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This paper forms the second part of a study which reexamines the relationship between fluctuations and
nonlinear irreversible processes. The scope of the previous paper is generalized to include macroscopic
variables which transform odd under time reversal. The fluxes of some of the variables may be purely
reversible so that the diffusion matrix may be singular. The deterministic equations for nonlinear irreversible
processes can again be derived from a minimum principle. The fluctuations of the macroscopic variables are
treated on the basis of a Fokker-Planck equation which has the form derived from statistical mechanics by
one of us. The conditional probability of the fluctuations is constructed as a path integral. The connection
between the deterministic and the stochastic descriptions of the macroscopic dynamics is formulated in a
covariant way, independent of the frame of coordinates. For that purpose, a metric tensor in the space of
state variables is introduced. The form of the metric tensor is particularly simple in frames where the
macroscopic variables are sums of molecular variables.
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I. INTRODUCTION

Irreversible processes in macroscopic systems
are described on the fundamental molecular level
by statistical mechanics, and on a more phenom-
enological macroscopic level as a dynamical pro-
cess of a complete set of macroscopic variables.
In the macroscopic description the dynamical
process is either considered as deterministic or
stochastic, depending on the problem and on the
degree of approximation adopted. In any case,
the deterministic and stochastic descriptions are
intimately connected because they emerge from
the same underlying statistical mechanics.

It seems to be clear that the deterministic de-
scription comes out of the stochastic description
in a deterministic limit in which fluctuations be-
come negligible. It is less clear what exactly is
involved in that limit and, furthermore, whether
the stochastic description can be reconstructed in
a unique way if only the deterministic description
is known, In a preceeding paper! (henceforth re-
ferred to as I) two of us have investigated this
question for systems where the stochastic macro-
scopic dynamics is furnished by the Fokker-
Planck equation derived in an earlier paper by
one of us (M.S.G.).? The analysis in I was re-
stricted because the macroscopic variables
treated were limited to those transforming even
under time reversal. In the present paper we
want to return to the same question, but allowing
for all the complications due to the existence of
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macroscopic variables with different time-
reversal properties.

Before beginning a systematic exposition it may
be worthwhile to elaborate on some aspects of the
problem we wish to address. One might ask why
we are dissatisfied with the widespread pro-
cedure? for constructing macroscopic stochastic
models from macroscopic deterministic equations
by requiring detailed balance and the canonical
form of the equilibrium distribution. The reason
for our dissatisfaction with this procedure is the
fact that both the deterministic description and the
stochastic description are covariant, i.e., in-
dependent of the frame of coordinates in state
space uSed, whereas the above procedure of re-
lating these two descriptions is not covariant.? In
other words, physically different stochastic
models are obtained from the same deterministic
equations if the above procedure is applied in
different frames of coordinates in state space.

A similar difficulty arises in formulating the
deterministic limit of the stochastic description.
If simply the diffusion term of the Fokker-Planck
equation is neglected, the resulting «“drift ap-
proximation” lacks covariance and leads to dif-
ferent results in different frames. We try to re-
solve these difficulties by bearing in mind that
the physical quantities must transform correctly
under arbitrary nonlinear transformations of the
state variables.

In Onsager’s work® the connection between the
deterministic theory of irreversible processes
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and the stochastic theory of spontaneous fluctua-
tions was made by postulating that the decay of a
system from a given nonequilibrium state pro-
duced by a spontaneous fluctuation obeys, on the
average, the deterministic laws. This work was
limited to the linear regime. InI, two of us ex-
tended this connection between the deterministic
and the stochastic level of description to nonlinear
systems with even state variables. The determi-
nistic limit was shown to be controlled by a pa-
rameter 2, which was identified as Boltzmann’s
constant. The covariant formulation of the de-
terministic limit 2 — 0 involved a metric in state
space. In I, we made the simplest choice and
used the transport coefficients to define a metric.®
Here, we question this choice and propose a
different choice of the metric which is more satis-
factory from a physical point of view,

The outline of the paper is as follows: In Sec.

II we discuss the deterministic equations of motion
for the irreversible process, The underlying
molecular nature of the system is manifest in the
form of the deterministic equations as a linear
relationship between fluxes and forces. One of

the difficulties due to the existence of macroscopic
variables with different time-reversal symmetries
is the possibility that some of the fluxes may be
purely reversible. By way of example, we men-
tion the mass flux in a fluid and the time rate of
change of the position of a Brownian particle.
Because of the intimate connection between ir-
reversible fluxes and fluctuations, the lack of an
irreversible flux points to a constraint on the
fluctuations. This is apparent in the formulation
of the deterministic equations according to a
variational principle in which the purely reversi-
ble equations are treated as constraints.

