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This paper is concerned with the derivation of nonlinear Auctuation-renormalized transport equations of a
Auctuating thermodynamic system, on the assumption that the macroscopic variables defining a state
undergo a Fokker-Planck process. It is shown that the renormalization effect may consist of two parts: a
renormalization of the thermodynamic forces and a renormalization of the transport coefficients, Closed
analytical expressions for the renormalized quantities in terms of the bare quantities appearing in the
Fokker-Planck equation are derived. A scheme for the approximate evaluation of these expressions is given.

I. INTRODUCTION

In the study of many problems in nonequilibrium
statistical thermodynamics one is led to a com-
plete set of macroscopic variables which undergo
a continuous Markovian process. ' The master
equation of such a stochastic process is the Fok-
ker-Planck equation. The quantities which one
would like to determine are certain ensemble-
averaged properties, the most simple of which are
the mean values of the macroscopic variables. In
most problems which are currently receiving at-
tention the Fokker-Planck equation is nonlinear.
Owing to this nonlinearity the mean values are
coupled to the fluctuations of the macroscopic var-
iables. This complicates the derivation of the
transport equations describing the mean relaxation
of an ensemble. The need for a fluctuation re-
normalization of the transport equations has been
pointed out by Zwanzig, ' and several renormaliza-
tion strategies have been proposed by Nordholm
and Zwanzig. ' They determine the higher-order
cumulants which couple to the mean values using a
straightforward generalization of Picard's meth-
od of successive approximations. Although sys-
tematic, such an expansion is not adequate if one
is interested in the long-time limit. Being aware
of this, Nordholm and Zwanzig modify the proce-
dure and propose some zeroth-order approxima-
tions which are particularly reasonable in the long-
time limit. However, in order to obtain higher-
order corrections, they must return to the ap-
proximate solutions of the equations of motions of
the cumulants obtained by Picard's method.

Another means of treating fluctuation renormal-
ization has been put forward by Mori and Fuji-
saka. ~ They used a projection operator which ex-
tracts the linear part of the fluctuation-renor-
malized transport equations. Their equations
give a correct description of the long-time be-
havior when the system is already in the vicinity
of the equilibrium state. However, the method
does not allow one to determine corrections which

are important if the initial state is not near equi-
librium. In the present paper, we analyze the
problem in a more complete way and derive non-
linear fluctuation-renormalized transport equa-
tions which are practically useful in the short-
time limit as well as in the long-time limit, thus
combining the advantages of the previous methods.

The paper is organized as follows: In Sec. II we
present the type of Fokker-Planck models which
we are considering. The Fokker-Planck equation
is nonlinear because the stationary distribution
may be non-Gaussian and the bare transport co-
efficients may depend on the state of the system.
We show how the problem of fluctuation renor-
malization arises.

The renormalization procedure can be split into
two parts. The thermodynamic forces which cause
the fluxes are renormalized if the stationary dis-
tribution is non-Gaussian. This step is discussed
in Sec. III. The second renormalization step
leads to a, renormalization of the transport coeffi-
cients. In Sec. IV we obtain exact expressions
for the renormalized transport coefficient using
time-dependent projection-operator techniques.
These techniques have been used widely in con-
nection with the I iouville equation. ' We propose
a similar approach in connection with the Fokker-
Planck equation.

For practical purposes the exact expressions
which contain nonlinearities of all orders must
be approximated. A systematic appl oxlmatlon
scheme which is appropriate whenever the static
distribution is Gaussian in the vicinity of its max-
imum is given in Sec. 5. The approximation is in
terms of the same small parameter needed to ob-
tain the Fokker-Planck approximation from the
underlying statistical mechanics. '

II. FOKKER-PLANCK MODEL

We consider a system whose macroscopic state
is described by a set a = (a', . . . ,a', . . . , a") of
macroscopic variables forming the state space Z.
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In a stochastic theory which includes the fluctua-
tions of the variables a we ask for the probability
P(a, t)da to find the system at time t in the volume
element da around the state g. We assume that
the time evolution of this probability is governed
by a Fokker-Planck equation of the form'

(
8 „( )

8p(a, t) p(a, t) 8w(a)
8t ' &a~ ~ aa~ w(a) 8a'

(2. 1)

where a summation must be carried out over the
repeated indices; k~ denotes Boltzmann's con-
stant, which has been introduced in order that the
"bare transport coefficients" L'~ have the usual
units of phenomenological thermodynamics, w(a)
is the stationary solution of the Fokker-Planck
equation. For a closed system, w(a) is of the
form

time rates of change of the mean values

a—'(t) = tr[p(a, t)K'(a)] . (2.7)

If the distribution p(a, t) is sharply peaked about
the mean a(t) we have

tr[p(a, t)K'(a)] = K (a(t)) . (2.8)

This is, however, often too crude an approxima-
tion. 'Fhe fluctuations of the variables a lead to
corrections to (2. 8). A systematic way to deter-
mine those corrections is the aim of this work.

