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We compute the internal energy of the classical one-component plasma, for values of the Coulomb

coupling parameter I between 1 and 300, by using converged Monte Carlo chains and a more accurate

potential approximation than that used by Hansen. The liquid data are fitted to a simple, very accurate four-

parameter formula from which the Helmholtz free energy is derived. The solid data are likewise fitted to a
one-parameter formula. The intersection of the two-free-energy curves gives an estimate of the Auid-solid

transition at I = 168+4.

I. INTRODUCTION

The classical one-component plasma (OCP) is
an idealized system of ions immersed in a uni-
form sea of electrons such that the whole system
is electrically neutral. This system is character-
ized by the Coulomb coupling parameter I', where
I'=(Ze)'/rkT with the ion sphere radius
r=(4v'N/3V) '~', N the number of ions and V is the
volume of the system.

Following the pioneering Monte Carlo work of
Brush, Sahlin, and Teller' (hereafter BST) on the
OCP, Hansen' dramatically improved the accuracy
of the equation of state by improving the approxi-
mation of the interparticle potential and by using
long Monte Carlo runs. However, DeWitt' has
questioned the accuracy of Hansen's data for large
values of the Coulomb coupling parameter
(40&I'&160). DeWitt thought that the reduced pre-
cision for large I" may have been due to Monte
Carlo noise or to possible systematic errors. In
this paper we report the results of calculations
similar to but more accurate than the results of
Hansen and Brush, Sahlin and Teller. Systematic
deviations from Hansen's results are' found and our
estimation for the fluid-solid transition is I" =
168 ~ 4.

For the potential approximation used here the
error in evaluating the Madelung sum is of order
1 part in 10'. This compared with an error of
order 1 part in 10' for Hansen's approximation.
We also extend the range of the pair distribution
functions by including in the averages, particles
in the volume (V =f ') inside the basic periodic
cube but outside the inscribed sphere with radius
f./2,

In Sec. II we discuss the various approximations
to the Ewald potential (Hansen, ' and DeWitt and
Hubbard' ). It is shown that our approximation to
the potential is at least two orders of magnitude

more accurate than Hansen' s. The fit to the poten-
tial which we used (cubic harmonics specialized
for a vector computer) is described in detail in
Appendix A. The data and a simple very accurate
four-parameter fit to the liquid data, and a one-
parameter fit to the solid data are discussed in
Sec. III. Appendix B gives analytic formulas for
normalizing the extended pair distribution function.

II. INTERPARTICLE POTENTIAL APPROXIMATION

Following BST, the total internal energy of a
system U may be written

N
U Uo i ~ ~p

NkT NkT . , NkT

where

Nkr =Nf. ~ '( )' '(')"'

and

U, (r) = (1/r)erf (mc'~'r) —1,

U, (r) =g ~-
~

erfc(7r'~'~n —r~)

+g, exp(-vn')(exp[i(2m'n r)O.
5 mn' (4)

Here the interparticle separation r= r,. —r~ is in
units of 1. where I. = (4'/3)'~' in units of the ion
sphere radius P with N the number of particles.

In these units the minimum and maximum values
for any component of x are 0 and 1, respectively,
inside the basic periodic cube. n is a vector with
integer components and the prime on the summa-
tions indicates that the zero n vector (0, 0, 0) is to
be excluded. In terms of the above,

U, r
Nk T 2L — 2I.
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TABLE I. Errors in potential approximations {all errors are relative).

Error description
Polynomial
used here

DeWitt and
Hubbard (Ref. 4) Hansen {Ref. 2)

average
(indicates amount
of cancellation for
a uniform distribution)

maximum

4.9 x 10
6.5 x 10

2.1 x 10+

4.2 x 10
2.0 x10

3.9x 10

1.4 x 10&
-4.0 x10

1 1 x10-

or E =3 —U, (0) where E =2.837297479 is the
Madelung energy of a simple cubic crystal with
lattice spacing L Sinc.e Eq. (4) is difficult to
compute rapidly it is customary to approximate it
in some other form. BST used a Taylor expan-
sion, Hansen' used what he called an "optimized
Kubic harmonic" expansion, and DeWitt and Hub-
bard used a 3D table look-up and interpolation.
Since we are using a vector computer which eval-
uates polynomials rapidly we shall use ordinary
cubic harmonics such as those used by Slater and
DeCicco. ' We describe this approach in detail in
Appendix A.

