been applied to isolated systems, so that they be-
come applicable to open systems.

Robertson and Mitchell" have also briefly treated
open systems, namely, they have derived EM's for
EV's of two interacting subsystems of an isolated
system, where no subsystem has a privileged role,
so that the EV's of operators of both subsystems
are contained in the equations. It is not possible
to decouple these equations in such a way that only
the EV's of one subsystem are retained. The de-
coupling would be of great importance if the dyna-
mics of only one of the sybsystems (open system S)
is of interest. Therefore, the equations derived in
that paper can not be applied to such cases.

For this reason, in Sec. II we choose a different
way by introducing a projection operator P(t),
which transforms the time derivative of the density
operator p(f) of the total system S+B into the time
derivative of o~(t) pz(0), where oz(t) is the gen-
eralized canonical density operator" of the system
of interest S, pz(0) is the initial density operator
of system R and, aswiththemostauthors, itisas-
sumed that the systems 9 and R are statistically
independent at the initial time I,, =0. Moreover,
the equation connecting p(t) and gz(t) pz(0) is de-
rived. Here, as with Robertson, ""an operator
T(t, f ), which is an integrating factor, is defined.
From this connecting equation, we obtain an EM
for o~(f) IgI p~(0) as well as a system of exact coup-
led nonlinear integro-differential equations for the
EV's of a given SO's of the system of interest $,
where the variables of system R are completely
eliminated up to the EV's taken over the initial
distribution p~(0) of p. This is one of the most
important results of our work. We also make an
expansion of the integrating factor T(t, t') in powers
of the interaction, which is valid, in general, for
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all time-dependent p(t) operators, which do not
necessarily have to have the same form as ours.

Moreover, we come to the important conclusion
that it is very advantageous to choose whenever
possible sets of $-system operators such that their
commutation relations with the unperturbed Hamil-
tonian of the system $ result in linear combinations
of the operators of the set. In this case there is a
significant simplification of the EM s, especially
of the T(t, t') operator in these equations.

In Sec. III, by using a special density operator
&r~(t) 8pR(-~), (the initial time is taken at t, =-~),
the Zubarev method" "is so modified as to obtain
closed EM's for the EV's of the open system $.
Some authors' "treating electrical resistivity
have applied the Zubarev method to a system inter-
acting with a heat bath. They chose for the irrele-
vant system 8 the heat bath and treated the system-
bath interaction approximately by introducing a
simple relaxation term with a finite inverse relax-
ation time. Such a relaxation-time-approximation
has the disadvantage that it does not always de-
scribe the system-bath interaction in a correct
way. Contrary to this, we work in this section
without introducing any approximations or restric-
tions regarding the irrelevant system R. Besides,
this modified Zubarev method is compared to the
modified Robertson method treated in Sec. II and
the differences are shown.

In Sec. IV we make some usual assumptions re-
garding the irrelevant system R. This enables us
to make further simplifications in the exact EM's
for the EV's (F~),. Moreover, an approximation
of second order in the interaction (the so-called
Born approximation) is made in these EM's.

In Sec. V we discuss the results obtained. In Ap-
pendices A and B we derive some formulas useful
for simplifying the EM's. In Appendix G we make
a Kawasaki-Gunton modification 3' of our opera-
tor P(t) in order to obtain a formalism, which
more closely resembles the methods using the
Z wanzig proj ection-operator technique.

" +s and K~; Is, I~ are the unit operato s in Xs
and 3CR, and H~ is the interaction Hamiltonian,
acting in Xs X„. Our Hamiltonian H is assumed
to be time independent, but our calculations are al-
so valid for time-dependent Hamiltonians as long
as we are not specializing.