The broadening of an initially sharp distribution
is caused by the diffusion term k~(8'/8a'Ba~)D'~p
of the Fokker-Planck equation (2. 3). Since this
term is proportional to k~ the distribution remains
sharp for k~ —0. From (2. 4) and (2. 7) we find in
the limit k~-0

w(a) ()(.&(1/k~)s (a) (2.2) „—a'(t) = L"(a(t)) Z, (a(t)), (2.9)

where S(a) is the (bare) entropy. If the system
interacts with an environment, S(a) must be re-
placed by the adequate potential. This change,
however, is purely formal.

The Fokker-Planck equation (2. 1) may also be
written in the more familiar form

Ba' ' Ba~
—)(a, ~)=, rc'(a)+k, -D"(a)))(a,&),

(2.3)

with the Fokker-Planck drift

1 B )~ )) BS BLK =— &k~L se=L —
&

+k
ze Ba Ba Ba

and the diffusion matrix

Dkl ) (Lkf y I gt)

(2.4)

(2. 5)

a'(t) = tr[p(a, t)a'], (2.6)

where tr denotes integration over the entire state
space Z. By means of (2. 3) we obtain for the

which is assumed to be positive.
In the foU.owing, the Boltzmann constant k~ will

also be used as a small parameter. In some sys-
tems the transport coefficients are inversely pro-
portional to the system size, ' so that an expansion
in terms of k~ is equivalent to an expansion in
terms of the inverse system size. A similar con-
nection of k~ with a small parameter is typical for
many Fokker-Planck models, because an equation
of the form (2. 3) can be obtained from more basic
equations within a statistical-mechanical theory
only if such a small parameter exists.

The mean values a of the state variables a are
given by

where we have introduced the "bare thermody-
namic forces"

X, (a) = 8S(a)
Ba' (2. 10)

Equations (2.9) are the deterministic equations
of motion. ' We refer to them also as the "bare
transport equations. " They are exact for a linear
system, where the transport coefficients L'~ are
constant and where the entropy S(a) is a quadratic
function of the variables a. Then, K'(a) and A. ,(a)
are linear functions of a and (2.9) follows from
(2.4) and (2.7) without further assumption.

In a nonlinear system, Eqs. (2. 9) provide only
a lowest-order approximation to the correct
"renormalized transport equations. " The non-
linearity may have two origins. First, the sta-
tionary distribution w(a) may be non-Gaussian, so
that the thermodynamic forces A.,(a) are nonlinear
functions of a. Second, the transport coefficients
l.'~ may depend on the state a. The first kind of
nonlinearity shows up in the statics of the system,
while the second is purely dynamical.

III. RELEVANT DISTRIBUTION AND RENORMALIZED
THERMODYNAMiC FORCES

There is a well-known evolution criterion"
associated with the Fokker-Planck equation (2.1).
Let us define a functional H(p(a, t)) of the distribu-
tion p(a, t) by

H(p(a, t)) = -k~ tr f p(a, t)lnp(a, t)/w(a)] . (3.1)

By means of the Fokker-Planck equation (2. 1) and
Eq. (2.5) we find for the time rate of change" of
H(p)
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—
t H(p(a, t))

=k~tr P a, t D'~ a ' ' )0, 3.2ga' Pa'

where

o(a, t) = lnp(a, t)//M(a) . (3.3)

and

trP(a, t) =1 (s.4)

tr[p(a, t)a'] = a'(t) . (s. 5)

Hence P(p) increases in time it reaches its max-
imum for the stationary state w(a) which is ap-
proached as t- ~.