In Sec. III we turn to stochastic motion, We
first summarize the main results of a previous
investigation® by one of us, The Fokker-Planck
equation derived there is the basis for our further
discussion., The stochastic description by the
Fokker-Planck equation is related to the deter-
ministic description by the transport equations.

A covariant form of the Fokker-Planck equation
is obtained. We show that the main quantity which
is necessary to specify a precise and covariant
relation between the deterministic and the sto-
chastic description is the metric in state space,
The appropriate choice of this metric is discussed
in Sec. IV.

It is clear that the entropy must be defined
differently in the deterministic and the stochastic
descriptions, since the stochastic description con-
tains more information about the state of the sys-
tem than the deterministic one. In Sec. V we re-
examine the properties of the entropies and the

form of the second law in both descriptions and
discuss their relation. In Sec. VI we use our pre-
vious results to represent the conditional prob-
ability as a path integral. We obtain the general
form of this representation of a stochastic process
for a system with a diffusion matrix which may be
singular., In Sec., VII we present our conclusions,

II. DETERMINISTIC MOTION

A. Transport equations

We consider a system described by a set a
=(a',...,al,...,a") of macroscopic variables,
Choosing the variables so that they are even or
odd in time, the time-reversal transformation in
state space reads

‘1, for even variables
al=clal, eI= (2.1)
-1, for odd variables.
The entropy S(e) is an even variable
S@)=.S(a). 2.2)

As in I, we write the deterministic equations in
Onsager’s form

W= fl=LVy,. 2.3)

We understand that a summation is to be carried
out for repeated indices in all formulas except
those with ¢/, The

X1=347= S (2.4)

are the thermodynamic forces and the L7 are the
transport coefficients which may be functions of
the state. The transport coefficients obey the
reciprocal relations

LY (@)=e’L7 (). (2.5)

The matrix L?7 is not symmetric in general. We
may split it into a symmetric part

Dl=3(L*Y+ L") (2.6)

and an antisymmetric part

AP =LV -7, 2.7)
The deterministic drift f7 splits into

fT=rI+dl, (2.8)
where

rI=Ally, ; (2.9)
is the reversible part with the symmetry

ria)=-€'7! (a), (2.10)
and where
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d'=D"y, 2.11)
is the irreversible part with the symmetry
dia)=eld(a). (2.12)

Only the irreversible part contributes to the time
rate of change of the entropy

OSZXJ&J:XtdI:D”XIXJ- (2.13)

B. Reversible fluxes

The irreversible motion of the set a of macro-
scopic variables is due to the interaction of these
variables with the large set of microscopic degrees
of freedom. Often, some of the macroscopic vari-
ables do not couple directly to the microscopic
degrees of freedom, and their fluxes are purely
reversible, In such a case we may choose the set
of macroscopic variables so that the first n vari-
ables {a!, ...,a%,...,a" are those with purely
reversible fluxes

a*=fo=re, (2.14)

We use the following convention: greek indices
a,B,... run from 1 to n; labeling the variables
with purely reversible fluxes, small roman in-
dices ¢,j,... run from n+1 to N, and large roman
indices I,dJ,... run through the complete set from
1 to N. The first » equations of the set (2.3) of
transport equations take the form (2.14) if the
symmetric parts of some of the transport coeffi-
cients vanish

D“B:D“‘:D“"ZO. (2.15)

The remaining coefficients D¥ form a matrix in
the subspace of the macroscopic variables with
partly irreversible fluxes. The second law re-
quires that D* be positive definite. The inverse
D, of the matrix D is defined by

D, D¥*= DD, =& . (2.16)

Despite the fact that the reversible deterministic
equations are just a special case of the general
transport equation (2.3), we must distinguish the
variables {a®} from the variables {a’}. The macro-
scopic variables undergo fluctuations which are
neglected in the deterministic theory. It is well
known that these fluctuations are intimately con-
nected with the irreversible motion of the vari-
ables a. Since the fluxes {a¢°} are purely re-
versible, the variables {a®} will fluctuate only
because of their couplings to the variables {a'}
while the variables {a’} are driven directly by
microscopic processes.

