
PHYSICAL REVIEW A VOLUME 21, NUMBER 6 JUNK 1980

Minimum entropy production and the optimization of heat engines

Peter Salamon and Abraham Nitzan
Department of Chemistry, Tel-Aviv University, Tel Auiv, Israel

Bjarne Andresen
Physics Laboratory II, H. C. usted Institute, Uniuersitetsparken 5, Copenhagen 2100, Denmark

R. Stephen Berry
Department of Chemistry, University of Chicago, Chicago, Illinois 60637

(Received 16 February 1979; revised manuscript received 2 November 1979)

%'e consider the problem of minimum entropy production in a heat engine subject only to thermal-

resistance losses. For such. engines, minimizing the total entropy production is equivalent to minimizing the
loss of availability. We show for any engine operating with a given cycle time that minimum total entropy
production is achieved in a heat engine by operating it so as to keep the entropy production rate constant

along each branch. For the limit of slow engine operation, the entropy production rate should be the same

constant for all branches of the cycle. We obtain an expression for the minimum total entropy production

and use this to give a bound on the maximum work which can be produced by such engines. This bound is

significantly more realistic than the reversible one. Analogous results are derived for a working fluid which

carries arbitrary flows from one potential to another.

I. INTRODUCTION

Considerable research effort has been expended
recently' on finding more realistic limits on the
optimal operation of heat energies in finite time.
This effort was spurred by the economic import-
ance of such limits in connection with decisions
concerning the possible benefits which might result
from research on various energy consuming or
producing processes. Below we present a general
framework, which is one'step better than the re-
versible formalism, for finding limits on the op-
eration of heat-engine processes.

Consider a working fluid that absorbs heat from
a reservoir at one temperature T, and transfers
some of the heat to a second reservoir at a lower
temperature T, while converting the rest of the
heat to work (see Fig. 1). Classica1 thermodyna-
mics analyzes this process under the assumptions:

(1) no friction;
(2) ideal working fluid in internal equi1ibrium;
(3) heat flows between substances at equal tem-

peratures.
These assumptions give rise to the reversible

formalism whose crucial component is the exis-
tence of an extra conserved observable called
entropy $. The equation expressing the conserva-
tion of 9 completes our otherwise incomplete set
of equations and allows us to calculate everything
related to the operation of our heat engine. For in-
stance, we can compute the fraction of heat which
can be converted to work

'~~Qi = & —&2&Ti ~

This result, due to Carnot, provides a limit on the
optimal operation of heat engines.

'This limit, however, is frequently of little prac-
tical importance, because it is achieved only if the
heat engine runs reversibly. For real machinery,
assumptions (1)-(3)are fulfilled only in the limit
that the process is infinitely slow, thus produces
zero power. Machinery producing nonzero power
must operate in finite time, necessitating losses.
Some engines, such as steam turbines driving
electric generators, do operate near enough to the
reversible limit for the thermodynamic bound to be
significant; for others, such as the Otto cycle au- '

tomobile engine, the reversible thermodynamic

Qq

/ ///
FIG. 1. The flow of heat from reservoir 1 to reservoir

2 while producing work 8'.
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bound has little relevance.
Deviations from ideality in real heat engines may

result from many causes, which fall into the fol-
lowing categories'.

(i) heat resistance of the surfaces which couple
the working fluid to the heat reservoirs;

(ii) friction of the mechanical linkage which cou-
ples the working fluid to the work reservoir;

(iii) internal losses in the working fluid such as
turbulence, slow chemical reactions, and other
unequilibrated degrees of freedom;

(iv) heat leak due to imperfect insulation of the
two heat reservoirs.

In the present paper, we treat the optimal opera-
tion of heat engines under the influence of loss
mechanism (i) only. We include this loss mechan-
ism by relaxing assumptions (3) above and replac-
ing it by Newton's law of heat conduction across a
boundary. We also assume that

(3') heat flows between substances in contact
through a wall with conductance z at a rate given by

where dQ/dt is the heat flux across the boundary
separating the temperatures 7 and 7"". In addition
to assumptions (1)-(3') above, we make the further
assumption:

(4) The time involved in the purely mechanical
coupling branches is very short and may be disre-
garded relative to the total cycle time. Mathe-
matically we assume that these processes proceed
in zero time. Physically this implies the absence
of inertial effects, e.g. , when a mechanical branch
involves the motion of a piston we assume a piston
of zero mass. Assumptions that the mechanical
steps involve no losses or zero time have been
made also in some previous works on the sub-
ject, e 7 but cannot be used when frictional (type-ii)
losses are significant.

'The resulting theoretical framework retains the
advantage of allowing explicit calculation of all
quantities related to the operation of the heat en-
gine, and adds time to the list of variables of the
system, thereby making it a thermodynamic sys-
tem, rather than a thermostatic system. 'This
gives more realistic bounds on work production or,
consumption. Obviously these bounds depend on the
prescribed cycle time.

In previous papers concerning model engines with
these loss mechanisms, we have determined the
rates at which they operate to optimize efficiency,
effectiveness, or power. In this paper we focus on
entropy production, taking it as an objective func-
tion to determine criteria for optimal operation of
heat engines. The main results are stated in Sec.

V. These are derived in Secs. VI-VIII for heat en-
gines and generalized in Sec. IX to general flows.

II. HEAT ENGINES

Heat engines may be conveniently classified by
the type of cycle undergone by the working fluid.
For all the conventionally treated examples, such
cycles are made up of branches of the following
types: adiabatic: q = 0, the morking fluid does not
exchange heat with its surroundings; isothe~rnal:
g'" is a constant, the working fluid is allowed to
exchange heat with a constant temperature envir-
onment; isometric: V is a constant, the working
fluid is maintained at constant volume; isobaric:
pressure P is a constant, the working fluid is main-
tained at constant pressure; polytypic: the work-
ing fluid satisfies the relation PV" = const.