We denote the chosen set of $-system operators
by I,F~, n=l, . . . , mt, acting in X~. The spatial
dependence of operators Es is not considered, but
in this case the calculation can be taken further so
far as that an integration over the volume of sys-
tem $ has to be taken besides the summation over
g. 'The operators F„' -=F„SI~ act in Xs X~. The
EV's of the operators Fs are given by

(F:),=- Tr,.[F„'p(t)], (2.2)

where 'Tr» means that the trace is to be taken
over Kz and R„, and p(t) is the statistical density
operator which satisfies the Liouville (von Neu-
mann) equation:

i s p(t)/ s t = (1/h) [II,p(t) ] = Lp(t) (2.3)

with the normalization Tr»p(t) =1, and L is the
Liouville operator.

'The reduced density operators corresponding to
systems $ and R are defined by

p (t) -=Tr„p(t), p„(t) -=Tr,p(t).

Using p~(t), we may write Eq. (2.2) as

(F'„),= Tr, [F„'p,(t)] -=(F„'),.

(2.4)

(2.5)

Now we define the generalized canonical density
operator"' for the system of interest $:

exp(-p „y„(t)F„')
Tr, [exp(-Q „A,„(t)F„')J

(2.5)

with the normalization T r~o~ (t) = 1, where the A„(t)
are to be calculated from

(F~), =Trz[F~gz(t)], n =1, . . . , m. (2.7)

We choose the operators (I~, F~; n =1, . . . , m] so
that they are linearly independent, i.e.,

II. EQUATIONS OF MOTION FOR OPEN SYSTEMS:
MODIFIED ROBERTSON METHOD

~I~ ++ a„F„=0,
kg= 1

(2.8)

We consider a system of interest $ interacting
with a system 8, and assume that the total system
$+& is isolated, and that its Hilbert space is a di-
rect product KsX„of the Hilbert spaces Xs and

X„of the systems $ and R. Further we suppose
that the Hamiltonian of the total system $+R can
be written as

H + Hs =Hs+ Hz+ Hs (2 1)

w e e HO=Ps +H~, Hs =Hs S I~, H~ =I H~,
and gs, H~ are the Hamiltonians for $ and R, acting

only if a, =a, = ~ ~ ~ =a
Unlike Robertson, we see no reason for a re-

striction to the Hermitian operators. When the op-
erators are non-Hermitian one has to take their
Hermitian adjoints in the set.

We assume that at the initial time )=0, the sys-
tem $ and the system are statistically indepen-
dent, so that the density operator factors as

p(0) =p~(0) gp„(0), (2.9)

with Tr~ p~(0) =Trsp„(0) = 1. We see from Eqs.
(2.5) and (2.7) that either p~(t) or o~(t) can be used
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to calculate the EV's ( Fs), . Since os(t} depends on

A.„(t) and the latter depends only upon the EV's
(Fs)„os(t) is only a function of the EV's (Fs), :

a modification of Robertson's P(t) operator, "has
the same properties as Robertson's; i.e., first it
holds that

(2S(t) =a S((FS)„.. . , (F'),),
Bo, (t) ~ Bo,(t) B(F„'),

Bt ~ B(F'), Bt

B(2, (t) s Bp
B(Fs) sR n Bt

From this equation it follows that

(2.10)

(2.11)

Tr„[F'„P(t}A]=Tr, „(F„'A), (2.14)

where we used the relation which follows from E q.
(2.8),

Tr, [F„'Bo,(t)/B( F„',),] = B(F„'),/B( F„',), = 6„„,,

where 6„„,is the Kronecker delta. Second, from
Eq. (2.14) it follows that

[Bo,(t)/Bt] Sp, (0) =(—2)P(t)Lp(t), (2.12)
where we defined a time-dependent projection op-
erator

P(t)w-=g, ', Sp„(0)Tr„(F„'W), (2.13)

with any operator A in the product space K~ X~.
It is easy to show that our p(t) operator, although,

I

P(t)P(t')W =P(t)w. (2.16)

Moreover, in the calculation we must take care
that the trace of the operator P(t) is to be taken
over all operators which are behind P(t).