C. Variational principle

The differences between the {¢*} and the {a}
variables appear already in the variational princi-
ple for the deterministic equations where the
purely reversible equations are treated as con-
straints, Introducing the Lagrangian

O(a, &)= ;Dyy(@* - fH @’ - 1) (2.17)

as well as the action functional
32 .
A(a(t),t, <t stz):f ato(a(t), a(t)), (2.18)
t

we may ask for the path that minimizes the action
among all paths that start out from a(f;)=a and
that satisfy the constraints (2.14). To deal with
the constraints we use the method of Lagrange
multipliers and vary the functional

t2 . .
[ ar{oaw, aen- na0 a0 - 701}

t

1

As in 1, the determination of the minimum path
naturally divides into two steps. First we deter-
mine the minimum path connecting fixed initial
and final states, which leads to the Euler- Lagrange

equations

4 _80
dt Te T3 T B jq= > 2.19)
d 30 @80 f @ ’

@ 3 ~3a, e 3at -

Then the final state is varied, which leads to the
additional requirements

20
Na=0, Zz7=0. (2.20)
We introduce the quantities
20 .
un :"é'aTzDu(al_fj), (2.21)

which, together with the Lagrange multipliers
{n4}, form a complete set of conjugate variables
7. The Euler-Lagrange equations (2.19) and the

. constraints (2.14) can then be transformed to the

canonical equations

al=fI+ Dy,

L JK 7 (2.22)
ny==z2DVrnmx =SV ..
These equations are of the form
. oH . oH
a’:aTI 5 nr:-é—a—l’ (2.23)
where the Hamiltonian is given by
H(a,n)= 3 D"y, +f M, . (2.24)

The additional requirements (2.20) may be
written
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N, () =0.

This condition picks from all paths that satisfy
(2.22) the one with @’ =f7, n, =0, which is the
deterministic path.

(2.25)

IH. STOCHASTIC MOTION
A. Statistical-mechanical Fokker-Planck equation

The stochastic theory deals with the fluctuations
of the macroscopic variables, and is characterized
by the conditional probability p;(@’/a)da’ that the
system will reach a state a’ in the volume element
da’ within the time interval £ if it starts out from
the state @. In an earlier paper by one of us? it
has been argued that p;(@’/a) is the Green’s
function solution of a Fokker-Planck equation of
the form

@, _ 0 p_ g dwEY 9,
atp‘“aaf(” W T Y aar 87 )P

(3.1)

The quantities w, v, and &7 are functions of the
macroscopic variables, and they are determined
as certain statistical-mechanical averages of
molecular quantities; w(a) is obtained by averaging
the microscopic equilibrium distribution over a
hypersurface M(a) in phase space where the
macroscopic variables have the fixed values a.

It has the symmetry

w@)=w(a), (3.2)
and is the stationary solution of the Fokker-
Planck equation (3.1). v!(a) is the average flux of

the variable af on the hypersurface M(a). It can
be written

v’:w"l—a~wa”, (8.3)

where of’ is essentially given by the Poisson
bracket” of the variables af and a” averaged over
M(a). The matrix a’’ has the symmetries ’

al?(a)=- a’(a), ~ (3.4)
al’ (&) —el¢ Ja.lt(a) . (3.5)

Consequently, v7 has the properties

aTau 2w =0, (3.6)
vi@)=-e'(a). (3.7

Finally, £7%a) is interpreted in statistical me-
chanics as a time integral over the average time
correlation of the subtracted fluxes of the vari-
ables af and @’ on the hypersurface M(a) where
the subtracted fluxes are the microscopic fluxes
subtracted by their averages »’ and »7, respec-

tively., The matrix £/7 is not necessarily sym-
metric, but it has the symmetry

£M@)=e%’ £ (a). (3.8)

Since the {a®} variables do not couple directly to
the microscopic degrees of freedom, their fluxes
are constant on every hypersurface M(a) and their
subtracted fluxes vanish., So do the integrands of
those &7 coefficients which are correlations with
a subtracted flux of an {a®} variable, and we have

EaB zgaizgia:(). (3.9)

B. Connection between stochastic and deterministic motion

We wish to relate the coefficients of the Fokker-
Planck equation (3.1) with the coefficients of the
deterministic equations (2.3). By fixing this re-
lation we define implicitly the limit in which the
deterministic equations are obtained from the
Fokker-Planck equation. The transport coeffi-
cients L!’ are defined by

LY =@1/k)(a! + 1), (3.10)
and hence
RAV=al? + 3£ - £71), kD= 377 +£7),
3.11)

where &k is Boltzmann’s constant. Equation (3.10)
is a natural generalization of a corresponding
definition in I. The coefficients so-defined have
precisely the properties of Sec. II.