We now show that our potential approximation is
several orders of magnitude more accurate than
previous calculations. To evaluate the errors in
the various potential approximations we computed
the potential at 64000 random points to within a
few parts in 10"using Eq. (4). This value was
then compared with the values of Hansen, DeWitt,
and Hubbard and our polynomial values. The re-
sults are shown in Table I for 64000 random
points. As noted by Hansen, ordinary cubic har-
monics converge poorly for r &L/2 but this error
may be decreased by taking enough terms. The
cubic harmonic approximation places the largest
relative error where the potential is the smallest.
This is in contrast with Hansen's optimized Kubic
harmonies which place the largest error where
the potential contributes much more to the total
sum. The errors in the DeWitt and Hubbard
scheme are distributed more uniformly since it is
a table look-up and interpolation procedure. Their
method could be made more accurate but table
look-up is a relatively slow procedure on a vector
machine. To estimate the systematic errors of
the various potentials we placed the particles in a
bcc (128 ions) or fcc (108 ions) lattice and eval-
uated the static internal energy. The resulting
static energy may be compared directly with the
Madelung energy of that lattice. The results show
that for the potential used here the systematic
errors are of order 1 part in 10 whereas Hansen' s
potential has systematic errors of order 1 part in
10'. With the polynomial potential the errors de-

crease with increasing numbers of ions, for ex-
ample, bcc lattices with 432 and 686 ions have
systematic errors of 4 parts and 1 part in 10',
respectively.

By rearranging the Ewald sum we were able to
write a computer code that was about three times
faster than the polynomial code, but it was not
used because it was one-half order of magnitude
less accurate.

III. RESULTS AND DISCUSSION

Table II gives the internal energies (U/NOT),
corrected for center-of-mass motion, for our cal-
culations on the one-component plasma. The num-
ber of configurations in the Monte Carlo (MC)
chains varied from 10' (with 10' previously dis-
carded) for the lower I' on up to 8.6 && 10' (with
0.2 X 10' to 1.5 &&10' previously discarded) for the
higher I'. Most of the calculations were done using
128 particles; a few 54, 108, 250, and 432 particle
calculations were also done. The "lattice" after
some of the entries indicates that a bcc or fcc lat-
tice start was used. The statistical errors o are
the standard deviations of the means. These er-
rors were computed after ensuring that there was
negligible slope in the internal energy data.

Comparison of the data for the 128 ions and 250
ions shows a dependence on the numbers of ions
(N dependence). As expected this N dependence is
not nearly as strong when comparing the 250 data
with the 432 data. Apparently a few hundred parti-
cles are necessary for the N-dependence errors
to be negligible. Consequently the results in this
paper which are all based upon the N =128 runs
are subject toasmall systematic error. For I'=
180 the random start was seen to solidify after
1.6 x 10' configurations. Figure 1 shows the pair
distribution functions for the liquid (dashed curve)
and solid (solid curve). All lattice starts with
I' &160 melted and all random starts with I ~ 170
solidified. For calculation of structure factors,
we give various pair distribution functions in
Table III.

The systematic deviations of Hansen' s' data from
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TABLE II. internal energies. U/NkT is the excess internal energy per ion divided by kT.
~ We give our results and those of Hansen (Ref. 2) and Pollock and Hansen (Ref. 10).

U/Nk T
Error
(+0)

Number of
ions N

Type of
start

U/h% T
(Hefs. 2 and 10)

1.0
1.0
2.0
3.0
4.0
6.0
6.0

10.0
10.0
15.0
15~ 0
20.0
30.0
30.0
40.0
40.0
60.0
60.0
60.0
80.0
80.0
80.0

100.0
100.0
100.0
100.0
110.0
125.0
125.0
125.0
125.0
140.0
140.0
140.0
150.0
160.0
160.0
160.0
160.0
160.0
160.0
170.0
180.0
180.0
180.0
180.0
200.0
200.0
220.0
240.0
300.0
300.0
300.0