Note that when a heat resistance is inserted be-
tween the reservoirs and the working fluid, the
external and internal temperatures are no longer
the same along isothermal branches-; we have cho-
sen to define "isothermal" to mean the external
temperature (the reservoir temperature) is kept
constant. Below we derive two theorems concern-
ing any heat engine in which the working fluid goes
through a cycle made up of branches of the above
five types. More generally these theorems apply to
any cycle during which we can control the ratio of
outside to inside temperatures (T'"/T) on each non-
adiabatic branch of the cycle.

'Table I shows the kinds of branches that make up
the commonly used heat cycles employing gaseous
working fluids. Diagrams of these cycles on com-
mon scales in the PV and TS planes are shown in

Fig. 2. The Carnot cycle is used almost exclusive-
ly as a theoretical model, because its excessively
high compression and expansion make it imprac-
tical. The other cycles serve as conceptual proto-
types for the design of real engines. The Stirling
and Ericsson cycles are the basis of hot air exter-
al combustion engines, which have received con-.
siderable attention of late. ' " 'The Bi'ayton cycle
has been used mainly for refrigeration, while the
Otto, Diesel, and dual combustion cycles are used
for internal combustion engines. (Sometimes these
cycles are altered so as to use one or more poly-
tropic branches. )

III. THE WORKING FLUiD

The Garnot treatment of the operation of a heat
engine makes liberal use of the analogy between the
extraction of work from the spontaneous flow of
mater from one height to another and of entropy
from one temperature to another. The maximum
work extractable is
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TABLE I. Branches employed in several heat engine cycles.

Cycle Adiabats Isotherms Isometrics Isobars Polytropes

Car not
Stirling
Ericsson
Brayton
Otto
Diesel
Dual combustion

2'

2
2

' Sometimes polytropes may be used instead of isometrics and isobars.

where o is the amount of entropy carried from T,
to T, . Graphically, g is the total width of the TS
diagram for any cycle, as shown, e.g. , in Fig. 2.
For example, if the working fluid is an ideal gas
undergoing a Carnot cycle, then

v =S(V„T,) —S(V„T,)
=8 ln(V, /V, ) + C» ln(T, /T, ), (4)

where I/', and V, are the smallest and largest vol-
umes of the gas, and Ty and T, are the highest and

lowest temperatures. We make further use of this
analogy and view our working fluid as a carrier of
entropy. However, our situation is more compli-
cated than Carnot's, because entropy is not only
carried, but also created. Nevertheless, the en-

PV TS PV TS

ot

el

Ericss
l

stion

rayton

FIG. 2. PV and &5 diagrams on common scales for
several heat-engine cycles using ideal-gas working fluid.
The volume ratio ~ ':P ~ is 1:10for all the cycles,
and the temperature ratio P~ ..P3 is 6:1 for all cycles ex-
cept the Carnot cycle which has 3:1. {It cannot operate
at 6:1with a volume ratio of 1:10.)

gine in which entropy creation is due only to New-
tonian heat-flow constraints turns out to be a fully
solvable model of very general applicability. 'The

results follow very simply if we choose the entropy
content of the working fluid as the basic parameter
and express all other quantities in terms of it.

IV. CONTROL PARAMETERS

It might seem that the most natural choices of
control variables for operating a heat engine would
be the load on the piston and the external or reser-
voir temperature T'". These may be used, pro-
vided that we know the equation of state of the
working fluid. However there is another choice of
control variable that is just as practical as the pis-
ton load and that makes the analysis much easier,
namely the internal temperature T of the working
fluid. This quantity can be controlled at any point
in a process by introducing a fast (effectively in-
stantaneous) adiabatic compression or expansion to
produce the desired change. We may equally well
consider such adiabatic steps as controls on the
difference between internal and external tempera-
tures, i.e., on the thermal force between the work-
ing fluid and the reservoir. We choose to express
the optimal control problem in terms of functions
F(T'", T); we are free to do so, just as long as
these functions are single-valued where we use
them. We shall pick the I' for each branch of a
process to suit the constraints of that branch. For
example on "isothermal" branches —strictly,
branches with constant T'"—I is controlled by ad-
justing T; on branches with fixed mechanical cou-
pling, ' the function + is controlled by adjusting
T". We shall show how the optimal variation of a
properly chosen function F(T'", T) can be obtained
so as to give the extremal entropy, without any
explicit use of an equation of state.

To end this section we note that throughout- our
discussion we implicitly assume that the control
process requires no time. For the control of in-
ternal temperature by mechanical coupling this is
already implied by our assumption (4), Sec. I.
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V. MAIN RESULTS

Although one can use many different objective
functions to define what one means by the "optimal
operation" of a heat engine (efficiency, power,
entropy production, cost, etc.), we will be con-
cerned with optimal only in the sense of minimizing
the total entropy production. This is equivalent to
minimizing the loss of availability (see Appendix
A), but not to maximizing efficiency or power
which were used as objective functions in other
works. "'

We derive the main theorem below.
Theorem 1. Minimum total entropy production

implies constant rate of entropy production on each
branch of the process":

min(~S) - dS, /dt = con-stant for branch i . (5)

These constants depend on the heat conductances
along the different branches.

Corollary 2. In the slow-process limit (to be de-
fined in Sec. VIIA) dependence of the constants in
Eq. (5) on heat conductances disappears, and the
optimal operation then implies the same constant
rate of entropy production along all branches.

The theorem and its corollary are equally valid
for a working fluid carrying any number of fluxes
operating in a cycle between any number of reser-
voirs. The derivations leading to Theorem 1 have
a useful byproduct.

Theorem 2. The entropy produced by a heat en-
gine in which the working fluid interacts with heat
reservoirs through conductances &„.. . , g„for a
total cycle time 7» ~Q & o,./«, ~

is bounded by

QS & 0'; (6)

where T, is the temperature of the environment
which defines the proportionality between loss of
availability and entropy production (see Appendix
A), and where W., =W„,(T, ) is the work available
from a reversible process connecting the same
initial and final states of the heat sources and
sinks "

This section has been worded for heat engines

where M is the entropy produced,

« = m ax[«„.. . , «„],
and 0,. denotes the entropy change of the working
fluid (i.e., entropy flow into the working fluid)
along branch i. This theorem has the immediate
corollar y".