To define the entropy S(a) we seek for ageneraliza-
tion of Boltzmann’s principle that relates the entropy
with the logarithm of the stationary distribution
w(a). In order that w(a)da and S(a) should both be
independent of the representation of the state we
put

u;(a)ocg(a)‘uze (1/%) S (a) , (3'12)

where g is the determinant of a metric tensor g%/
in state space. The crucial question of an ade-
quate definition of the metric tensor is discussed
in Sec. IV. In Sec. V we show that, regardless of
our choice of g(a), the definition (3.12) makes

S(a) the deterministic limit of a stochastic entropy
which is associated with the stochastic level of
description, Using (3.3), (3.10), and (3.12), we
can rewrite the Fokker-Planck equation (3.1) in
the form

N S S u>
at ”'—aa'( KT +543 DV )by (8.13)
with the Fokker-Planck drift

K!=f1 +kg1/2(L”g'1/2)” (3.14)

Hence, for a given metric in state space, Eqgs.
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(3.10) and (3.12) establish a unique connection be-
tween the deterministic equations (2.3) and the
Fokker-Planck equation (3.1);

It is easy to show that for a metric with the
symmetry

g@)=g(a) (3.15)

the Fokker-Planck equation (3.13) satisfies the
potential conditions?

w@) =wa),

DIJ(&) =€I€ JDIJ ((l) s

3.16
o K@@ =0, ¢.18)
I \ — a 1J
K (@w@)=EF a7 D¥(a)w(a),
where

Kl @)=4[K(@)-e K @a)]

=AUy, +kg!/2(AVg 1Y), 3.17)
K@) =YK (a)+eK(a)]

=DWVy, +kg!/2(DVg ~1/2) , (3.18)

are the reversible and irreversible parts of the
Fokker-Planck drift, respectively. The condi-
tions (3.16) guarantee the detailed balance of the
Fokker-Planck process.

In the limit 2 — 0 the diffusion matrix 2D’ of
the Fokker-Planck equation vanishes, and there
is no broadening of a distribution concentrated on
one state, The center of such a distribution moves
in the limit 2 — 0 according to the deterministic
equations (2.3).

C. Covariant form of Fokker-Planck equation

The Fokker-Planck drift K/ does not transform
like a vector. However, following essentially a
recent work® of one of us, we can write the
Fokker-Planck equation in a manifest covariant
form if we introduce a scalar probability

by=g'"’b, (3.19)
which obeys the equation
9 - ~ “

37 Pe= (R + kDD ), . (3.20)

The covariant derivatives are those of a Rieman-
nian manifold with metric g . In particular, the
covariant gradient of a scalar is

d
IP;,:%:%;, (3-21)

and the covariant divergence of a vector ! reads

d -
Vi =g P57 W), (3.22)

The covariant drift vector %! is given by
W =fI+kgl/2(AWg=1/2), (3.23)

The second term is k times the covariant di-
vergence of the antisymmetric matrix A/, This
term is itself a vector.

At the end of this section we list some relations
among the. various drift vectors that hold in a
basis where the {¢®} and {af} variables are sepa-
rated:

K*=h*=v"=A%Ty +kg'/?(A%g~1/?), , (3.24)

fa:ya:AUIXI’ (3.25)
Ki=h'+kg!/2(Difg~1/2) | (3.26)
Bi=L"y, +hgl/2(AV g -1/2), | (3.27)
fi=L¥y,. (3.28)

The o components of K, %, and f are reversible,
while the 7 components contain an irreversible
part. The reversible parts KZ,, hi,,, and fi,,
=71% are related by

K::av:hxi-ov:AiJXJ +kg 1/2(A‘Jg —1/2)”‘ »  (3.29)
fov=7 =AY, (8.30)

IV. METRIC IN STATE SPACE

So far we have not specified the metric g7 in
state space, and its specification may merely
seem like a matter of convenience. In fact, in the
previous work we made the simplest choice and
used the transport coefficients to define the metric.
With that definition the theory was particularly
simple, since metrical quantities derived from
the transport coefficients like the “curvature” R
then appear very naturally in the path integral.

On the other hand, there is also a physical point
involved in choosing the metric. It is clear from
Sec. I that the definition of the metric is inti-
mately connected with the question of the meaning
of the deterministic theory. The very definition
of the deterministic limit depends on the choice of
the metric, e.g., the definition of the entropy S in
Eq. (3.12). From this point of view, it now ap-
pears unnatural to identify the metric with the
matrix of transport coefficients, After all, why
should the entropy depend on the transport coeffi-
cients characterizing dynamical properties of the
system? That is why we give here another, more
physical, definition of the metric.

In statistical mechanics there are “natural”
representations of the state a so that the macro-
scopic variables a are algebraic sums of molecu-
lar variables that depend on few microscopic
degrees of freedom, We now define the metric
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in such a way that the metric tensor is independent
of the state a for those representations. Natural
representations are related by linear transforma-
tion laws that change the determinant g by a con-
stant factor only, Since such a factor does not
matter in Sec. III, there is no need to give a more
precise definition of the metric. Physically, this
choice of the metric implies that the deterministic
state associated with a given probability distribu-
tion by the deterministic limit 2 — 0 is identical
with the most probable state in a natural repre-
sentation, This conforms to our intuition. How-
ever, the concept of the most probable state is
not covariant. Hence we cannot identify the de-
terministic state with the most probable state in

a general frame of coordinates.

