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The thermodynamic properties of hard-rod fluids confined to a plane are derived using scaled particle
theory, and restricting the number of possible orientations to six. Results for simple systems are compared
with earlier results for three-dimensional spherocylindrical systems. Mixtures of rods of different lengths are
also studied as possible models for systems in which the constituent molecules may change conformation.
Upon inclusion of a van der Waals attractive potential energy, interesting and unusual phase changes can

occur.

The method of scaled particle theory (SPT), in-
troduced several years ago in studies of hard
spheres and disks,' has proved useful in the study
of hydrocarbon chain packing in lipid bilayers and
biological membranes®3 as well as liquid crys-
tals.**® In many such systems molecules are large
and may exhibit many conformational states.
Changes in molecular size disrupt molecular
packing so that in closely packed systems these
conformational changes may be related to changes
in the long-range order of the system. In recent
papers Cotter and Wacker*'5 have presented an
elegant extension of the SPT to mixed anisotropic
systems containing molecules with different
shapes, and this theory forms a natural basis for
the study of the effects of conformational changes
at the molecular level. As a first effort in this
direction, I have considered several types of two-
dimensional hard-rod fluids. The purpose of this
paper is to present the properties of these models.
In the next section I describe the computational
technique and the models studied. The final sec-
tion contains the results.

MODELS STUDIED

Consider a system of hard rectangular rods con-
fined to a plane. Let the rods have length a and
width . For simplicity in the numerical computa-
tions, each rod is allowed to be in one of M orien-
tations, and @, (k=1+-- M) is the fraction of mole-
cules having orientation 2. For a given set {an}
the Gibbs free energy of the system can be written
as

G 1
— = — 1
Ve, T Inp+ Ek ak(lnak+kBT w,(0, a, b)), (1)

where p is the particle density, k5 is Boltzmann’s
constant, 7 is the absolute temperature, and

w,(p,a, b) is the work required to insert a particle
having orientation % into the system at the density
p. SPT is used to evaluate w,(p, a, b) by consider-
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ing limiting cases of very large and very small
sizes for the particle being added in orientation
state k.* The procedure involves calculating the
area excluded to a “scaled particle” of dimensions
aa, Bb by regular size particles in other orienta-
tional states. This function is

Ay(a, B)=ab(l+ap)+ |sind,,|(aa®+ Bb?)
+ ]cos@,k]ab(a+3), (2)

where 0,, is the angle made by rods in states [ and
k. In SPT Eq. (2) is used to obtain a limiting form
for w,(p, aa, pb) for a,p=0:

w,(0,0)= %, T In (1 -pY @A, 0)) . (3)
]
For the other extreme, we expect that if the
scaled rod is very large, then
w,= PycapBab, 4)

where Py is the hard-core pressure. The next
step is to construct w,(a, B) for all &, B (in par-
ticular &, 8=1) by assuming a polynomial form in
o and B and matching coefficients. The result is,
for a=g=1,

GHC = .
N T 1np+; a,Ina, — In(1 - pabd)

+—1_—ppa—5<; o, [ (a®+b?) |sind,, |
+2ab[cost9,kl])

+(Pyo/kgT)ab . (5)

Any one of several techniques®* may be utilized to
eliminate Py, and calculate the Helmholtz free
energy, obtaining

=In(—P
F/Nk,T= ln(1 — pab>+ ; a,lna, -1

L
2

1C Zab ?_; a0 [(a?+ %) |sind,, |

+2ab|cosb,,|]. (6)
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The thermodynamic state of the system is deter-
mined by finding the occupation fractions {ak}
which minimize Eq. (6) at each fixed density. In
the present problem there are often several sets
of {a,} which satisfy the minimization equations.
In this case the set {a,},, which represents the
true physical state of the system is that for which
Eq. (6) is an absolute minimum. At low densities
this will be a set in which all the {a;} are approxi-
mately equal to 1/M while at high densities most
of the a; should be zero. In some systems the
{0t;}mia Will vary smoothly with the density for low
to high density, while in other systems a first-
order phase change may occur as the system
switches from one set of {@,} to another to main-
tain the absolute minimum in the free energy.