Assume that we know the mean values a(t) of the
macroscopic variables; we wish to know the dis-
tribution p (a, t). Since we cannot determine p(a, t)
completely, we will look for a "relevant distribu-
tion" p(a, t) which is an optimal choice of p(a, t)
corresponding to the information given. It is natu-
ral to determine p(a, t) by the requirement that it
maximize H(p(a, t)) under the constraints

S(a(t)) is just the maximal value of the functional
H(P) under the constraints (3.4), (3. 5). Using
Eqs. (3.5)-(3.7) we find

S(a) = k~lnZ+ A.,a', (3.11)

and further

/kg lnZ
a =—

gX(

as well as

(s. i2)

as
a l (s. is)

The ~ are derived from the renormalized entropy
S(a) in the same way as the bare thermodynamic
forces A. are derived from S(a). We call the pa-
rameters A. "renormalized thermodynamic
forces. " The renormalization of the thermody-
namic forces is due to the non-Gaussian behavior
of the fluctuations in the stationary state. If the
statics is Gaussian, the A. coincide with the bare
thermodynamic forces A. .

From (3.6) and (3.7) we find

(s. 6)

where

By standard variational techniques we find that-

p(a, t) is of the form

p (a t ) Z -1(t )gg (a )e- (& / A)) ) x) & t ) a

= ——p (a, t) [a' —a'(t)],
a~, (t)

which yields with (3.5)

(3.14)

(s. is)
8 (t)= trio(a)e ""))'"&""] (3.7)

p(a, t) =p(a, t)+ 6p(a, t), (s.9)

The parameters /). (t) a) e determined by (3. 5) as
functions of the mean values a(t). Consequently,
P'(a, t) is also a function of the a(t) and has no ex-
plicit time dependence: p(a, t) =p(a, a(t)) . With

(2. 2) we see that (3. 6) may be written

p( t) ~ (j/As)[s(a)-)i)(t&a)) (3.8)

This distribution is of the form of the stationary
distribution of the system in the presence of ex-
ternal forces that displace it from equilibrium. '
It is natural to split the precise distribution p(a, t)
into

where

a"(t) =trf p(a, t)a'a'] a'(t)a'(t)— (s. i6)

is the variance matrix of the macroscopic varia-
bles in the state p(a, t). Since tr' (t)/is a positive
definite matrix so is its inverse, and we see with

(3.13) and (3.15) that

g2$
, =-0,[&"(t)]' (3.17)

is negative definite, which means that the renor-
malized entropy S(a) is a convex function of the
variables a. This property, which is generally
required for the thermodynamic entropy' may not
hold for the bare entropy S(a).

S(a(t}}= -ks tr[p(a, t)lnp(a, t)iso(a}]; (3.10)

where p(a, t) is already determined by the mean
vat.ues and describes a stationary system con-
strained to these mean values, while 5p(a, t) de-
scribes the dynamical corrections typical for a
transient state p(a, t).

Besides the "bare entropy' S(a), which is a
function of the actual values of the macroscopic
variables a, we introduce a "renormalized entro-
py" S(a) as a function of the mean values a by

*(a 0) ~ (1/4&))s(a&-)i) &0)a&)
p I (4. 1)

where the A.(0) depend on the strength of the ap-
plied forces. If the forces are switched off at

IV. DERIVATION OF RENORMALIZED TRANSPORT
EQUATIONS

Assume that we apply constant external forces
to the system and wait until it reaches the sta-
tionary state in the presence of these forces.
Then the state of the system is of the form



2150 HERMANN GRABERT AND WOLFGANG WEIDLICH 21

+ P,. ' Jtr[a'X(a)] —a'(t}trx(a)) . (4.2)Ba' t

Note, that the time dependence of 6'(t) arises only
through P(a, t) and, consequently, through the
mean values a(t). We have from (3.4) and (3.5)

8P(a, t)tl
y( )
:0 (4. 3)

8P(a, t)
8a'(t) (4.4}

time t, =0 the distribution (4. 1) will relax towards
the equilibrium distribution zu(a). This relaxation
is governed by the Fokker-Planck equation (2. 1).

We want to study the. time evolution of the mean
values a(t) during this relaxation process. Since
the a(t) are already determined by the "relevant
part" p(a, t) of the distribution p(a, t) we may
eliminate the "irrelevant part" 6P(a, t) of the de-
composition (3.9). This can be achieved by means
of the projection-operator technique. " %e define
a projection operator 6 (t) by

6)(t)X(a) =p(a, t)trr(a)

mean values a(t) which give rise to the time de-
pendence of 6'(t).