In an arbitrary representation of the state the
metric must be determined by means of the tensor
transformation law, The knowledge of the metric
is equivalent to knowing how a given set of macro-
scopic variables is related with a natural choice
of the variables. With this definition of the metric
the geometry of the state space is Euclidean,
Equation (3.15) is automatically satisfied. The
metric is the only quantity appearing in the co-
variant theory of the previous sections that
distinguishes the natural representations. That
distinction, however, is very desirable from a
physical point of view. For instance, a linear
system will behave linearly just in those repre-
sentations, and nonlinearities are adequately
read off from the form of the equations of motion
in a natural representation.

In a natural representation the formulas which
relate the deterministic and the stochastic de-
scription simplify considerably, since the g
factors can be omitted everywhere. In these
representations the usual procedure, mentioned
in the Introduction, for constructing stochastic
models from deterministic transport equations is
justified, since it is consistent with the deter-
ministic limit 2 —~ 0. Further, the deterministic
state associated with a distribution is just the
most probable state and Boltzmann’s formula
connects the entropy S with the stationary dis-
tribution & in the usual way: Soclogw.

V. ENTROPY AND THE SECOND LAW
A. Entropy

In the stochastic theory the «state” of the sys-
tem is characterized by a distribution p(g) in state
spacé, whereas the «“state” of the deterministic
theory is just a point ¢ in the state space. For
this reason, it is natural that the entropy as a
function of the «state” be defined differently for
the stochastic theory that includes fluctuations

and the deterministic theory that neglects them.

In a previous work? by one of us, the entropy
of the stochastic theory has been defined on the
basis of statistical-mechanical arguments. Fol-
lowing that work we put

S(p):—kfdap(a)ln;}p—g—; + Seqs (5.1)

where S, is the entropy of the equilibrium dis-
tribution w (a).

In the deterministic limit the distribution p(a)
shrinks to a single point., Let us express p(a) in
terms of a scalar function ¥(a) by

p(a):N—ig —1/2(‘1)8(1/&)0(6) , (5.2)

where N is the normalization factor
N:f dag —1/2(a)e(1/h)b(a). (53)

In the limit 2 — 0 the distribution (5.2) sharply
concentrates around the position a,,,, where y(a)
takes its absolute maximum®; a,,, is the deter-
ministic state that we associate with the distribu-
tion p(a). According to (3.12), we write the equi-
librium distribution in the form

w(@)=Nglg 1/ @et/Ms@® - (5.4)
with
Neq:fdag‘1/2(a)e(1/k)s(¢). (5.5)

The absolute maximum of S(a) is located at the
deterministic equilibrium state a.,.

We now insert (5.2)-(5.5) into (5.1). In the limit
k — 0 the integral can be done using the method of
steepest descent, and we find ' '

Lim S(9) = S(tnar) (5.6)
where we have used S(@e) = Seq. Since ag,, is the
deterministic state associated with p(a), the
definition (3.12) of the entropy S is in fact the
& — 0 limit of the entropy S(p) defined in Eq.

(5.1).

B. Second law

The Second Law demands that the entropy is in-
creasing with time. Indeed, if we evaluate the
time rate of change of 5 (p,) by means of (3.13),
we find with (3.12) and (3.14) after simple trans-
formations

d -
., u Ds(a) p@y
=F fdtli’:(a)D (“)<1nw(a)>n(mw(“))u/0.

(5.7)
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The reversible part of the Fokker-Planck drift

le'ov:AIJXJ +kg1/2(A”g -1/2)l J:kw—I%WAIJ

(5.8)

does not contribute to the time rate of change of
the entropy S.

The inequality (5.7) derived within the stochastic
theory cannot be lost in the 2— 0 limit. By in-
serting (5.2)—(5.5) into (5.7) we obtain for 2 —0

L Sa@) = DY@y B, (>0, (5.9)

where a(t) is the deterministic state associated
with p,(a). Equation (5.9) coincides with our pre-
vious result (2.13).

C. Note on reversible drift

It is worthwhile noting that there is generally a
difference between the reversible drift K1, that
appears in the Fokker-Planck equation and the
reversible part 7 of the deterministic drift.