-0.573
-0.573
-1.320
-2.112
-2.927
-4.592
-4.593
-7.993
-7.992

-12.310
-12.309
-16.668
-25.426
-25.431
-34.251
-34.248
-51.941
-51.961
-51.961
-69.714
-69.727
-69.715
-87.511
-87.534
-87.500
-87.498
-96.411

-109.825
-109.780
-109.793
-109.799
-123.239
-123.160
-123.165
-132.078
-141.098
-141.000
-141.051
-141.690
-141.729
-141.716
-150.703
-159.654
-159.675
-159.669
-159.667
-177.574
-177.619
-195.551
-213.469
-267.205
-266.675
-267.243

0.000
0.000
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.003
0.004
0.004
0.004
0.004
0.002
0.006
0.006
0.007
0.006
0.005
0.005
0.007
0.004
0.005
0.005
0.005
0.007
0.004
0.005
0.004
0.010
0.006
0.007

. 0.007
0.009
0.006
0.007
0.010
0.006
0.009
0.005
0.007
0.004
0.005
0.004
0.005
0.004
0.006
'0.003
0.008
0.006
0.004

108
128
128
128
128
108
128
108
128
108
128
128
108
128
108
128

54
108
128

54
108
128

54
108
128
250
128
108
128
250
432
108
128
250
128
108
128
432
108
128
250
128
108
128
250
432
108
128
128
128
108
125
128

liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
liq
llq
llq
liq
liq
liq
lat"
lat
lat
lat
lat
lat
lat
lat
lat
lat
lat
lat
lat
lat
lat

-0.580
-1.318
-2.111
-2.926

-4.590

-7.996

-12.313
-16.667

-25.429

-34.232

-51.936

-69.690

-87.480

-96.360

-109.732

-123.095

-140.890

-141.717

-150.696

-159.662

-177.604
—195.538
-213.470

-267.242

liq denotes liquid.
"lat denotes lattice.



2090 W. L. S LATTER Y, G. D. DOOLEN, AND H. E. DeWITT 21

0.0
I

1.0
Radius (ion

2.0 3.0
sphere units)

I

4.0

our data can be seen more clearly in Fig. 2 where
we have plotted the thermal fraction of the internal
energy, (U —U, )/NOT, for our data (solid curve)
and Hansen' s' data, and the data of Pollock and
Hansen" (dashed curve). Since Hansen's statistic-
al errors are larger than ours by a factor of order
2, the differences can mostly be attributed to the
fact that our potential is two to three orders of
magnitude more accurate than Hansen' s.

The liquid U/NkT data (I ~ I' = 160) for 128-parti-
cle runs were fitted to the form

U/NOT =ai'+bl' +cI' ' +d

FIG. 1. Pair distribution functions for the liquid
(dashed curve) and the solid (solid curve) for I'=180.

by minimizing the sum of the squares of the rela-
tive errors using n, b, c, and d as parameters.
The fitted U/NOT are shown in Table IV along with

TABLE III. Pair distributions as a function of I' and radius (ion sphere units).

80 110 140 150 160

Radius
0.0406

to
0.9343
1.0155
1.0967
1 ~ 1780
1.2592
1.3404
1.4217
1.5029
1.5842
1.6654
1.7466
1.8279
1.9091
1.9904
2.0716

.2.1528
2.2341
2.3153
2.3966
2.4778
2.5590
2.6403
2.7215
2.8028
2.8840
2.9652
3.0465
3.1277
3.2090
3.2902
3.3714
3.4527
3.5339
3.6151
3.6964
3.7776
3.8589

0.000 00

0.000 00
0.000 09
0.001 22
0.01407
0.084 93
0.30161
0.710 33
1.232 54
1.674 27
1.893 91
1.880 92
1.708 98
1.479 63
1.25013
1.060 53
0.91731
0.814 72
0.75079
0.720 72
0.715 86
0.738 45
0.778 04
0.835 78
0.903 10
0.974 07
1.041 91
1.098 64
1.140 03
1.158 27
1.15440
1.13313
1.10064
1.06233
1.020 69
0.984 98
0.953 36
0.933 00