By using the Robertson projection-operator for-
malism" "we obtain from Eq. (2.12}the connect-
ing equation between p(t) and crs(t) SpR(0),

t

p(t) — (t)ep, (tPr) T(t P)[p, (P)=—rr, (P)) trp, (P) —i f dt'T(t t )Q (t )L'e, (t')ir p,'(P),

and the EM for os (t) Sp„(0),

[Bo (t)/Bt] SP„(0)= iP(t)Lo-(t) SP (0) —iP(t)LT(t, 0)[P (0)-(2 (0)] SP„(0)

(2.16)

dt'I' t LT I;, t' Q t' Loq t' Sp~ O
0

where we defined an integrating operator T(t, t') satisfying the differential equation:

BT(t, t')/Bt'=iT (t, t')Q(t')L, T(t, t) =I

(2.17)

(2.18)

with Q(t) =—I—P(t), I= Is SIR; and —ps(0), pR(0) being the given initial density operators.
Introducing the Dyson time-ordering operator 1, ' which orders chronologically from left to right a mul-

tiple operator product in sequence of decreasing time, the formal solution of the differential equation for
T(t, t'), t ~ t'reads

T(tt')=«xe(-i dt Q, (i)L) . ,
g

I

The expansion in powers of the interaction II» follows as:
t

T(t, t )=T exP(i dt T'(t, t )Q(t )L „T,'(t, t ))T (I, t'),
t I

with

t
T (t, t')=TexP(t dt Q(t, )L ),gl

(2.19)

(2.20)

(2.2 la)

and the inverse operator T '(t, t') can be obtained analogously to Ref. 26, by replacing the integral in Eq.
(2.21a) by a sum and then making use of T, '(t, t')T, (t, t') =I, and finally again replacing the sum by an inte-
gral:

T '(t, t')= ex (TPdttQ(t, )L),t'
(2.21b)

where F is the reverse time-ordering operator and L, =— (I/}2)[H„.. . ], L» = (I/R)[HsR, . . . ]. This expan-
sion of operator T(t, t ) in powers of the interaction is valid for all time-dependent P(t) operators, which
do not necessarily have to have the same form as ours.

We now let the operator [i(Ls +LsR)Fs] act upon Eq. (2.16) and afterwards take the trace over it, which
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gives us the desired EM's for the EV's:

S(F~)t/St =iTr»{[(L,+L»)E„]u,(t) SPY(0)}+iTr,„{[(L,+L»)F„]T(t, 0)[P, (0) —o, (0)] P„(0)}

+ dt'Tr~„{[(L~+I~~)E~]T(t,t')[L„+Q(t')(L~ +L~s)]a~(t') C83p„(0)}, +=1, ~ ~, m, (2 22)
0

p~ (0) = o ~ (0) (2.23)

where we used Tr(ALB) = Tr[(—LA)B] and Lz —=Lz

8' ~ I.z = Is N Iz.
Since by Eq. (2.10), cz(t) is only a function of the

EV's (E~), and according to Eqs. (2.19) and (2.13)
the operators T(t, t'), P(t) depend through o~(t) also
only upon the (F~)„ the E qs. (2.22) are exact
closed integro-differential equations for the EV's
(E~), of the system of interest S as the only un-

knowns, where the variables of system 8 appear
only as EV's taken over the initial density operator

. p„(0) of A [the initial density operators p„(0),
pz(0) of R and S are assumed given]. What is
especially important, is that it is always possible
for a special choice of initial conditions and So's
to make

valid, so that the inhomogeneous terms which con-
tain the difference [p~(0) —o~(0)] vanish.

Substituting Eqs. (2.20) and (2.21) into EM's, Eq.
(2.22), we can write these equations as a series
expansion in powers of the interaction II».