This is as it should be. The drift K[, generates

a reversible flow —(8/9a’)K [,,(a) P (@) in the space
of distributions p(a) which vanishes for the equilib-
rium distribution

O Kly(@w(@=0,

- 50t (5.10)

and which is orthogonal to 6§(p)/6p(a) in the sense
of

85(p) @
fd b (@) a Ky (@)p(a)= (5.11)
On the other hand, the drift »’(¢) is a reversible
flow in the state space which vanishes at the
equilibrium state

rHag) =0 (5.12)

and which is orthogonal to 8S/da’ =y, in the sense
of

8@ 110)=0 (5.13)

We are aware of the fact that there are models
like the Van der Pol oscillator!® for which Eq.
(5.12) is not satisfied. Such models require that
elements of the matrix A’’(a) approach infinity as
a approaches a,,. This is not compatible with the
commutator representation of A7/ which follows
from statistical mechanics. We conclude that
those models cannot describe a system whose
stationary state is an equilibrium state. Indeed,
the Van der Pol oscillator is often used as a
simple model for lasers, which has been based on
far-from-equilibrium statistical mechanics. Con-

21

ditions (5.10)—(5.13) express fundamental proper-
ties of the stochastic and deterministic theories of.
closed systems.

VI. PATH-INTEGRAL REPRESENTATION FOR
CONDITIONAL PROBABILITY

A. Conditional probability for small 7

The conditional probability p,(a’/a) is the solu-
tion of the Fokker-Planck equation (3.13) with the
initial condition py(a’/a)=6(a’ - a). In a basis
where the {a°} and {a’} variables are separated the
evolution equation for p, @’'/a) reads

2 pia/a)= (- o0 - @)

+k PP 2 D ')) @'/a) .
6.1)

From the theory of diffusion processes it is known
that for a small time interval 7 the conditional
probability p._ (a’/a) derived from (6.1) has the
properties

f da' p,(@/a)=1,

f da’ A°p_(a'/a)=v*(@)T+O(T 3/%),

f da' A'p_(a’/a)=Ki(a)T +O(13/?),

[ da’ a=stp, @/a)= (%),
fda'A“A‘pT(a'/a)zo(T?’/z),

f da’ A'A'p, (a'/a) =2kDY (@)1 +O(7%/?),

where A®=0% - a%and Af=a'’ -~ a’, The third
and higher moments are at least of order 73/2,
Because of (6.2), p,(a’/a) can be written in the

form

p.(a'/a)=8(a%— @), (A%, a) [1+0(r*?)], (6.3)

where §(A%) is the n-dimensional § function and
where I1, (A%, @) is a distribution in the {a‘} sub-
space with the properties

fH da® 11, (A
R

[ 11 aa s’ @t a) =K @7+ 0(r372),
2

’a):l +O(73/2) s

f H da* AN T1, (A}, @) =2RDY (a) 1+ O(73/2) .
kR
(6.4)

Higher moments are at least of the order 73/2,
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B. Modified Lagrangian

It is shown in Appendix A that II, (A%, a) may be
written

1
(4TTkT)(N-")/2D(a')1/2

1, (A, a) =

x exp(——z—l,; A,(A’,a))[ 1+0(73/%)];

(6.5)
D(a) is the determinant of the matrix D¥(a), and
A, (A%, a) is given by
T - .
A,@a0)= [ dt0@E), i@ (6.6)
0

with the modified Lagrangian
O(a,a)=iD,@* -1%) @’ -1')+ kD' /2@ D71/?),
- k(InD!/?), v* +3E%R. 6.7)

The integral in (6.6) is over the minimum path
connecting the states a and a’ = (a® +v* 1,a’ + A?),
The drift I} is defined by

) M-1

1oy — 1 o(agy —agy_— *(@y_y) da
pafa/a) = lim J (k) H/DTI=DD g, )t -

m=1

where a,=a, a,=a’, and 7 =s/M. Because of the
& functions, the succession of states «, at times
t,=m7 is constrained by ay - ay_;=v%(a,,_.{)7,
which ensures that only paths with differentiable

I'=K'-kD'/}(DY D™1/?) ,, (6.8)

and R is defined in terms of D¥ in the same way
as the corresponding quantity in paper I is defined
in terms of L¥. Combining (6.3) and (6.5), we
obtain for the conditional probability p, (a'/a) the
expression

5(a%— m°
pf (a'/a) = (47Tk(_’§(N-n;ryZI§L(22)TT2

XWQ%KmWWMM)

x[1+0(r3/7)]. v (6.9)

C. Path integral

The conditional probability for a finite time dif-
ference s can be obtained from (6.9) by repeated
use of the Chapman-Kolmogorov equation. Es-
sentially the same argumentation as in I, Sec. VB
leads to

@ _ pa « 1 s -
n= %=1~ TV (am;xlexp(—ﬁ fo dm(a(t),a(t))m>,

D(a,)'"?