The Fokker-Planck equation (2. 3}may be writ-
ten

p(a—, t) = Zp (a, t),a

at

with the Fokker-Planck operator

SY(a) ass(a) X(a))
8a' ' aad' aad so(a)

—tt'(a) e t.'t tt" (a)) Y(a) .Pa' ~ ga'

(4. 12)

(4. 13)

d(t)tt(a, t)=f ds()(ts)d(s)dtt(a, ,s),
0

(4. 15)

where Q(t, s) is the time-ordered exponential

Using (4. 6), (4. 7), and (4. 11}we have

—
t k(t)p(a, t)= &(t)gp(a, t)+ g(t)Z%, (t)P(a, t), (4. 14)

which can be integrated to yield

Hence we find that d'(t) fulfills

(p(t)(p(t') = s'(t), (4. 5)

t
Q(t, s) = T exp da d (a)a}

S
(4. 16)

which implies the projection-operator property
for t=t'. Using (2. 6) we see that a'(t) projects
out the relevant part P(a, t) of the distribution
p(a, t)

in which operators are ordered from right to left
as time increases. We have taken into account
that the initial distribution is of the form (4. 1)
so that

6'(t)p (a, t) =p (a, t), (4. 6) p(a, 0) =p(a, 0) or $(0)p(a, 0) =0.

P (a, t) = 6'(t)p (a, t) + &(t)p (a, t) (4.7)

so that the decomposition (3.9) may be written Combining (4. 6) and (4. 15) we obtain from (4. 7)
an expression for p(a, t) in terms of p(a, t) and its
past history

where

g(t) = 1 —6 (t). (4.8)

t

p (a, t) =p (a, t) + ds g(t, s) (s)gp (a, s) .
0

(4. 18)

From (4.2) we have

~ 8'P(a, t)
8-'(t)ad(t) —a'(t) = tr[ K'(a)p(a, t)] (4. 19)

& we insert this expression into (2. 7) we find for
the time rates of change of the mean values

x a~(t)[tr[a'X(a)] —a'(t)tr X(a)] . (4.9)

Hence we obtain

(p(t)p(a, t) = 0,
and, consequently,

(4. 10)

—
t O(t}p(a, t)= e(t) t P(a, t). —a a

(4. 11)

Note that Eq. (4. 11) does not hold if p(a, t) is re-
placed by an arbitrary function of a and t. It is
essential that the first moments of p(a, t) are the

+ ds tr K' a Q t s g s Zp a s

Since the time dependence of P(a, t) and g(t) arises
only through a(t), so does the time dependence of
Q(t, s), and the right-hand side of Eq. (4.19) is
completely determined by the mean values a(t)
and their past history. Consequently, Eqs. (4. 19)
provide a closed set of equations of motion for
the mean values. These are the "renormalized
transport equations. "

The transport equations (4. 19) are not yet of
the standard form where the fluxes are expressed
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tr[Z'(a)P(a, t)]= r.,"(t)X,(t),
where

(4. 2o)

in terms of transport coefficients and driving
thermodynamic forces. In order to obtain this
form, we make some transformations. With (2. 4)
and (3. 6) we find

such a case the Fokker-Planck equation must be
viewed as an equation which is valid ir1 order k~
only. Then it is also natural to neglect terms of
more than first order in k~ in the renormalized
transport equations. This approximation will be
considered now.

I.,"(t)= tr[L" (a)p(a, t)].
Further, we obtain from (3.6) and (4. 13)

(4.21)
A. Thermodynamic forces

Assume that the relevant distribution p(a, X) has
an absolute maximum at a, = a, (X). From (3.8)
we see that at the maximum

gp(a, t) = —,. L~~(a)p(a, t)X, (t), (4.22)

tr &'agt, s gs „L+apas . 4 24

so that

tr[K'(a)g(t, s)g(s)sp(a, s)]= L'~(t, s)A&(s), (4.23)

where

L,"(t,s)

gS

a=a

We expand S(a) about ao. With

~ =a -ap,4

we have

S(a)=S,+S,t'+ ,'S„t-'t~+ ~ ~ ~,

where the Taylor coefficients

(5. 1)

(5.2)

(5.3)