Coroslary 2. The work produced by a heat engine
in finite time and subject to heat conduction losses
is bounded by

with emphasis on heat conduction. Generalizations
to other flow's are derived in Sec. IX.

VI. OUTLINE OF METHOD

We use the calculus of variations with the entropy
production as the objective function and the fixed
cycle time 7. as the main constraint for the mini-
mization. The procedure is composed of the fol-
lowing steps:

(I) Divide the total cycle time v into v, + ~ ~ ~ +v«
=v, where ~, is the time spent on the ith branch
with the working fluid in contact with the reservoir
at temperature T;" through conductance «, . [By
assumption (4), Sec. IV, branches on which only
mechanical energy is exchanged are assumed to
proceed in zero time. ]

(2) Optimize the time behavior of the working
fluid so as to minimize the entropy production on
each branch i subject to fixed 7, and fixed initial
and final states of the working fluid.

(3) Given a set of times {7,), the results from
step (2), and the characteristic limitations of the
engine (e.g. , compression ratio, temperature, and
pressure ranges, etc. ) solve for the (unique) con-
sistent set of initial and final. states on each
branch.

(4) Optimize the allocation of the total time r
among the different branches, that is, determine
the values of v, , @,7,.=r) which minimize the
total entropy production per cycle.

- The optimization uses two types of variations re-
quired by steps (2) and (4). A simple argument
shows that this procedure indeed gives the correct
optimal cycle. If only one branch of the optimal
cycle is varied, the resulting cycle can perform
no better. The Euler equations from the one
branch optimizations in step (2) express this fact
in mathematical terms. These equations are nec-
essary conditions on the optimal cycle but are not
by themselves sufficient to determine the optimal
cycle uniquely. However, when we carry out step
(3) (Sec. VIII) we shall see that these necessary
conditions do define a unique optimal path for each
specific time allocation v, It remains to determine
the optimal times [step (4)]. We do this by finding
a second set of necessary conditions which follow
from altering the optimal cycle to one with differ-
ent v,. but which still satisfies the Euler equations
from step (2). The fact that the optimal cycle is
extremal with respect to variations in v,. as well
gives us this second set of conditions and complete-
ly determines the optimal cycle.

This argument can be expressed as a sequence of
inequalities, thus,

ss =g ss,.(r, ) ~g ss,"'(7,) ~ g as', "(r;")= ss'"'.
(6)
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In words, the entropy production associated with
the cycle is the sum of contributions (all positive)
along each branch. Each of these contributions is
at least as large as the entropy produced for the
optimal behavior along that branch in the same
time 7,. Further, optimizing the allocation of the
fixed total time v among the v', can only decrease
(or leave unchanged) the sum.

We now focus our attention on step (2): Optimiz-
ation along a branch. Here we minimize the value
of an integral over a path subject to certain con-
straints. Though the technique is standard, "we

reproduce the general formulas here for easy ref-
erence.

We start with the control variables J
= (X„X'„.. . , X„),the time interval (0, r) the ob-
jective function

T

Z(X, X,X, . . . )dt,
0

and the constraints

VII. DERIVATION FOR THERMAL PROCESSES

A. One branch, internal temperature as control variable

On branch i, the system at temperature T, (t) is
in contact with a heat reservoir at constant tem-
perature 7.',". through a conductance g,. so that the
heat flux is

(2')

Then for the given duration w, on the jth branch,
the heat flow into the system is

Q (= dQ(= K, [T,'"- T((t)] dt,
0 - 0

(14)

(15)

where T;(t) is as yet undertermined. The entropy
change of the system (the flow of entropy into the
system) is

f T.

F,(X,X,X, . . . )dt=const
0

G, (X,X,X, . . . ) =0.
(10)

and the total entropy change is

'The path yielding the extremum of 4 subject to the
constraints (10), is given by the solution of the
Euler -Lagrange equations

d eL, d &I
+ 2 oa ~ ~ ~ =O

df BXi dI BX&

where L is the modified Lagrangian,

L =2 -Q X( F(—Q X~(t )G~, (12)

{X,.) are constant undetermined multipliers, and

the {Az(t)) are undetermined multiplier functions
of time. This framemork will give the same re-
sults, of course, in any system of coordinates.
When we use the entropy content of the working
fluid as a state parameter, the Euler-Lagrange
equations reduce to simple algebraic equations,
because the Lagrangian does not depend on time or
on any time derivative.

The optimization in step (4) is done by standard
N-variable calculus techniques, solving the set of
algebraic equations

1 1K;[T("-T;(t)]
( )

— „dt~
0

Recall that our approach divides the optimization
into steps. In step (2), carried out here, the
"corners" of the process are fixed with regard to
thermodynamic states and time, and we solve for
the optimal paths which connect these corners. In
step (4), (Sec. VIII), we find the optimal permis-
sible locations of these corners. Fixed corners
(i.e. , given initial and final states of the working
fluid} for each branch t, constrain the values of

v, , Eq. (15). We are free to include in our optimal
path infinitely fast reversible adiabatic segments.
These do not enter into the Euler equation. Ra-
ther, they serve to connect the optimized segments
determined by the Euler equations with the initial
and final states, as shown in Fig. 3. Thus the val-
ues of the 0,. 's are the only constraints that enter
into the Euler equations. We take ~S,- as our ob-
jective function and, with T,'. " constant, T, (t) be-
comes our control variable. The Lagrangian for
the optimization is

d4'("/dv'( —A, = 0, (13)

where the Lagrange multiplier ~ comes from the
constraint Q,. v, =7 The details .of these optimiza-
tion procedures are provided in the following sec-
tions.

where g is a constant Lagrange multiplier. The
Euler equation is
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FIG. 3. Arbitrary curve (solid line) spliced to given
initial and final states by adiabats (dashed lines).