(6.10)

r
a®(t) satisfying & (t)=v*(¢) contribute in the limit
M— o,

Since 6(A% — Tv%) = 1/tm8(a%/7 - v%) it is
natural to introduce the integration measure

R |
1/26 a _ a_ —na _ M'ld 5 a a_ - _)
L | (e e e R RS

D[ a(t)] 8(a* () - v%(#) =lim
M~

This measure is invariant under all transformations of the variables @ that do not mix the {a*} with the
{a’} subset. With (6.11) we may abbreviate the limit (6.10) as the path integral™

ps(al/a)zg(ar)—I/zfD[a(t)] 6(&a(t)—-v°‘(t))‘exp<—§% fos dté(a(t),d(t))). (6.12)

Equation (6.12) is a generalization of the corre-
sponding result in I in two ways. First, it holds
for a more general choice of the metric tensor;
second, it is also valid for systems with a singular
diffusion matrix. It is interesting to note from our
result that it is not possible to obtain the modified
Lagrangian (6.7) from the modified Lagrangian in
I by simply taking appropriate elements of the
matrix of transport coefficients equal to zero, be-
cause for such a limit there exists some arbitrari-
ness for the definition of the § function in the mea-
sure in Eq. (6.12).

Using (3.24)-(3.28), and (6.8), we find
v =f @ +hg!/2(A0Ig-1/2) |
V=fi+hg!/2adg=17%)

+kDY [1In(D'/2%g ~1/%)] ;.
With (2.17) and (6.7) we see that
ve*—f* O(a,a)— 0(@,a), fork—0,

(6.13)

Hence the path probability in the 2 — 0 limit sharp-
ly concentrates about the deterministic path and
fluctuations vanish, The explicit 2 dependence of
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O(a, &), which is given by Eqgs. (6.7) and (6.13),
can be used to set up a perturbation scheme where
k is used as an expansion parameter in order to
calculate fluctuation corrections to the deter-
ministic theory.

VII. CONCLUSIONS

We have examined the deterministic as well as
the stochastic theory of nonlinear irreversible
systems. It has been shown that the deterministic
equations of motion in Onsager’s form (2.3) can
be looked upon as a certain 2— 0 limit of a sto-
chastic theory characterized by a Fokker-Planck
equation [(3.13)]. The limit 2 — 0 can only be de-
fined in a covariant way, if we introduce a metric
in state space. We have defined this metric in
such a way that the metric tensor is constant
whenever the macroscopic variables are sums of
molecular variables on a kinetic model, Given
the metric, we can reconstruct the Fokker-Planck
equation (3.13) from the transport equations (2.3)
by use of (3.12) and (3.14).

The connection of the deterministic with the
stochastic theory is such that both have the well-
known properties of theories describing the dy-
namics of closed physical systems. For instance,
the reciprocal relations (2.5) are connected with
the potential conditions (3.16) which are themselves
a consequence of the microscopic reversibility.
Further, the irreversible fluxes lead in both
theories to an increase of the entropy.

Given the deterministic theory, fluctuations are
often introduced by simply adding a random force
to the deterministic equations of motion. The
Langevin equations obtained by such a procedure
are equivalent to a Fokker-Planck equation. How-
ever, the reversible part of the resulting Fokker-
Planck drift coincides with the reversible deter-
ministic drift, so that either the potential condi-
tions or Eq. (5.13) will be violated in general.
Hence the so-called Langevin assumption may not
be correct for nonlinear systems with partly re-
reversible fluxes.

The deterministic limit involves a metric in
state space which has been defined here differ-
ently from our previous work I. This means
that the deterministic equations of Iare not precise-
ly the same as here. The entropy Sdiffersby aterm
proportional to the logarithm of the ratio of the
invariant volume elements in state space. Hence
the fluctuation hypothesis of I may not hold within
the present theory. We believe that the new defini-
tion of the metric is more adequate and gives a
more intuitive meaning to.the deterministic limit,
despite the fact that we now need, besides a
tensor L%’ and a scalar S, an additional indepen-
dent invariant volume element g ~1/2(a)da to speci-
fy the theory on the phenomenological level.
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APPENDIX A: DERIVATION OF EQ. (6.5)
Let us define a Lagrangian
Bla®, at (t), (1) = 1D, - 1)@’ -1)
+EDI/2@iD1/2) 4 2R2R, (A1)

where D,; and I! are functions of (a*, a*(¢)); that
means the {a®} are for the moment being con-
sidered as fixed parameters. The Lagrangian
defines an action

A, (A‘,a"‘,a‘):fT dt O@®, a¥ (), & (g, (A2)
0

where the integral is over the minimum path con-
necting {a’} and {a? + A}, Except for some dif-
ferences in notation, Egs. (A1) and (A2) coincide
with Egs. (5.8) and (5.9) in paper I, since the {a®}
are considered to be fixed.