It is, however, possible to make one more sig-
nificant simplification in Eqs. (2.22) and (2.17), if
we choose the sets for S-system operators {E~,
n = 1, . . . , m} such that the following relation holds:

(2.24)

where e„„,are certain coefficients. T'his assump-
tion can be easily fulfilled and is also used by other
authors (see Refs. 27, 28, and Ref. 18, 525.1).
. Namely, by inserting Eq. (2.24) into Eqs. (2.22),
we obtain

s(F'„),/et =i+ ~„„.(E„'),+i »,„[(L„E„')u,(t) ep„(0)]+i+~„„,a„,(t)+ it „(t)
n'

t t
+P n„„. dt'c„.(t, t')+ dt'd„(t, t')+ dt'e„(t, t'), n =1, . .. , m,

rt" 0 0 0

where we define

n„(t) =-», {E„'T(t,o)[p, (o) —u, (0)] p (0)},
5„(t)

—= Tr ~„{(L»E„)T(t,0)[p~ (0) —g~(0) ] NI ps (0)},
c„.(t, t') =- Tr „{F„.T(t, t')[L„+Q(t')(L + I. )]o (t') ap„(o)},
d„(t, t') —= Tr „{(L F„)T(t, t')Q(t')L, c (t') p (0)},
e„(t, t') -=Tr,„{(L„E„')T(t,t')[I.„+Q(t')L,„]o,(t ) e p„(o)} .

(2.25)

(2.25a)

(2.25b)

(2.25c)

(2.25d)

(2.25e)

Following Eq. (2.14) we can take the P(t) operator into the trace of a„(t) and c„(t,t'), and, etnploying

equations

P(t) T(t, t') = P(t),
P(t)T(t, t')Q(t') =o,

(2.26)

(2.27)

which both can be obtained through Eqs. (2.19) and (2.15), we get a„(t)=c„,(t, t') =0. Moreover, according
to Eq. (B8) in Appendix B, it results that d„(t, t') =0. Further, Eq. (2.24), as we show in Appendix A,
brings an essential simplification of operator T(t, t') in b„(t) and e„(t, t').

Thus we finally obtain a much simpler form of the exact nonlinear coupled integro-differential equations
for the m unknowns (F~), under the condition that the SO's fulfills the relation (2.24):

&(F„'),/ t=sipn„„, ( 'E), +i Tr»[(L, sF„')o,(t) p„(0)]+i Tr, ~{(L»F~)U(t, 0)e *'~o[p, (0) o, (0)] I8—p„(0)}
n'

with

t
+ dt'», .{(L»E.')U(t, t')e "' ' [L.+Q(t')L»j~. (t') p. (o)}

0

(2.28)



2160 JO SIP S EKE

t
U(&t)-=,'i' e«)&( i die '" ii'Q(t )1, e'&' i' ),t 1

(2.29)

and the EM for v~ (t), Eq. (2.17), which is important for an eventual comparison with other papers deriving
only master equations for density operators, can also be written in a simpler form:

[aoz(t)/at] SP~(0) =-zL~vz(t) SPz(0) —iP(t)L~„oq(t) SP~(0) —iP(t)Lq~U(t, 0)e " o[Pe(0) —oe(0)] SP„(0)

t
dt P(t}L,„U(t, t )e-'&'-'+ [L,+q(t )L,„]v,(t ) Sp, (0).

0
(2.30)

[It is obvious that the EM's for the EV's (F~), can
always be obtained from the EM for v~ (t) Sp„(0).]
Besides, if we choose SO's such that the special
initial condition (2.23) is satisfied, then the inhom-
ogeneous terms, which contain the difference
[pz(0) —v~ (0)], vanish in all equations derived up
to now.

If A. „(t) could not be directly eliminated in o~ (t),
i.e., if v~(t) could not be directly expressed by the
EV's (F~), (in Refs. 29 and 30 we consider such
cases where that can be done), then it is more ap-
propriate, in addition to the unknowns (F~)„also
to consider the X„(t) as unknowns. By inserting
Eq. (2.6) into Eqs. (2.22) or (2.28} and adding equa, —

tions

exp(-g „Z„(t}F„')
7&', [exp( r, ()))":))I

g 1
y ~ ~ ~ y m (2.31)

we obtain 2m coupled integro-differential equations
for 2m unknowns (F~), and X„(t).