pgx
+1K, (), =0, (18)

because I. depends only on 7', and not on any of its
time derivatives. Thus T,.(t) is obtained from an
algebraic, not a differential, equation, which im-
plies that the solution has no arbitrary constants,
and neither the initial nor final values of the con-
trol function T,(t) can be sp.ecified arbitrarily. As
illustrated in Fig. 3, we are free to include infin-
itely fast reversible adiabats, and hence we need
not be concerned that the solution to the Euler
equation will, in general, not fall at T, (0) and

T, (7,)when t=.0 a. nd 7', Without this freedom, the
calculus of variations problem between given ini-
tial and final states does not have a solution. This
is due to the openness of the set of trajectories
over which one optimizes. However, there is a
least upper bound to our objective function on this
set of trajectories. We can come arbitrarily close
to achieving this upper bound by compressing (or
expanding) as fast as we can to get to the appro-
priate Euler solution and, after staying on it as
long as possible, expanding (compressing) as fast
as possible to get the required final state. Exam-
ples of such systems have been worked out recent-
ly. This k&nd of solution is well known in many
subjects where optimization methods are used; in
economics, they are known as "turnpike" solu-
tions, for example. '

We note that, since the only time dependence in
Eq. (18) is in T,(t), this function must be constant,
and the optimal trajectory is of the form shown in
Fig. 4. Thus heat should be transferred with sys-
tem and reservoir remaining isothermal at their
own temperatures. 'The internal temperature is

FIG. 4. The form of the optimal branch required by
the Euler equation (18). The vertical solid lines corre-
spond to the case in which the adiabats may occur in-
finitely fast. If there is a constraint limiting the veloci-
ty, the system will follow the dashed curves to and from
the isotherm (turnpike theorem Refs. 23 and 24); the
exact forms of the dashed curves depend on the forxn of
the constraint.

most easily determined from the constraint

so that

(20)

The value of 7.',- is thus that value compatible with
the entropy change o„the fixed time v.„and the
requirement that T, (t) =const.

In the limit in which other processes are slow
with respect to heat transfer, i.e., when 7,. » ~ o,(/
g,-, these expressions reduce to

6S; =o;/Kp'; (20')

dS)/dt =o g/K)7 g
(21')

We call such processes for which 7', »~o, (/K,. slow.
Processes. For heat engines producing power on
the order of j.00 kW, realistic values for heat con-
ductance and entropy flows are" K -200 J/K sec
and o-10 J/K implying o,/K,. -0.05 sec. (See Ap-
pendix B.)

We note in passing that the same conclusion,
constant dS, /dt, is obtained starting from any other
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pair of functions chosen from Eqs. (14)-(16)as
constraint and objective functions. In particular
we may use the heat exchanged and the total en-
tropy produced along the branch as constraint and
objective functions, respectively. Here we seek to
minimize the total entropy produced for a specified
amount of heat exchanged. The role of these func-
tions may also be interchanged: For a prescribed
amount of entropy produced, we may determine the
extremal heat exchange. In all these cases we ob-
tain in general a Lagrangian which does not depend
on time or on any time derivative. The Euler
equation for the optimal evolution of the control
variable is theref ore an algebraic equation involv-
ing constants only, thus yielding a constant solu-
tion.

B. One branch, external temperature as control variable

= «( »x»1)(1—x, ') —X«,.(x, —1),
and the solution of the Euler equation

si/sx, = «,.(1 —x,.') x«,. =0

(22)

(23)

is a constant x,. =I +»», /«, 7, , so tha. t a. gain the rate
of entropy production is constant:

We now consider branches on which the working
fluid is subjected to some (prespecified) nonther-
mal coupling. In particular, this category includes
isometric, isobaric, and polytropic branches. We
can still optimize the thermal interaction by con-
trolling the temperature T,'"(t) of the reservoir.

As in the previous section we want to minimize
the entropy production, ~$, for a given transfer of
entropy o, In the spirit of Sec. IV, we define a
new control variable x, (t) —= T,'."(t)/T, (t). The La.-
grangian for the system becomes

i. = «, (T,'" T, ) ——,„—X«;(T,'" T;)/T, —1 1

i

mechanical coupling is specified, e.g. , constant
volume.

Note that these expressions for T "/T; and dS,./d]
are identical to Eqs. (19) and (21) of Sec. VIIA,
which are obtained with the internal temperature
as the control parameter. This is not surprising.
We can always perform the optimization in terms
of x,(t); the result x,. =const is obtained independ-
ently of the nature of the branch. The results (19)
and (21) are obtained by putting T,'"=const.

C. Consecutive branches

We are now in a position to allocate the total
time among & branches of a process which has
been optimized along each branch by the techniques
of Secs. VIIA and VIIB. In doing so we assume
that the engine constraints are such that the 0,.'s
are predetermined independently of the v, 's for
each branch i, making step (3) of our procedure
(Sec. VI) unnecessary. Optimization over time al-
location is therefore performed taking the o, 's to
be constants. For more general constraints, the
o,-'s may be functions of the v, 's. This point is
taken up more fully in Sec. VIII where we show that
in the long cycle time limit the o, 's may always be
regarded as constants for the present optimization.
For short times the optimization depends on the
equations of state of the working fluid and becomes
analytically intractable even for the example of an
ideal gas in a cylinder. Numerical solutions for
this example are given in Appendix B.