If we now define I* in analogy to Eq. (5.3) in I
by (6.8), we can conclude from (5.5) and (5.2) in
I that the distribution

I,(A%, a)=[1/@mk )N~ /2D(a%, a* + a¥)!/?]
X exp(—zik A,(A',a)) (A3)

has the properties (6.4). Here we have taken into
account that there are N—n variables {a‘}.

Now, the {a°} are not really fixed in the time
interval 0 <# < 7; rather they depend on ¢ according
to

a*(t)=a®* +v*t+0(1%/?). (A4)

Therefore we must consider the Lagrangian %)

as a function of time-dependent {a®(#)}. Since for
the present consideration terms of the order 73/2
are negligible, we may look upon a*(f) as a given
function of £, By means of a Taylor series expan-
sion of the Lagrangian in terms of a*(f) - a®* =v*¢
+0(7%/?) one shows easily that the time depen-
dence of the {2°} variables just adds the term

81 A, =1Dyy, voAlA? (A5)

to the action. This term, in order 7, is equivalent
to the term

81 A, = 1Dy, 2k DY 7=~Ek(nD'/?), v%T.
(A6)
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Next, we change the factor in front of the ex-
ponential in Eq. (A4) to

1/@mk7)¥-"/2D(@* + A%, af +A¥)1/2,

Because

1/D(@® + A%, ai +A)1/2=[1/D(a®, ab +a¥)1/2]
x exp[ - (InD'/?), v 7]
x[1+0(r*/%], (A7)

this change of the prefactor corresponds to a
change of the action by

8, A, =2k(nD!/?), v% 1. (A8)

Finally, we add the term -k (InD'/?), ,v* to the
Lagrangian O, This yields the Lagrangian O de-
fined in (6.7) and changes the action by

83A, =—k(nD!/?), v* 71, (A9)

Since the sum of 8;A,, 6,A,, and 63 A, vanishes,
we find that the distribution (A3) can also be
written in the form (6.5) with an action A, defined
by (6.6) and (6.7).

APPENDIX B

In I, the Lagrangian 5(a, @) which appears in the
path-integral representation is defined in terms
of the short-time propagator via the relation

b, (@'/a)=[1/@nkT)"/2L" 1/2]
X exp[ - (I/Zk)A”7 @/a)][1+0(r3/?)],
(B1)

where the action is the time integral over the
Lagrangian along the minimum path connecting
a(t) and a’(¢ + 7). The approximation of the short-
time propagator is made in terms of the natural
L* norm for distribution functions, i.e., O(73/2)
means more rigorously

[ @ |p2@ /a)-p=@ /0| =0 ()
for 7 — 0, where superscripts “ex” and “app”
stand for “exact” and “approximate.”

In Ref. 6 the short-time propagator is approximated
inadifferent way. Consideredas a function of the

initial and final states, the short-time propagator
is singular for 7 — 0. This singularity can be
split off by putting

p. (@ /a)=[1/@nk7)"/2L1/?]

x exp[ - (1/2k) L, ] [1+Y(a,A, D],
(B3)

" where Af=a'' - a and Y is a regular function

which can be expanded in terms of A and 7 in the
usual way. In Ref. 6 the first few terms of the ex-
pansion of Y (@, A, 7) in powers of A and T are de-
termined systematically. The Lagrangian £ is
defined via this particular form by taking its limit
At=a' 7, 7—0. The particular form of the short-
time propagator used in Ref. 6 can, in L! norm,
not be distinguished from other forms of the same
accuracy. While the Lagrangian O as defined in
I does not depend on the form used, the Lagrangian
&£ as defined in Ref. 6 depends on that form. How-
ever, the particular form of the short-time propa-
gator of Ref. 6 is well distinguished from all
other forms, because it satisfies the Chapman-
Kolmogorov condition!? in order 73/2, with respect
to the strong topology used for the expansion in
Ref. 6. The other forms satisfy this condition in
order 73/2 with respect to L' norm, only.

We now discuss how the definitions of the
Lagrangians O(a,@) inIand £ (a,&) in Ref, 6
could be modified to become equivalent. The
definition of I would, of course, be altered if we
chose a different measure prefactor in Eq. (B1).
Agreement with the result of Ref. 6 for the
Lagrangian would be obtained if we replace in

Eq. (B1)
o)

L 1/4(
r=1/2 =
L (L’) Det dat oa’

The right-hand side arises as a natural measure
prefactor in the WKB approximation to the short-
time propagator.!® A corresponding change of the
measure factor in the path integral of Ref. 6 would
then make the two definitions of the path integral
equivalent in the sense that one definition could

be proven from the other as a theorem.
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