Finally it is important to note that the derived
EM's, Fqs. (2.17), (2.22), and (2.25}, are valid not
only for such a vz(t) which has the form of a gen-
eralized canonical density operator, but also for
all density operators, which are functions of the
EV's of a given SO's: {Fe, n =1, . . . , m] such that

( F~), =T r ~ [F~ v ~ (t) ] and Tr ~ v ~ (t) = 1 are fulfilled.
[Eqs. (2.28) and (2.30) are valid only if o (t) satis-
fies Eq. (B8) also].

But if we want to remove the inhomogeneous
terms in the EM's, i.e. , to identify pz(0) with vz(0)
for special initial conditions, then we must choose
such a vz(t) which gives a generalized canonical
density operator at the initial time t =0, (however,
for t&0 this is not required}. Sometimes, as we

will show in Ref. 30, it is of great importance to
choose such a vz(t) which is only at the initial time
equal to a generalized canonical density operator.
Since in such cases this makes it possible to ex-
press the X„(t) directly by the EV's (F~)„we thus
obtain a significantly simpler form of closed EM's
for the (F~),.

III. A MODIFIED ZUBAREV METHOD FOR OPEN
SYSTEMS

it I NSO
lim e "~~p (t+ t, )

lim e "& v, (t+ t, ) Spe( ), —
oo (3.2)

and this is equivalent to inserting infinitesimal
sources into the Liouville equation for the total
system S+R

NSP NSO . NSO

ap (t)/at+iLp (t) =-e[p (t)-v, (t)Sp„(- )],
(3.3)

with &-0' after the thermodynamical limit has
been taken. The solution of Eq. (3.3) is"

p (t) = e dt'e" 'e" v, (t+ t') p„( ~) . —(3 4)

The boundary condition (3.2), i.e. , the infinitesi-
mal sources in the Liouville equation (3.3) select
the retarded solution of the exact Liouville equa-

In this section we modify the Zubarev method&5-xs

which has been applied to isolated systems, so that
it becomes applicable to open systems, and the
analogy and differences as compared to the modi-
fied Robertson method are pointed out.

The modifying of the Zubarev method can be car-
ried out quite analogously to that of the Robertson
method in the preceding section, namely by using
a generalized canonical density operator (in
Zubarev's notation: quasiequilibrium density
operator) v~(t), defined by Eq. (2.6), with the dif-
ference that (1}the initial condition has to be taken
at t, =--~ (in the Robertson method was t, = 0), (2)
instead of the statistical density operator p(t) the
Zubarev nonequilibrium statistical operator p" (t),
which alsodescribes the total system 9+8, has to
be used, (3) the SG's {F~, n = 1, . . . , m) must al-
ways be chosen so that the initial condition (2.9)
takes the following form:

NSG
p (- )=vg(- )p„(- ), »„p (- )=1. (3 I)

The boundary condition that selects those solu-
tions of the Liouville equation which satisfy the ini-

tiall

cond iti on (3.1) is
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tion (2.3).
Let the operator [i(L~ +L»)F„]act on Eq. (3.4), afterwards taking the trace over it and also taking

into account that

(F~), = lim Tr~„[p (t)F~]
e 0+

=Tr, [o,(t)F'„],

we obtain the EM's for the EV's of $-system operators:

(3.6)

a(F.')g/at ='~ dt'e" TrsB Q(L8+Lss)F. ]e' os(t+ t') '3pR(
~I

(3 6)

(e -0' after taking the thermodynamical limit).
If for the operators F~ the relation (2.24) holds, then using Eq. (3.4) we can write

0

a(F„'),/at= i+a„„,{F„',), +i~ dt'e"'Tr, „(L,„F„)e"'0
n~ oo

gl

&Kexp i dt"L,» t" o~ t+t' p~ -~, n=1, .. . , m 3.7
0 J

@faith

(te) —e it'~IOL eit "Io
$E SR (3.7a)

where we expanded exp[it(L, +L~~)] in powers of the interaction H», using the Dyson time-ordering oper-
ator g.