If along each branch z the working fluid absorbs
0, units of entropy in time 7,. through heat conduc-
tance z,-, we want to minimize the total entropy
production

(26)

for constant total time

2 / 2

(24) (27)

and the reservoir temperature should be varied so
that

by varying the individual 7» (o. and «, are fixed).
We make the substitution

T»"(t) = T,. (t)(1+o, /«, .T,. ) . (25)
T» =~»+o»/«» ~

I (28)
Note that again our solution has no arbitrary con-
stants, and an optimal path exists only between

T» "(0) and T»"(7») which satisfy Eq. (25). This is
why we introduced the assumption of noninertial
controls, thereby freeing us from any initial or
final conditions on the control functions. For T,"
this is true by fiat, although for T, (f) in Sec. VIIA
it was true because of the freedom to include adi-
abatic jumps. We have lost this freedom for the
present optimizations since we assume that the

so that

d S =Q Q» /«»T»,

and

7 = T ~ =7 + O']

Optimizing gives

(29)

(30)
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&AS o,- 8T'
(31)

Theorem &.

where ~ is a Lagrange multiplier. Solving for v,'.
and evaluating X by the constraint (27) gives

or

r,'=-C
) o, (/~. w, ,

7,. =C
le& I/V»; —o~/'»;

(32)

with

(
e =~'

I g I ~, I/v~;)

(34)

Note that C depends symmetrically on the param-
eters of all the branches. 'The entropy change is

6$= — ~~ 0) ) K7, (37)

5' & 8"„,—TOES, (36)

where g„,is the theoretical work output for the
corresponding lossless process. " Combining this
with Eq. (37) we find the upper bound for our pro-
cess.

Corollary &.

where» = max(»„.. . , »»). Note that this quantity
depends only on the variation in the entropy of the
working fluid P, ~ o,.~, or in other words, the total
amount of entropy transferred in the cycle.

Tolman and Fine' have proven that the upper
bound on the work produced by a process which
generates entropy 4$ at discharge temperature T,
is

so we obtain:
Theorem 3. The optimal rate of entropy produc-

tion along branch i is the constant

dS,./dt=[C(C- sgno, ./a», )j '. (36)

As mentioned in Sec. IV, this constant depends on
the best conductance g, .

In the slow-process limit 7, » ~ o,. ~ /», . (cf. Sec.
VII A ), AS =+,. a', /», r„sow. e obtain the primed
equations above without the substitution defined in
Eq. (28). Thus in this limit

~, =C)o, )/W», , (33')

and we get
Corollary .

dS, /dt=C '; (36')

i e , the o.pt.imal rate of entropy production is in
the slog@ process -limit the same for all branches

of the cycle.
By comparing Eqs. (33), (36), with (33'), (36'),

one sees that if the processes are driven faster
than the "natural thermal transfer times, "

~o, ~/»„
the optimal rate of entropy production will vary
from branch to branch, unless heat is transferred
in the same direction (sgno,. =sgno, .) through the
same heat conductances (», =»~). Equation (33)
implies that the system spends most time on
branches with large entropy flows or small heat
conductance s.

he expression for ~$ assumes a nice form for
long times 7» (g, (o,/»;)]. Then we get from Eqs.
(33)-(35), the following:

(39)

VIII. REAL ENGINE CONSTRAiNTS

The results obtained in Sec. VII and summarized
in Sec. V are based on a picture of a heat engine
as a system operating in a cycle which is made of
distinct branches. E ach branch is characterized
by the change in the entropy of the system. Real
engines are of course subjected to different con-
straints, e.g. , the volume of the cylinder, the
permissible working temperature and pressure
ranges, etc. Such constraints can usually be spec-
ified in terms of the state of the working fluid in
the extreme corners of the cycle. For example, a
Carnot cycle can be characterized by the high and
low temperatures and volumes, which define the
state of the working gas at the starting point of
each isotherm. We shall refer to such constraints
as corner constraints.

Consider now a cycle which is supposedly opti-
mized under some given real engine constraints.
Focusing on a particular branch, we consider al-
tering the path on this branch alone, while keeping
the rest of the cycle fixed. In particular, this im-
plies that th~ initial and final states of the working

' fluid on the special branch are constrained, as is
the time to be spent on this branch. Suppose that
by such a change the total entropy produced along
this branch is lowered. This would obvious. y im-
ply that the total entropy produced during the cycle
operation is lowered and thus contradict our as-
sumption that we started with the optimal cycle.
Thus each branch of a cycle optimized (guith re-
spect to total entropy production) under any corner
constraints has to satisfy Theorem I (Sec. V): The
optimal path is that on svhich entropy is produced
at a constant rate.
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Next, consider the cycle as a whole. In the study
of heat engines, enough information is usually pro-
vided to enable us to construct the corresponding
reversible cycle (which has traditionally served as
a basis for comparison with the actual work pro-
duced). The indicator diagram (the path of the
working fluid in state space) of this reversible
cycle also defines the state of the environment,
which is in equilibrium with the working fluid at
each point. Restrictions which define the indicator
diagram may be. specified either in terms of the
working fluid or in terms of the environment.

For finite time cycles, we should distinguish be-
tween constraints imposed on the working fluid and
constraints imposed on the environment. If the set
of constraints used to define a reversible cycle is
imposed on the working fluid alone, the indicator
diagram of the latter (and therefore the set (v, ))
is completely specified. In such cases the proce-
dure described in Sec. VII is sufficient and the re-
sults provide the necessary conditions for mini-
mum total entropy production. These conditions
give the time-dependent behavior of the working
fluid and of the environment (temperature of a res-
ervoir, load on a piston, etc.).

In the more general case where engine limita-
tions are given in part or in full in terms of the
environment (e.g. , temperature of a reservoir) the
problem becomes more difficult. Now the set (o, )
is no longer given. We can obtain the o,.'s in terms
of the v, 's from the given restrictions, the optimal
operation conditions [Eq. (25)), and the equations
of state of the working fluid.

Example: Consider a Carnot-type cycle com-
posed of two isothermal branches (characterized
by temperatures Ty and T,'"of the external reser-
voirs) and two adiabatic branches. We assume
that the working fluid is an ideal gas with constant
heat capacity C„.Equation (25) implies for the iso-
thermal branches

where

o „„=RIn(I" /V ) +C„in(T, "/T,'") . (45)

(+max+ min

g,',„=8In
~ C„lnT,'"- CJ, In T,'" (47)

is a constant,
In general the 0, 's are complicated functions of

the 7, 's. To minimize the total entropy production

2/

1 + g)/ggT g

subject to g, ~, = 7, we must use

eaS 8~S eo,+
&Tf j 80j 87i

for the Lagrange multiplier g, rather than

BES/87 )
= X

(46)

(49)

(5o)

as was done in Sec. VIIC.
For infinitely slow operation, the 0,'s are given

as properties of the corresponding reversible cyc-
le. Assuming that (g, (v, . . .7~)) (i = 1, . . . , N) are
continuously differentiable functions of the vari-
ables (1/r, ), we can write

'This leads to

Bg,/Br, = 5,/~,'+ ~ ~ -~ . (52)

If the compression ratio p '"/p '" is given as an
additional constraint, Eq. (44) provides an expres-
sion for p as a function of ~, and 7,. Alternatively,
if the maximum pressure P and the maximum
volume are given as constraints rather than the
compression ratio, Eq. (44) is replaced by (using
pmaxymm ~T )

o = o,'„+C~ln(I+a/x,~,) —C„ln(1—o/g, &,), (46)

where

T, = T,'"/(1+ v, /a, r, ),
T, = T,'"/(1+c,/~, ~,).