Using (4.20) and (4.23) the renormalized transport
equations (4. 19) can be written

t

dt
—a'(t)=L,'~(t)Xt(t)+ ds L',~(t, s}X)(s). (4.25)

These equations express the mean fluxes in terms
of the renormalized thermodynamic forces X.
There is not only an instantaneous reaction of the
fluxes upon the momentary forces, but also a re-
tarded reaction upon the forces at earlier times.
Correspondingly, the "renormalized transport
coefficients' L'~ consist of two parts. L,'~(t) de-
scribes the instantaneous transport. This coef-
ficient is a function of the momentary mean values:
L,'~(t) =—L~o~(a(t)). The second part L',~ (t, s) de-
scribes the retarded transport caused by the
forces at time s & t and is a functional of the mean
path in the time interval [s, t]:

L,"(t,s) -=L,'~(a(u), s ~ M ( t t.
The equations (4. 21) and (4.24) give exact expres-
sions for the renormalized transport coefficients
in terms of the bare transport coefficients L~~(a)
and the bare entropy S(a).

pns
S

&
'''n Pa & ' ' ' pa~ff a=ap

are functions of a, (X). With (5. 1) and (5. 3) the
relevant distribution (8.8} may be written

(5.4)

p(a, Z)=&

x exp[(1/ks)(2S)~t't& + —'S,~~a.'a~a'+ )],
(5.5)

where N is a normalization factor.
I.et S'~ be the inverse" of the matrix S,.&

s'~s~~ —s~s~' = 5~q, (5. 6)

and let X'(a) be an arbitrary state function with

Taylor series about ap of the form

X(a) = X, +X,~'+-,'X„n't ~+ ~ ~ ~ . (5.7)

~~ = s~~s"s„,. (5.9)

Especially, we find for X(a) = a' that the mean
value a' reads

Then we obtain from (5. 5)

tr[p(a, X)X(a)]=X,+-,'k (X,y '- X,&S'~)+O(lP ), (5.8)

where

V. APPROXIMATE TRANSPORT EQUATIONS
a =a~+ —'k y'+O(k ). (5. 1o)

So far we have made no approximations beyond
those implicit in a Fokker-Planck model. As we
have already mentioned, the Fokker-Planck equa-
tion (2. 1) is often obtained from a more accurate
equation by neglecting terms of higher order in a
small parameter. In many cases we may look
upon k~ as this small parameter, because it ap-
pears in the Foyer-Planck equation in the same
way as the small parameter appears there. In

A., =A., (a,)=Z, (a) 2ksS„y'-+O(ks). (5.11)

Because of

, lnll —S „II=S„„qS"=S&~y~,
p

(5.12)

This relation determines a as of function of a, (X).
With (5. 10) we obtain from (5. 1)
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where
~~ ~~

denotes the determinant, the renor-
malized thermodynamic forces may be written

t
()( e, t)=r exp de a'[1—e"(a)]),

S
(s.aa)

8S(a)
X., (a) = (5. 13) in which operators are ordered from left to right

as time increases.
By the chain rule we have

R(a) = S(a) -k~lnll -S „(a)ll'~'+ o(k's) (5. 14)

is the renormalized entropy in order ks (up to an
irrelevant constant).

8. Transport coefficients

From (4.21) we obtain with (5.8)

Lo'(a}= L,"(a,)

S ' ~+O(k') (5 15}2 ~aa ~ ~ala g

which yields with (5. 10)

x(a) =; „ tr[p(a, X)x(a)].
pa~ ga' ga',

Further, (5. 10) yields
A.

0 5)t B go(km)Pa' ' 2 Pa,' (s.a4)

If we insert (5.8) and (5.24) into (5.23), we obtain

k g'I. '~ ~a
L,'~(a)=L'~(a)- —', ', S"(a)+O(k', ). (S.16)

Y (+, k~(X',)y~+ X)~
~SS "S, —X;)„S~ )

+o(k'). (s.as)

= v'(a) ., X(a) + O(k~),aa'

where

v'(a) = L"(a)
8S(a)
Pa&

(5. 18)

We also introduce the adjoint operator (y'(t) of
the projection operator (4.2):

6(t) x(a) = tr[p(a, t)x(a)]

+[a' —a'(t)]tel, ,
' X'(a)) . (5.19)

Then the expression (4.24} for the retarded part
of the transport coefficient may be written

L(~(t, s)

=-tr~ $'(a, t s)[1t—6'(s)] ~ L~~(a)p(a, s)
~ t

where $'(a, t, s) is given by

&'(a, t, s}= Q'(s, t)K'(a),

with the time-ordered exponential

(s.20)

(s. as)

This relation determines the instantaneous part of
the renormalized transport coefficient in order k8.