We can also get EM's quite analogous to Eqs. (2.22) by applying the modified Robertson technique to
the Liouville equation with infinitesimal sources. Namely, by use of Eq. (3.3) we obtain

[aa, (t)/at]p„(- ) =-zP(t)Lp»o(t), (3.8)

where the only difference between P(t) appearing here and that defined by Eq. (2.13) is the replacement of
pz(0) with pz( —~). Thus, Eq. (2.16) becomes~3

t
p"' (t)-o, (t)p (- )=- dt'e"' "&(t, t')Q(t')«, (t')p (- ). (3.9)

[Because of the initial condition (3.1), the equation has no inhomogeneous term ].
As we can see, Eqs. (3.4) and (3.9) represent two equivalent solutions of the Liouville equation with infin-

itesimal sources (3.3). In the Zubarev method the equation of type (3.4) is used, while in the Robertson
method the equation of type (3.9).

Let the operator [i(L~+L~~)F~] act upon Eq. (3.9) and, carrying out the trace over it, we obtain the
EM's:

a(F„'),/at=iTr„([(L, +L,„)F„']o,(t)N p„(- )]

t
+ dt'e"' "», f[(L +L „) F]T( , tt)[ ~L+Q( )t( L+L )]~ (t')Sp„(- )],

n=1, . . . , m (3.10)

(e-0' after taking the thermodynamical limit).
Equation (3.6) and Eq. (3.10) are equivalent equations of motion for the EV's (F~),.
Consequently, we see that the EM's obtained by the modified Zubarev method differ from those of the

modified Robertson method only by (1) an additional damping factor which appears in the integral, and

which is the reason for the time irreversibility of the EM's and (2) using the initial time t, =-~ instead of
=0,
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'

IV. FURTHER SIMPLIFICATION OF THE EQUATIONS
OF MOTION FOR CERTAIN ASSUMPTIONS

REGARDING THE IRRELEVANT SYSTEM R

Now we make some usual assumptions regarding
the system R:

(i) The initial density operator of It is a station-
ary distribution,

LsPs(0) =0 ~

In most cases this condition is satisfied for system
R. This is always the case when the initial state of
system R is given by an eigenstate or a statistical
mixture of eigenstates of Its, or when pz(0) is
given as a function of II~ only.

(ii) The average value of the interaction in the

initial state of R is zero,

i.e. , the system R does not exert any external
driving force on system S.

These assumptions regarding the system R are
very suitable when R has the properties of a res-
ervoir.

It follows from assumption (ii) that both

T r„[(L,„F„)o,(t) Sp„(0)]

P(t)L, (t) Sp (0)

vanish. Consequently, under the assumptions (i)
and (ii) the EM's (2.28) and (2.30) reduce to

F$ m

{(L F.')U(t, o) '"'fp, (o)—,(o)] Sp„(0)]nn' n' t

t
+ dt'Tr„[(L,, F'„)U(t, t')e '" '~ I., v, (t')Sp (0)], =1, . . . , m

0
(4.1)

Sp„(0)=-iL$V (t)Sp„(0)—iP(t)L, U(t, o)e "~$[p$(0)—o, (0)] Sp (0)

I
SR t

I ~
~

~

( t I t I)L0
S R S

I
R ~

t

dt'P(t)L, „U(t, t')e '" ' &~'L$~o$ (t') Sp„(0).
0

(4.2)

For the special initial condition (2.23), the inhomogeneous terms with [p$(0) —o$(0)] vanish.
Up to now, we have not made any approximation as to the strength of the interaction between the systems

S and R. Equations (4.1) and (4.2) in the approximation of second order in the interaction H» become

(F$)nn' n' t
n =I

t
+ dT Tr»{(L»F„)exp[—iT(I $ +L„)]L»exp[-i(t-7 )L$] [p$(0) —o$(0)] Sp„(0))

0

t
+ d&T $B{(L$RF.') e»[ iT«$+LA)]-L$Bo$(t -~) SPR(00

0
(4.3)

so, (t) Sp, (0) =-tL,o, (t) Sp„(0)

dTP(t)L$„exp[ iT(L$+L—„)]L$„exp[ i(t T)L$][p—$(0)-—o$(0)] Sp~(0)
t

0

t

dTP(t)I. exp[-ir(L +L„)]L „o (t- T) Sp (0),
0

(4.4)

where we used the relations

, {(L,„„') " o'[, (0)—,(0)] (0)j =0

and

P(tx)L$„e *'"[p,(O) —o$(0)]Sp~(0)=O,
which both follow from assumptions (i) and (ii).