(40) Also, in the slow process lim-itEq. (26) in the
form b,S =+~ a &/gp ~+ ~ ~ ~ implies

0'g = -0'3 = 0' . (42)

On the adiabatic branches cr2 =v4 =~2 =~4 =O. The
closure condition for the cycle g, o,. =0 implies

~ ~
BLAS i o]
8+f )(~ $

and

(53)

Finally, the ideal-gas equations of state lead to

(r R»(V '"/& )+C„»(T/T ) (43)

1 + (7/ICg&y'0 =jr„„+C„lnI —0/ K373
(44)

where t/
'" and V are the largest and smallest

volumes of the cylinder. From Eqs. (40), (41),
and (43), we get

g Bd,S Bg~ g2 o~ 1

Bgj BTf f Kj 7 jTg

which for large ~, 's may be disregarded relative

(55)

(
BLS

}~
2o~

(54)
~+j )(r,f

The terms omitted in Eqs. (51)-(54) are of higher
order in the (I/rz)'s. To the lowest order in these
variables we have
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to the right-hand side of Eq. (53). This is possible
provided

25„-0,~a
T~ )& 2 ~

0'g K~ 0'~
(56)

For the Carnot cycle where e, =-o, =0„„,we ob-
tain from Eqs. (44) and (51),

b~ =v„,C„/a,, (57)

so that the long-time condition (56) takes the form

&d. && C„/ICg ~ (58)

Subject to this condition, we may keep the g,. 's
constant while taking derivatives of AS with respect
to the v, 's and to the same approximation, the op-
timization procedure of Sec. VII C is valid.

To end this section, we stress again that there
exist reasonable constraints (e.g. , for the Otto or
the Diesel cycle) which imply constant g, and thus
justify the analysis of Sec. VII C even for short
times.

IX. DERIVATION FOR GENERAL FLOWS

A. One branch

Consider the exchange of the generalized fluxes
j = (j„j„.. . , j», . . . , ) driven by the forces X
= (X„2C„.. . ,X», . . . ) between the appropriate res
ervoirs and the system. By our assumptions,
there is no internal entropy production, so all ir-
reversibility resides at the boundary. We assume
that the fluxes have a phenomenological relation-
ship j»(X) to the forces. These relationships are
not necessarily linear as in traditional irrevers-
ible thermodynamics close to equilibrium. We
take the forces at the boundary as control variables
and assume that the fluxes are functions only of the
forces ~k, not of time or of any time derivatives of
the forces. 'Thus we want to minimize the entropy
produced.

B. Consecutive branches

We have from Eq. (60) for consecutive branches

AS= 4S] = j; X] 7]= J) X, , (63)

since the fluxes and forces along each branch are
constant. Unless we know the functional form of
X,(J,/~, ), -we . cannot optimize Eq. (63) with respect
to the ~, , so let us at this point assume the rela-
tionship to be linear

j =LX, X=I. 'j, (64)

where I, is the usual matrix of phenomenological
coefficients. Then

AS =QJ, I. 'J,/7', =Q. n, /v, , . (65)

where the ( n,.j do not depend on time. Optimiza-
tion of Eq. (65) subject to Eq. (27), 7=+,7,. yields

T) ='T gQg /CD ~ (66)

so that

for the forces &,. Again the Euler equations are
(coupled) algebraic equations so that the solutions,
however complicated they may be, will be inde-
pendent of time. This implies that also dS/dt
=j(&) X is a constant. Thus we deduce in general
the following:

Theorem 2': Minimum total entropy production
for a process with given net fluxes implies. con-.
stant entropy production rate along any one branch.

This is the general version of Theorem 1. If the
j„areindependent and linear in X, the solution of
Eq. (62) comes from solving the determinental
(secular) equation for the X„whereas if the j, are
independent but nonlinear, the solution of Eq. (62)
is the point set of intersections of the surfaces de-
fined by (62).

'r

AS= jkXkdt = j X dt,
0 k 0

for given integrated flows,

7

0

(58)

(60)

and

2

ddt/dt=(gd&, .) /T',

(67)

(68)

This gives the Lagrangian

jk X ~k- &kjkX

and Euler equations

(61)

which is the same constant for all branches
(Gorollary 1'). The linearity of Eq. (64) and the
constancy of I. correspond to the slow process lim-
it in Sec. VIIA.

=j,(X)+g(X,—~,) " =o. (62
g k k

The phenomenological relationships j,(X) can now
be used to calculate sj»(X)/BX, and solve Eq. (62)

X. DISCUSSION

In the sections above, we have repeatedly mini-
mized the total entropy production in a heat-engine
process subject to only thermal resistance losses.



21 MINIMUM ENTROPY PRODUCTION AND THE OPTIMIZATION. . . 2125

We found that optimal operation implies constant
entropy production rate on each branch. For slow
operation, the requirement of minimum total en-
tropy production implies that the entropy produc-
tion rate is constant for the entire cycle.

The results further show that for optimal opera-
tion we should subject the working fluid to a con-
stant thermal force on each branch. The required
constant thermal force depends however on our
choice of heat transfer law. If Newton's law of heat
conduction holds, we need to hold T'"/T constant.
If we accept the heat-conduction law of irreversible
thermodynamics, we need (1/T) —(1/T,„)= constant.
Newton's law is probably more reliable here.