0.000 00

0.000 00
0.000 00
0.000 07
0.002 76
0.029 62
0.16145
0.526 91
1.11559
1.719 58
2.066 66
2.084 05
1.871 24
1.568 49
1.278 67
1.046 32
0.879 93
0.765 61
0.694 99
0.664 16
0.664 07
0.688 53
0.734 26
0.799 72
0.880 72
0.967 90
1.055 75
1.13105
1.183 22
1.209 02
1.205 39
1.177 49
1.12940
1.075 23
1.018 89
0.969 26
0.929 39
0.903 15

0.000 00

0.000 00
0.000 00
0.000 00
0.001 22
0.01589
0.11679
0.447 56
1.053 75
1.714 91
2.13504
2.180 90
1.946 83
1.61510
1.29415
1.040 28
0.858 78
0.735 94
0.66714
0.638 59
0.63973
0.66643
0.717 05
0.789 97
0.875 04
0.970 42
1.06519
1.14571
1.204 01
1.230 33
1.224 77
1.19225
1.13957
1.077 02
1.01634
0.96196
0.91811
0.890 61

0.000 00

0.000 00
0.000 00
0.000 00
0.000 48
0.009 57
0.085 86
0.377 14
0.990 15
1.714 90
2.194 21
2.259 57
2.012 67
1.650 84
1.307 14
1.035 00
0.841 11
0.718 28
0.647 50
0.614 36
0.61745
0.647 85
0.701 68
0.777 47
0.872 49
0.972 82
1.071 33
1.157 08
1.216 22
1.245 29
1.242 32
1.207 71
1.152 72
1.086 72
1.018 22
0.954 49
0.906 99
0.874 42

0.000 00

0.000 00
0.000 00
0.000 00
0.000 29
0.00645
0.066 37
0.328 13
0.926 28
1.701 76
2.245 00
2.33161
2.076 37
1.683 86
1.312 53
1.025 50
0.826 94
0.69934
0.625 69
0.593 26
0.596 13
0.629 29
0.691 28
0.772 72
0.86949
0.977 32
1.080 96
1.168 36
1.232 81
1.263 77
1.257 71
1.220 21
1.16164
1.088 19
1.013 24
0.947 43
0.895 54
0.861 22

0.000 00

0.000 00
0.000 00
0.000 00
0.000 17
0.004 63
0.053 93
0.295 71
0.892 07
1.689 81
2.267 08
2.378 48
2.11711
1.708 76
1.323 01
1.020 30
0.816 2S
0.682 62
0.606 64
0.579 68
0.586 18
0.624 30
0.687 19
0.769 65
0.868 40
Q.S78 20
1.081 86
1.174 05
1.242 84
1.276 03
1.270 80
1.228 03
1.16177
1.087 20
1.010 43
0.943 20
0.887 75
0.851 72
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TABLE lII. (Continued. )

3.9401
4.0213
4.1026
4.1838
4.2651
4.3463
4.4275
4.5088
4.5900
4.6713
4.7525
4.8337
4.9150
4.9962
5.0775
5.1587
5.23S9
5.3212
5.4024
5.4837
5.5649
5.6461
5.7274
5.8086
5.8898
5.9711
6.0523
6.1336
6.2148
6.2960
6.3773
6.4585
6.5398
6.6210

80

0.921 72
0.921 56
0.929 09
0.947 01
0.97148
0.994 44
1.01348
1.028 66
1.038 64
1.042 34
1.039 51
1.034 71
1.029 51
1.020 24
1.006 37
0.996 49
0.986 68
0.980 57
0.976 63
0.974 74
0.975 38
0.977 65
0.984 90
0.992 47
1.007 04
1.016 56
1.02249
1.030 81
1.029 64

- 1.021 01
1.007 36
0.995 48
0.988 87
0.978 59

110

0.888 49
0.888 60
0.902 25
0.93150
0.962 87
0.995 60
1.025 35
1.047 16
1.061 18
1.067 87
1.066 32
1.055 18
1.042 28
1.026 84
1.008 S7
0.990 44
0.973 48
0.96139
0.953 64
0.952 45
0.956 26
0.966 84
0.982 21
1.001 21
1.021 13
1.031 88
1.045 42
1.046 75
1.039 56
1.01902
1.014 06
0.99930
0.993 61
0.984 44