I

Since according to assumption (ii) the approxima-
tion of the first order in the interaction H~~ van-
ishes, the approximation of the second order is the
lowest order of the approximation, the so-called
Born approximation. This Born approximation is
usually good if the SO's is chosen big enough, the
initial condition (2.23) is fulfilled (i.e., the inhomo-
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geneous terms vanish), and the system R is a res-
ervoir.

With the modified Zubarev method we obtain quite
analogous equations if the special initial condition
(3.1) is satisfied and the assumptions (i) and (ii)
are made at to =-~ (see Sec. III).

V. DISCUSSION

In the preceding sections we obtained a set of ex-
act closed EM's for the system of interest 9, in
which the variables of the system R appear only in
the form of EV's taken over the initial state of A.
These equations are non-Markovian. The reduction
to a Markovian form will be considered in our sub-
sequent papers (see Refs. 29 and 30).

his formalism is attractive because we always
obtain closed EM's for the EV's of a set of S-
system operators. We have expressed these equa-
tions as a power series in the interaction between
$' and &. But we can truncate this expansion at low
order only if the state of the irrelevant system A
never deviates appreciably from the initial state of

This is always the case when A is a large sys-
tem in equilibrium (reservoir), which interacts so
weakly with a small system S that the equilibrium
of system p is hardly disturbed. Otherwise a par-
tial resummation of the perturbative expansion
should be made.

Moreover, the quality of the approximation is de-
pendent on the number of operators included in the
set. The greater the number of linearly indepen-
dent operators in the set, the better the approxi-
mation in the truncation of the series. (More will
be discussed about this in Refs. 29 and 30, where
the application of this method to the interaction of
N two-level atoms with the radiation field will be
treated. )

The advantage of the modified Robertson method
is that the projector used directly picks out the
EV's that are of interest and thereby gives closed
EM's for them. In case of the modified Zubarev
method this is obtained without projectors, by in-

serting infinitesimal sources into the Liouville
equation. ) Construction of such projectors in
methods using time-independent projectors is not
usually possible.

Although g~ (f) determines only the EV's of S-
system operators included in a given set and gives
no information about the EV's of the remaining 8-
system operators, these EV's can be determined
from the connecting equation between p(t) and

g~(t)p„(0) [or p s (f) and g~(t) 6 ps(-~) in the
Zubarev method], when the EV's of operators con-
tained in the given set are already calculated from
the EM's.

Moreover, the equations obtained by the modified
Robertson method contain inhomogeneous terms
which can easily be made to vanish through special
initial conditions. Nn the Zubarev method this
simplification is made a price.i, since the obtained
equations are valid only for such special initial
conditions. ) Such a simplification for special ini-
tial conditions is not possible in the case of meth-
ods using the Argyres-Kelley projector, ' ' be-
cause no such inhomogeneous terms exist.

Finally, we would like to mention once again that
as long as no special properties of canonical den-
sity operators are used, the EM's obtained by the
modified Robertson method are valid for every densi-
ty operator os (t) which is a function of the EV's (Fs)„
n=l, . . . , m so that (F~), =Trz[F~g~(t)] and

Tr~g~(t) =1 are fulfilled. [In addition to this, in
the modified Zubarev method Eq. (3.1) must also
be satisfied. ] Consequently, the gz(t) appearing
in the obtained EM's is not restricted to the gen-
eralized canonical density operators.
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APPENDIX A

By using the relation (2.24) we obtain an essential simplification for the operator T(t, f ) in Eqs. (2.25),
namely, it follows that