In order to determine the retarded part of the re-
normalized transport coefficient it is convenient
to introduce the adjoint operator &' of the Fokker-
Planck operator (4. 13)

82
& X(a)=~ K'(a), +k D~t(a},

g X(a)aa' ' aa'a a~

Using (4.2), (5.8), and (5.25) we find

etr X' a 1 —+ X,.I '~ a P a, A.

= —~zks & ' "&„„+O(ks)t (5 26)

where the quantities on the right-hand side are
taken at the position a = ao(X), and where we have
introduced

p PStf g Lflg
gJttlltt LPJ 2StttP (5 27)aa~ Pa~

The expression (5.20) for the retarded part of the
renormalized transport coefficient coincides with
the left-hand side of (5.26) for X'(a) = -$'(a, t, s).
Since the right-hand side of (5.26) is explicitly of
order k~, and since we neglect terms of higher
order for the present consideration, we need to
determine $'(a, t, s) for vanishing ks only.

C. Transport coefficients, continued

Even in the limit ks —0 the quantity $'(a, t, s)
may still be a compli. cated nonlinear functional of
(A.(u), s -u ~tj. This functional can be expanded
systematically in powers of A.. For large times
the system approaches the stationary state, which
means that the A. approach 0. Hence we can often
restrict ourselves to the first few terms of the
expansion of $' in powers of A.. In the following,
we shall neglect terms of the second order in A, .
This means thai we disregard terms of the third
order in X in the transport equations, since these
equations are already explicitly of first order in
A. ,

Using (5.8), (5.10), and (5.25) we obtain from
(5. 19)
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~~

(p'(A. )x(a) =x(a,) + (a' —a,')
g 60 B

(s.28}

where a, = ao(7). Further, from (5.21) we see
with (2 ~ 4), (5. 17), (5. 18), and (5.28) that the ke-0 limit of t'(a, t, s) reads

which yields with (5.30)

(R(i) =(R, +(R,'7., + OP),
where

and

(R~(a}= v'(a)
ga' ga' ... )

(s. 32)

(s. 33)

&'(a, t, s)=T exp du(R(u) v'(a)+O(ke).
S

(5.29)

The operator (R(u) =(R(X(u)) is defined by

(s. 34)
p x

(R,'X(a) = -v'(a)S"(a„)
Pg gQ

By standard disentanglement of the time-ordered
exponential in (5.29) we obtain

$(X)Y(a)=v'(a) "

~

'g }
pX(a) 8X

aa' „Ba'
(s. 3o) ((at e) e())0(t $)v) (a)

a,'(A. ) = a' + S'~(a„)a~ +O(a~), (s. 31)

where a, =a, (A.). Expression (5.29) still contains
all powers of A..

Now let a„be the state where S(a) takes its ab-
solute maximum; i.e., a„=a, (A. = 0). Then we
have from (5.1) and (5. 6)

t
+ due(RO((( $)/peso() l()v(( )g ( ) + O(~Q)

(s. 3s)

Now, with (5.26), (5.31), and (5.35) the transport
coefficient (5.20) takes the form

gag, mn

l.,"(t,s) =-',0 Z' ""g„'„(t-s)+ ,'0 Z'""S"r„-„'„,(t -s)z, (s)+-'0 .„S$)t„'„(i e)g, (e)

t
—2&e d»~' "S"5" (u s)K„'„(t-u-)A)(u)+O(t, ae)+0()).') (s. 36)

where all a-dependent quantities are taken at the
position a=a„. The f'(a, t) are defined by

g'(a, t) = e vO'(a),

and we have introduced the quantities

~2

tn

and

(s. 37)

(s. 38)

v'(a„) = 0,
which yields with (5.33)

st~(a) =Z,'(R~(a),

where

(s.4o)

(5.41)

B3t' „(t)= „„ t, "(a, t) . (5.39)

Since a„ is a state where S has a maximum, we see
from (5. 18)

(s.44}
()can

Using (5.41) and (5.43) we see that (5.37) may be
transformed to yield

g'(a t) =M'a'+ ego'[v'(a) —M,'a']. (s.45)

We now make use of the relation

, eeo'X(a} ... =0, for =0,

(s.46)

This relation is a consequence of (5.40) and (5.42).
In the power series expansion of the exponential
the derivatives 8/()a' of an operator &Ot must act
upon the drift vector v'(a) of the next operator
, ' to the right in order that we obtain a nonvan-
ishing result.