0.87514
0.875 10
0.89113
0.922 84
0.96127
1.00124
1.036 83
1.061 53
1.074 60
1.076 64
1.071 61
1.058 98
1.038 82
1.01902
0.99966
0.98240
0.971 50
0.962 58
0.957 60
0.955 65
0.960 67
0.970 64
0.985 81
1.003 71
1.018 20
1.030 84
1.036 97
1.035 69
1.02464
1.014 57
1.009 06
1.006 86
0.99349
0.989 51

140

0.859 87
0.860 95
0.880 78
0.918 30
0.962 76
1.006 38
1.041 62-

1.068 01
1.081 54
1.083 95
1.077 30
1.'063 95
1.047 56
1.027 95
1.008 04
0.988 23
0.971 31
0.958 33
0.946 57
0.945 11
0.945 79
0.952 96
0.967 98
0.988 83
1.008 36
1.031 35
1.050 50
1.061 42
1.063 99
1.046 07
1.021 64
0.987 63
0.969 39
0.959 13

150

0.845 50
0.847 77
0.86819
0.908 34
0.956 93
1.008 68
1.052 01
1.082 86
1.09998
1.102 09
1.090 63
1.073 95
1.050 94
1.028 11
1.001 18
0.978 69
0.960 04
0.946 87
0.938 01
0.935 71
0.936 38
0.947 12
0.967 90
O.S92 13
1.017 00
1.040 01
1.068 27
1.084 33
1.083 33
1.071 68
1.048 00
1.007 06
0.967 62
0.924 46

160

0.839 06
0.842 54
0.865 44
0.907 29
0.961 39
1.015 79
1.059 45
1.089 69
1.10124
1.097 11
1.085 81
1.069 93
1.045 96
1.024 92
1.001 93
0.980 28
0.967 34
0.952 61
0.947 44
0.944 12
0.950 07
0.961 40
0.968 50
0.981 87
0.996 51
1.022 03
1.040 14
1.050 42
1.050 93
1.049 02
1.035 31
1.013 99
0.997 14
0.985 83

TABLE IV. Fitted liquid data for 1& && 160. U/AT
= aF + b&~ + c~ ~ 4 + d, where a= -0.897 52, b= 0.94544,
c= 0.17954, and d= -0.800 49.

U/Nk T
MC

U/~7.
fitted

Relative
error

Absolute
error

I

50 100 150
I"

I

800 250
I

300

FIG. 2. Thermal fractions of internal energy (com-
pared with a bcc lattice U&= —0.895929256 I'). Solid-
curve data from this paper, dashed-curve data from
Hansen (Ref. 2) and Pollock and Hansen (Ref. 10).

1.0
2.0
3.0
4.0
6.0

10.0
15.0
20.0
30.0
40.0
60.0
80.0

100.0
110.0
125.0
140.0
150.0
160.0

-0.573
-1.320
-2.112
-2.927
-4.593
-7.992

-12.309
-16.668
-25.431
-34.248
-51.961
-69.715
-87.500
—96.411

-109.780
-123.157
-132.078
-141.000

-0.573
-1.320
-2.112
-2.927
-4.591
-7.994

-12.311
-16.667
-25.437
-34.252
-51.956
-69.715
-87.506
-96.410

-109.775
-123.149
-132.068
-140.991

0.000 03
-0.000 12
-0.000 14

0.000 22
0.000 36

-0.000 13
-0.000 22

0.000 07
-0.000 21
-0.000 13

0.000 10
0.000 01

-0.000 07
0.000 Ol

0.000 04
0.000 06
0.000 07
0.000 07

0.000
0.000
0.000

-0.001
-0.002

0.001
0.003

-0.001
0.005
0.005

-0.005
0.000
0.006

-0.001
-0.005
-0.008
-0.010
-0.009
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TABLE V. U/NkT for I'& 1.

Calculation
r

Monte Carlo (MC) '
calculated here

HNC
(Ref. 9)

BSC
{Ref.8)

Abe
(Refs. 6 and 2)

Hansen (Ref. 2)
MC

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-0.1225
-0.1784
-0.2383
-0.3018"
-0.3668 "
-0.4337"
-0.5035 ".