Our solution for the one branch behavior of the
optimal cycle is very general since we do not re-
quire any equations of state for the working fluid.
'The same is true for the long-time solution for the
cycle as a whole. The general solution however,
does depend on the detailed properties of the work-
ing fluid as was demonstrated in Sec. VIII. Note
that in any case the results are not necessarily re-
stricted to a gas in a cylinder and should apply for
any engine.

The limitations imposed on the efficiency of op-
eration by finite thermal conductance are signif-
icant. For realistic values of the parameters, "
o =10 J/K and. x =200 J/K sec in a Carnot-type en-
gine working between 700 and 300 K with a cycle
time of 7' =1 sec, we find (see Appendix B) that the
efficiency is reduced to 47%%uo from the reversible
value of 57%%u~. The efficiencies of the best actual
heat engine processes with similar o and g are
4(P/o4 and thus compare favorably with the optimal
engine with finite heat conductance.

The results described in the present paper differ
in two important respects from previous work
aimed at establishing limits on the quality of oper-
ation of finite time heat engines. The first differ-
ence is that our results apply to arbitrary heat en-
gines, whereas most of the previous work" '
dealt only with Carnot-type cycles, i.e., cycles
working between two constant temperature reser-
voirs. 'The second difference is our choice of ob-
jective function. Previous works have maximized
efficiency and power in finite time heat engines.
We minimized the entropy production and showed
that this is equivalent to minimizing the loss of
availability. Both the relationship to properties of
many steady-state systems2~ and the connection to
practical minimization of loss of availability ~ "
motivate this choice or criterion. It is, however,
not equivalent to maximizing efficiency or power.
For example, unlike the efficiency, the total en-
tropy production criterion does not count heat at
all temperatures equally. Efficiency and power by
their nature define short-term goals. 'Total en-

tropy production or availability corresponds to a
longer range goal of preserving natural resources,
Each of these criteria of merit has legitimacy and
defines operational goals for the engine. A quanti-
tative comparison between these and other criteria
of merit will be provided in another publication,
where we also discuss the problem of choosing
among these criteria under a givenprice schedule. "

The assumptions used in our formalism are
standard. With few exceptions, mentioned below,
the assumptions under which most optimal finite
time operation problems have been attacked are,
no friction, no internal dissipation, and neglect of
inertial effects. An approach to optimal engine op-
eration which takes friction into account has been
described by three of us using the tricycle space
formalism. ' A model which includes internal ir-
reversibility in a simplified manner has been
treated by Richter and Ross." The first of these
works does not yield an explicit solution for the
time operation of the engine, while the second is
based on a highly simplified model. Inertial ef-
fects have been taken into account in Refs. 6 and 7.

In our model the working fluid is characterized
by the single parameter o, its entropy capacity.
'This is the simplest possible viewpoint short of
using no parameters, as was done by Curzon and
Ahlborn' and in the tricycle formalism. '

Our result states that the "best process" is as-
sociated with a constant rate of entropy production.
'This is reminiscent of Prigogine's theorem of ir-
reversible thermodynamics which states" that the
entropy production rate is minimum at near-equi-
librium steady states. Both results are associated
with variational principles. However the approach
of Prigogine ("irreversible thermodynamics") in-
volves instantaneous quantities while our formal-
ism ("finite-time thermodynamics") investigates
the extrema of integrals over time. It is interest-
ing to note that both theorems are obtained under
fairly similar assumptions. Nn fact our results
are in some sense more general; as we saw, the
single branch results hold even when the pheno-
menological equations between flows and forces
are nonlinear, so long as there is no internal dis-
sipation. )

In the present work we limited ourselves to sim-
ple nonequilibrium situations. In particular, we
disregarded irreversible processes associated with
spatial inhomogeneities of the system. It.will be
interesting to investigate the generalization of the
principle of constant entropy production rate to
such cases which are encountered in processes in-
volving internal dissipation.

Finally, we note that reversible bounds on work
production have provided us with such fertile con-
cepts as entropy and thermodynamic temperature.
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The possibility of using finite time bounds as
sources of new physical concepts should not be dis-
missed. We believe that the present article makes
a start in this direction.
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tems, let two of them come to equilibrium without
work production. Their common final temperature
will be

(A 5)

and the availability of the total system is
N y/N

A'=CN Q T;/N- ~ (T +T )2 T . (A5)

'The loss of availability is thus

~=A-A'

(A7)

The entropy produced in the irreversible interac-
tion is

APPENDIX A: THE PROPORTIONALITY BETWEEN
LOSS OF AVAILABILITY AND ENTROPY

PRODUCTION

Tl TI
hS= C TdT+ C TdT

T$ T2

cl„(,+ .)' (A8)
Here we prove that the loss of availability as-

sociated with an irreversible thermal interaction
is proportional to the entropy production. 'Thus

minimizing the loss of availability is equivalent to
minimizing the entropy production.

First consider N systems, each with constant
heat capacity C and at different temperatures T, .
When they interact to come to equilibrium at the
common temperature Tf, their respective change
of entropy is

so that

bA ~ ~ ~ ')» (T, + T, )'&t')» (T, + T,)'

(A 9)

This depends not only on all the system tempera-
tures but also on the nature of the irreversible
process. However, in the limit of many systems
we may use

(A 1)

Q b,S;=Q C ln(T~/T,)'.
Tf

gS) = C/T dT =C ln(T~/T, ). .
T.