P(t)L() [p~(0) —g (0)] p„(0) = Q (-a. , ) ~ ~ ~ ( a. (, )) (a))ps(0) (3 sg, (t)

n, n', ...,p&~& n t

x Tr „(F~),[p (0) —g (0)] Sp„(0))

=0, jr=0, 1, 2, ... ,

where we used Eq. (2.13). Employing Eq. (Al) and Eqs. (2.21a) and (2.21b) we get

Z' (t, 0)[ (0) — (0)] 8, (0) = "
[ (0) — (0)] 8 (0)

(A1)

(A2)

i.e., all the terms containing the P(t) operator vanish. Moreover, according to Eqs. (2.24) and (2.14) for
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an arbitrary operator A in $C$ K~, it holds that

P(t)L,'[I-P(t')]A = g (-n„„,) ~ ~ ~ (-a„(a-»„o))p„(0) (3) ', (Tr~„(F„&))A) —Tr~~[F'(, g(t')A] Iso, (t) -s

nJn ~ ~ ~ ~ ~ n1 ))

=0, k =0, 1, 2. . ~ . (A3)

And from this follows that

T"(t t')[I P(t-')]A =e"" ' ' o[I-P(t'))A.
It holds also that

P(t)L'L A =0, k=0, 1, 2, . . .
and therefore

T"(t t')L„A =e"' ' ' oLsA

(A4)

(A 5)

(A 6)

APPENDIX 8

The proof that d„(t, t') defined by Eq. (2.25) van-
ishes is as follows:

By using Eq. (31) in Ref. 13, we can write

P(t)L,o, (t)ep, (0) =L,~, (t)C p„(0).
According to this equation, d„„(t)vanishes.

APPENDIX C

(88)

1

L,o, (t) =-gZ„(t) dxo, (t) (I.,F„')o,(t)' "
n 0

1=-P ~„(t)~„„, dxo, (t) F„',o, (t)' ", (81)

where we used Eq. (2.24). Further, taking into ac-
count Eq. (2.6), we have

X„(t)n„„,(F„',), =0. (82)
n, n'

Then by using E q. (82) and the definition (6) in Ref.
14,

1

o, (t)"F'„,o, (t) dx-(F„',)„
0

we can write Eq. (81) as follows:

L,o, (t) =-g ~„(t)~„„,X'„,o, (t).
n ~ n

(83)

(84)

(85)

where A$ is any operator acting in Hilbert space
X$ ~

Then, by using Eq. (AV) in Ref. 14, we obtain

P'(t)F„',o, (t) =F„',o, (t).
From this equation follows that

P(t)F'„,o, (t) e p„(0)=F„',o, (t) m p, (o),

and with Eq. (84) we obtain

(86)

(BV)

Now we define a new operator P~(t) which is used

by Robertson in Hefs. 13 and 14 in a quite analo-
gous form:

7'e will now make a Kawasaki-Gunton modifica-
tion"'" of our projection operator P(t) [defined by
Eq. (2.13)] to obtain a formalism which more
closely resembles the methods using Zwanzig's
projection technique to derive master equations for
the relevant parts of the density operator p(t). ' "
The modified projection operator P(t) can be writ-
ten as follows:

P(tlat=(s, (t) -g ', (F'„)) Rp„(0)Tr, A

(2 (0), ( „'A), (C 1)

P(t)p(t) = o, (t)(3)p (o),
—

( )
sp(t) so, (t)

( )I' & = Sp~

P (t)P(t')A =P(t)A,

Tr, „[F'„P(t)A]=Tr, (F'„A),

P(t)LA =P(t)LA .

(C2)

(C3)

(C4)

(C5)

(C6)

Consequently, the new projection operator P(t)
picks out the relevant part of the density operator
p(t) as the projection operators do in Refs. 1-12
and moreover has all the properties of our earlier
operator P(t); i.e., in all the equations derived'in
th'is paper the operator P(t) can be replaced by the
modified operator P(t).

where A is an arbitr ary operator in X$ X~ and
the last term of the operator P(t) is identical to the
earlier projection operator P(t). P(t) has the fol-
lowing properties:
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