-0.573"

-0.02580
-0.06903b

-0.1195
-0.1773 b

-0.236 0
-0.3015
-0.3644
-0.431 6
-0.500 4

-0.0258
-0.0688

-0.577

-0.025 90
-0.071 8

-1.968 -0.580

All values are the result of 10 configurations.
Values used to calculate E(I.&)/NkT numerically. The Abe analytic cluster expansion was used for 0«& 0.1.

the relative and absolute errors of the fit and the
values of the parameters. The fit to this form is
extremely good; the relative rms error is 3 && 10 '.
A suggestive argument is presented by DeWitt and
Rosenfeld' for the form of Eq. (5).

To find the liquid equation of state we calculate
the Helmholtz free energy from the formula

F(I') " U dl"
NkT NkT I"

Substituting for U/NkT from Eq. (5) we find

kT
—-ai'+4 ~bi' ' —,&, +dlni'

—[a+4(b —c)]+
F(r, )

(6)

where F(I',)/NkT is the free energy at I' =1.
F(I',)/NkT was calculated by summing the results
from a Simpson's rule integration of the starred
values of U/NkT given in Table V (0.1 s I' s 1.0)
and an analytic integration of the Abe cluster' ex-
pansion formula [Eq. (19), Ref. 2] for U/NkT
(0.0 & I' & 0.1). The Abe formula was chosen for
the lower end because it agrees well with the
U/NkT values given by Broyles, Sahlin, and
Carley' and by the hypernetted chain (HNC) ap-
proximation. ' The HNC values were used in the
integration for 1 =0.1, 0.2, 0.3, 0.4, and 0.5.
At I' =0.6 the HNC U/NkT agrees very well with
the MC U/NkT consequently the MC values were
used in the integration for 0.6 & I' & 1.0. The in-
tegration gives the result F(I',)/NkT = -0.420. We
consider this result to be more accurate than the
corresponding Hansen' value [Fa„„,(1',)/NkT =
—0.445] since a much denser grid was used for the
integration and the U/NkT values are more ac-
curate. [Note that F(I',)/NkT in Hansen's paper
includes the perfect gas contribution. ]

After including the perfect gas contribution [Eq.

U U, 3
Nkr Nkv. 2 r''

by minimizing the squares of the relative errors.
For the bcc lattice, U, /Nk T = -0.895 929 I'. The
fitted U/NkT are shown in Table VI along with the
relative and absolute errors of the fit and the
value of the parameter h. To obtain the Helmholtz
free energy we use the harmonic approximation re-
sults from Ref. 10. This leads to

F
= -0.895 929 256I'+ & lnI' —1.8856—,. (9)g h

Since we now have formulas for the free energy

TABLE VI. Fitted solid data for 160~ I' 300. U/NkT
= 1.5 + Uo + k/I where Uo

——-0.895 929 I and k= 2980.

U/Nk T
MC

U/Nk T
fitted

Relative
error

Absolute
error

160.0
170.0
180.0
200.0
220.0.

240.0
300.0

-141.729
-150.703
—159.675
-177.619
-195.551
-213.469
-267.243

-141.732
-150.705
-159.675
-177.611
-195.543
-213.471
-267.246

-0.000 02
-0.000 01

0.000 00
0.00004
0.000 04

-0.000 01
-0.000 01

0.003
0,002
0.000

-0.008
—0.008

0.002
0.003

(23), Ref. 2] Eq. (6) becomes

F(I')/NkT =al'+4(bl'~ —c /I'~~~)

+ (d+ 3)lnI' —[a+4(b —c) + 1.135] . (7)

This formula for the liquid free energy may be
used to calculate other thermodynamic variables
of interest. We will use it shortly, after we have
calculated the solid free energy, to find I' at the
liquid-solid transition (I'„).