S

For a reversible interaction the total change in
entropy vanishes:

(nr(x'~~ 1))-
to obtain

(A 10)

(A 11)

=C NlnT&- lnT& =0,

which defines the final temperature

(A2)

(A3)

Thus the geometric mean of the temperatures of
systems provides the proportionality constant be-
tween the entropy production and the loss of avail-
ability. If all but a small number of s'ystems have
the same temperature T„they constitute a refer-
ence reservoir, and then

~/b, S = To. (A 12)
The availability A of the collection of systems is
the maximum work which can be obtained from
their interaction. Conservation of energy yields

We can prove Eq. (A12) also for the more general
case of temperature-dependent heat capacities C,.
=C,(T). As before, the common temperature Tz
after a reversible interaction is obtained from

=g C(T, -T,) =CN P T,/N-. ]T, . (.A4)
L$

As an irreversible interaction between the sys-

Pcs Qf c,(rile ar.,==o, .
'E S T]

(A13)

although we cannot give an explicit expression for
T&. As in E q. (A4) the availability is
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Tfa =W,„=-gq, =g C, (T.)dT. (A14)
i T]

Vfe now let systems 1 and 2 interact irreversibly
to arrive at temperatures T,' and T,'. A subsequent
reversible interaction between all system will lead
to a different final temperature Tf' such that

zv I

g~s,. =p f 'c(rVr, d. r o=
Taking the difference between Eqs. (A13) and

(A15), we see that

l f +f +Qf c,(r)/rdr=. c.
T2 i T'

Similarly, the loss of availability is

~ =A. -A'=- + + C,. T dT

gf '=-c, (r)dr
zv I

The entropy produced is
p I

aS= + C T TdT
r, r, )

gf '=c-, (r)yr dr,
zv I

so that

(A 15)

(A15)

(A 17)

(A 18)

CiT dT C]T TdT
f 'f

(A19)

Gonsider the case where all systems i ~ 3 are
combined into a single reservoir of temperature To
and heat capacity C,. In the limit C„C,«C„we
have Tf =Tf =T„and
bA/hS = [Cc(Tc)(T~—T~) ]/[(T~ —Ty)Cc(Tc)/Tc j = Tc,

(A 20)

which again proves that the entropy production and
the loss of availability are proportional to each
other.
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APPENDIX B: NUMERICAL RESULTS FOR THE
FINITE-TIME CARNOT CYCLE

An important advantage of the formalism pre-
sented in this paper is that it allows one to calcu-
late all quantities related to the finite-time opera-
tion of a model heat engine. Furthermore, the re-
quired calculations are well within the capacity of
todays programmable calculators. Below we il-
lustrate this feature of our formalism with the nu-
merical results for an ideal-gas working fluid un-
dergoing a Carnot cycle working between given
temperatures T,'"and T,'", with a given compres-
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W ~ W„,—4T, e'/K T (B2)

given for large times by Corollary 2 [Eq. (I)],
may be assumed valid quite generally.

We now describe how the data in these tables
were calculated. As shown in the example of Sec.
VIII, the entropy capacity o =v, =-o, of such an
engine is related to the times 7, and ~, spent on the
heat exchange branches of the cycle by Eqs. (44)
and (45),

sion ratio V '"/V, heat conductance K—= K, =Kx,
and cycle time ~. The results for a few represent-
ative values of the parameters are shown in Table
II. Note that the results of the exact calculations
and the constant g calculations are very close even
for very short times, e.g. , the minimum cycle
time T;„for the engine. (As the cycle time T is
decreased, the engine produces less work. 7 is
defined as the cycle time for which zero work is
produced. ) Note further that the equation

W=W„„—4T oc/KT

is valid to three significant figures for all our
data. This means that the bound

evaluate AS by Eq. (B5). This procedure is re-
peated for different choices of ~„until v,'~' is de-
termined to the desired accuracy. Once 7,'~'is
known, we can evaluate o and aS from Eqs. (B3)-
(B5), and the other engine parameters from

T, = T,'"/(I + (T/K T,),
T, = T;"/(1 —(T/KT, ),

Tex/Tex

() = I —T,/T, ,

W =o(T, T),—
~rev ~~19rev ~

(as)

(av)

(as)

(B9)

(B10)

(a11)

(B12)

where g denotes efficiency and ~ denotes work.
The results of such calculations appear in Table II
under the heading "exact results. " Alternatively,
we can use the computational scheme by assuming
that g is a constant (Sec. VIIC). Subject to this
approximation, we can eliminate the search for
T(I'( and use Eqs. (33) and (34) to find

1+ / (TKT(
o =g„„+C„ln

1 —0'jg 'T3

where

a „„=Aln(V '"/V ) +C„ln(T,'"/T,'") .

(B3)

(B4)

with

c=(+g ) IP I I)

For our example, (B12) and (B13) reduce to

(B13)

Since we are given the total cycle time 7 =7, +T3,
our optimization problem is to find v, such that the
total entropy production [Eq. (26)]

O( /K T( (( 0
AS =z +

1 +(T(/K(T( KT(+O KTx —(T
(B5)

is minimized.
The numerical optimization proceeds as follows.

Choosing a specific value of T„Eq. (B3) can be
solved iteratively for o by substituting a guess val-
ue g~„,on the right-hand side of (B3), and using
the resulting (T equal to the left-hand side of (B3)
as the next guess. This iterative scheme converges
quickly, and we can use the obtained value of a to

= xT —O/K,

T,'("=-,'T+ O/K.

(B14)

(B15)

The iterative scheme for the constant a calcula-
tions is based on Eqs. (B3), (B14), and (B15). A
guess value of (T is used in Eqs. (B14) and (B15) to
get T, and T, which give a better g from Eq. (B3).
This scheme is much faster as it eliminates the
need to search for r,'I". The results are presented
in this table under the heading "constant-0 re-
sults. "

Since the results of both types of calculations de-
pend only on the product Ij, ~ rather than on the val-
ues of I(. or v separately, one can easily obtain re-
sults for I(,

" from the data in the table by altering
the corresponding T to T'=KT/K'.
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feFor example consider a heat engine working between a
heat source at constant temperature Tz and a heat sink
at constant temperature T&. If in one cycle the amount
of heat Q+ is taken from the hot source and the amount
Q is added to the cold source, then 8'„,is the sum of
the works associated with the reversible engines in
which the hot and cold sources exchange the same heats
Q+ and Q~, and with the environment {of temperature
To) playing the role of the other reservoir. Thus

W~ „=Q (1 To/T~) —Q~(1 —TD/Tg).
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