Using (5.45) and (5.46) we obtain from (5.38)
and (5.39)

g~(a) = v'(a) 8X(a) (s.42} —,g„'„(f)=M„'g' (f) +M„'t', (t), (s.47)

Further, we obtain with (5. 33) and (5.42)

@,v'(a) = a,'(v'(a) —M,'a'),

where

(s.43)

—r.„'„,(t) = M' r„',(t) +M„'g„'„(t)+ M,'t.„'„,(t)

+M$ f~(t)+M„$t$ (t)+M $$„$(t),
(5.48)
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where VI. CONCLUSION

a2

ga Pa „ ~ g
tn

(5.48)

Equation (5.47) must be solved with the initial
condition

g „(Q)= M~„. (5. 50)

If the solution of (5.47) is known, we can look upon

(5.48) as an inhomogeneous equation for g„'„~(t)
with known inhomogeneity. The initial condition
reads

a'v'
g„'„(o)=

aa aa"aa', ,1'

(5. 5I)

This shows that we can avoid to solve a nonlinear
first-order partial differential equation to deter-
mine f'(a, f), rather we need only to solve the
much simpler linear equations (5.47) and (5.48)
in order to determine the renormalized transport
coefficient in the approximation under considera-
tion. Note that the approximation (5.38) for the

retarded part of the renormalized transport coef-
ficients already goes beyond the lowest nontrivial

order. In the lowest approximation we may com-

pletely neglect the dependence of the renormalized

transport coefficients on the thermodynamic
forces X since the transport equations (4.25) are
already explicitly of first order in X. In this case
we must only solve Eqs. (5.47).

The next order in A. leads to the equations (5.48).
The approximation scheme outlined above can be
carried out in a systematic way to determine cor-
rections of higher order in k~ as well as correc-
tions of higher order in X. Naturally, since we
made no assumptions about the nonlinearities,
every higher-order approximation contains new

vertices in general. For every system with speci-
fic nonlinearity the specific higher-order correc-
tions are much more easily worked out than their
general form, and the way in which these correc-
tions may be obtained is clear from previous con-
s iderations.

We have derived fully fluctuation-renormalized
transport equations for a fluctuating thermodyna-
mic system whose dynamics is governed by a non-
linear Fokker -Planck equation. The transport
equations are valid in every time regime. They
are particularly favorable to discuss the long-
time limit where nonlinear terms in the renor-
malized thermodynamic forces X can be neglected.
However, the basic equations (4.25) also describe
the dynamics of the mean values in the initial time
period when the system may be in the nonlinear
regime far from equilibrium.

It is well known that statistical mechanics gen-
erally leads to a non-Markovian stochastic process
for the macroscopic variables. The Markovian
assumption upon which we have based our consid-
erations requires a small parameter controlling
the Markovian limit, and we have introduced
Boltzmann's constant k~ as a general substitution-
al parameter. This is a natural procedure for
systems which relax towards thermal equilibrium,
and we have explained the theory within this
framework. However, apart from some simple
changes, our analysis applies to other systems
governed by a nonlinear Fokker-Planck equation.

We have obtained closed analytical expressions
for the renormalized thermodynamic forces and

the renormalized transport coefficients in terms
of the corresponding bare quantities. To evaluate
those expressions approximately we discussed
their systematic expansion in powers of k~ and X.
The crucial assumption upon which we have based
the outlined approximation scheme is that the en-
tropy S(a) should have an absolute maximum at a
state a where the matrix of the second-order de-
rivatives 8'S/Ba'pa~ is nonsingular. This means

that the statics of the system is noncritical. Ex-
amples where these assumptions hold have been
discussed by others, "and their -results can easily
be obtained from our approximate equations. If
the static distribution does not meet these assump-
tions, the exact form (4. 25) of the transport equa-
tions is still valid but the approximation scheme
must be altered. A possible strategy for a bi-
stable system has been put forward recently. '
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