Following Pollock and Hansen" we fit our 128-ion
bcc lattice data to the form
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of both the liquid [Eq. (I)] and solid [Eq. (9)] we
are now in a position to find the intersection of the
two curves which gives the fluid-solid transition.
We find that I =168+4. 'The error in 1 was cal-
culated by systematically biasing the U/NkT data
(Table II) by +o,. The error of +4 corresponds the
maximum and minimum intersection points of the
three liquid free-energy curves (obtained by fitting
U&/NkT —O';, U&/NkT, and U, /NkT+o&) with the
corresponding three solid free-energy curves.

Our results for I' =168+4 may be compared
with the value of Pollock and Hansen, ' l" =155+10.
Again the difference is attributed to the relatively
large systematic error in Hansen' s' liquid data
(Fig. 2). We note here that Van Horn's" estimate
of r„=170+10 (based on the Lindeman melting
criterion, harmonic theory, and empirical data)
is in agreement with our more exact result.

IV. CONCLUSION

Using a very accurate representation of the
Ewald potential and a Monte Carlo technique we
have evaluated the internal energy of the classical
one-component plasma (1 ~ I' & 300). The liquid
internal-energy data were fitted to a simple four-
parameter equation which was then integrated to
obtain the Helmholtz free energy of the system.
After fitting the lattice internal-energy data to a
one-parameter formula, and obtaining the solid
free energy, we find that the fluid-solid transition
is at T'=168+4.

Note added in proof. Subsequent calculations
with N=250, 432, and 686 have shown a dependence
of U/NkT on N for values of I" just below melting.
The most recent 1" using the new results is
j." =171+3.
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APPENDIX A: CUBIC HARMONIC POTENTIAL
APPROXIMATION

Inthis Appendix we discuss the form of the po-
tential approximation foQowing Slater and De-
Cicco.' For a system of point charges surrounded
by a uniform background charge, we expect the
potential energy of a point charge to be given by

the sum of a solution to Poisson&s equation for the
uniform background [Eq. (A1)] and another solution
for the point charges [Eq. (A2)].

First, for the potential of the uniform negative
background, we need the solution to Poisson's
equation V2$ = —4mp in spherical coordinates. In
this case the charge density p is -Ze. This leads
to the solution P =2m'Ze and thus the potential
energy per NET may be written as

w, (z,) r,
NkT NkT NL

(Al)

which in the limit goes to

w r/1
NkT NL

r
+ (fitted cubic harmonics) . (A2)

The fitting parameters in the cubic harmonics re-
main to be determined.

We digress for a few comments about the cubic
harmonics. Explicitly we used cubic harmonic
polynomials in the coordinates l, m, and n where
l =x/r, m =y/r, and n=z/r, and x, y, and z are
the usual Cartesian coordinates.

Examples of the first 3 normalized functions fol-
low:

A;=P,(1)+P,(m)+P, (n) =0,
IC, = V',r'[P, (l) + P,(m)+P, (n)]

= V,r'(l'+m'+n' ~0), -
K, = Vzr'[P0(l ) +P, (m) +P4(n)]

= V r'[l'+m'+n

15(l4+ m4+ 4) +30]

where P,.(l) are the usual Legendre polynomials
and the V,.'s are the fitted constants (the V,'. 's dif-
fer by a constant factor).

To obtain the required accuracy we used terms
through&». Terms of degree 12, 16, 18, 20, and
22 are degenerate and consequently each needs an
orthogonal function of the same degree to complete
the basis set. We used only the 12th degree func-
tion,

since FI =—1. A term of this form did not appear
in Hansen's approximation.

Next, we anticipate that the solution to Poisson's
equation with cubic symmetry for the point charges
is given by the expression

r„'=lim [u, (r)+ 1+u,(r)
g~p

r
+ (fitted cubic harmonics),
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I7» ——V»Re[(l +irn)" + (m +in}" + (n+ il)"],

where the V» is fitted along with V, (for K,)
through V„(for %22).

Adding Eqs. (Al) and (A2) we obtain for the po-
tential between two particles with separating dis-
tance r = (x2+y 2+ z 2}'~ 2,

+C—0+C2r'+ V,r'(S, +C, ,)

+ V2r (S,+ C 8,S~ + C8 2)

+T,(U, +C8,U,r'+C U8 r2+8C8, ,U,r'
+ ~ ~ + C22, 10U22r )

+ T (U +C8 1U8r +C8 2U8r +C10 3U10r

+ ~ ~ ~ + C22, 2U11r )

20( 20+ 22' 1 22 )

+ T22U22

+ U24+y2 ~ (As)

The coefficients for the r' terms (e.g. , C~,U, and

C», U») are calculated once and placed in a ma-
trix (Az, ) which is subsequently used in calculating
the coefficients for the T,-'s.

To calculate the potential given the separation
x, y, and z we first compute the T,. coefficient as
polynomials in r' using A, , Since the T,.'s are
simply polynomials in x', y', and z' we next cal-
culate each x', y', and z' polynomial using the T,-
coefficients. These results are then added to the
left-over terms (1/r+C, + U24J7») for the final re-
sult.

A table of 8000 values of the function g/NkT

+ V10r ( 22 + 22, 1 20+ 22, 2S18+

+C,S +C, ,)+ V„.K, ),
where C, =1 —E, C, =211/3, S,. =(x'+y'+z')/r',
and the C;; are the collected Legendre coefficients

For computational convenience this expression
is rearranged by collecting like powers of x'.
Letting Tz. -—Sp' =x'+y~+z~, U~ = V&~ »&„and
U, =C, we have

[Eqs. (2), (3), and (4) were generated. These
values were approximated by the function ~P/NkT

in Eq. (AS} by adjusting the parameters V„V„.. .
so as to minimize the mean-square error. Note
that Eq. (A3) does not require evaluation of the
error function complement.

APPENDIX B: EXTENSION OF THE RANGE OF THE PAIR
DISTRIBUTION FUNCTIONS FOR SPHERICALLY

SYMMETRIC DISTRIBUTIONS

O

O~

0.0 0.2
I I

0.4 0.6
Radius

I

0.8
I

1.0

FIG. 3. Normalizing volume for the pair distribution
functions.

In a Monte Carlo calculation, for each config-
uration the pair separations are computed between
a particle under consideration and all others whose
x, y, and z coordinates are within half of the
periodic distance. The number of particles within
an interval at a certain distance, say a+@ where
d is small radial increment, are accumulated into
a bin. At the end of the calculation the number in
the bin is divided by the volume of the bin at that
distance times the number of configurations to get
the pair distribution function for that bin. Although
all pair separations are calculated within a box of
side L centered on a particle, pair distributions
are usually only tabulated for pairs in a sphere
of diameter L centered on the particle. About
half of the pairs in the box are outside the sphere.
We show here a method for using the pairs which
are usually neglected. For spherically sy imetric
distributions, this method will extend the &air
distribution function from —, to v & where the length
of the edge of the basic cube is taken as i. For
distributions without spherical symmetry, the fol-
lowing procedure provides a method for determin-
ing the deviation from spherical symmetry.

Consider a sphere of radius a centered in a cube
with edge length 1. For a spherical shell with
radial increment d, the volume is given by the ex-
pression V, (a, d) = Vr(a) —Sr(a —d) where Sr(a) =
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&4ma'. As the shell grows outwards, the outer
sphere becomes tangent to the six faces of the cube
at a= 2. For a) 2 and before the outer sphere is
tangent to the edges of the cube, at a =/2/2, the
volume of the shells must be diminished by the
volume of the "caps" protruding beyond the faces
of the cube. The volume of the shells in this re-
gion are given by the formula: V,(a, d) = V, (a, d)
—[Cv(a) —C„(a —d)], where Cv(a) =27/(a —~) (2a+~).
For M2/2 & a & v 3/2 the caps overlap at the edges
of the cube and the shell volume is diminished un-
necessarily by the volume in the 12 overlaps. The
volume of the shells in this overlap region may be
expressed as

V, (~, d) = V,(a, d) + [O (a) —O(a —d) t

where

O(a) = (12a' —1){sin '2/[(a' ——,')' 21 —27/)

+16a'sin '((a —2)'/'/[2(a ——,')]'/')
2(n2 L)1/2

Figure 3 shows the relative volumes of the shells
out to a = v 3 /2. The smaller volumes near v 3/2
(where the spherical shells are near the vertices of
the cube) indicate decreasing accuracy in the sta-
tistics for the pair distribution functions in this
region.
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