Generalizing the model, consider now a mixture
of Hard rods of varying length. That is, let b re-
main fixed but allow a to take on a set of discrete
values. This model can be directly related to hy-
drocarbon chain packing in lipid bilayers where a
large value of a is the result of conformational
disorder by the chains. The principal types of
disorder involve gauche rotations about carbon-
carbon bonds which then tend to bend the chains
away from an axis perpendicular to the bilayer
plane. Viewed from the top of such a plane, the
projections of a set of lipids in various conforma-
tional states would appear as rods of various
sizes. Such a view is shown in Fig. 1. As the den-
sity of such a system is increased, conformation-
al changes which increase the effective rod size in

Fig. 1 become less likely. Thus, for this type of
]

7

FIG. 1. Schematic drawing of a mixture of planar hard
rods of varying area. For the biomembrane application
of the theory, this is the top view of a lipid bilayer look-
ing perpendicular to the bilayer plane.

mixture the concentrations of various rod species
are also order parameters which vary with den-
sity. In polymer chain statistics one often assigns
statistical weights to various conformational
states.? Here we consider mixtures of the type
shown in Fig. 1, both with and without statistical
weight factors. Other systems in which variable
molecular size might be of interest include, for
example, liquid crystals with »-CH, side chains.%”

The extension of the SPT formalism to such
mixtures is straightforward. The resulting free
energy has the form

F
sz o, lna;, —Z: a,lnw‘+ln[p/<1 —p‘z a‘a,b{)] -1
+[%p/<1 —pz a,a,b,)] Z a0 {[b,b,+aza, |sinb,, | + (@b, + a,b,) | cosb,, | T}, (7
’ ] [

where the sets {a,} and {b,} are the allowed values
of the long- and short-rod dimensions, respec-
tively, and the w, are statistical weights for each
state ¢. In Eq. (7) the &, represents not only ori-
entation but area class. That is, if there are six
allowed orientations and five allowed values of
a,, then there are 30 members of the set {a,} (in
this paper we use b,=b, fixed).

As a final consideration we introduce an attrac-
tive potential energy to our system. Since exact
inclusion of van der Waals forces in complex
molecular systems presents insurmountable diffi-
culties, we use the following semiempirical po-
tential:

Vate=—C(A -A )3, 8)

[

where C and A are constants and A is the molecu-
lar area. A, is chosen so that Eq. (8) is not singu-
lar for accessible values of A. This function was
used in Ref. 3 as a semiempirical attractive po-
tential energy for the oriented hydrocarbon chains
in lipid bilayers, and.the results were in good
agreement with experiment. For this reason the
potential is used again here although it is not con-
sistent in the statistical-mechanical sense® since

NV # P 8V /0P 9)

As long as V,, is a function of the form (A -A,)°,
it cannot satisfy Eq. (9). However, we found in
constructing the semiempirical model of Ref. 3
that models with functions of the form Vv, .~ (4)°
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do not agree nearly as well with experiment for
lipid bilayers, even when o=-1 [satisfying (9)].
Minimization of Eq. (7) or Egs. (7) plus (8) over
such a large set of variables is a difficult and
time-consuming chore. The computer program we
use is STEPIT, written by Chandler of the Okla-
homa State University computer science depart-
ment, and has proved reliable and accurate for
all cases considered. The introduction of addi-
tional degrees of freedom to the system might be
expected to lead to more complex phase behavior
since we have order parameters which correspond
to orientation and to the lengths of the rods. In the
next section we discuss the properties of the vari-
ous models considered above.

RESULTS AND DISCUSSION

The properties of simple systems (rods of one
size only with six possible orientations) are simi-
lar to those discussed by Cotter® for three-dimen-
sional systems. At certain critical densities the
rods spontaneously order themselves, exhibiting
a weak first-order phase transition. In Figs. 2 and
3 are pressure-density plots for systems of 8x 5
and 10 X 4 rectangles, respectively, with 6 orien-
tational degrees of freedom. The phase transition
is characterized by the van der Waals loop in the
isotherm. The dashed lines on part of the loop
show portions for which numerical results are,
due to the steep slope, very difficult to obtain.
The horizontal line is placed over the loops using
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FIG. 2. Pressure (m)-density (p) plot for a system of
rectangular 5 X8 (arbitrary units) rods. The dashed line
represents a region in which the slope was too steep to
obtain accurate numerical results.

1
0.01868

the Maxwell equal-area rule. The low-density
phase has a;= 4 for {=1*** 6, representing ran-
dom orientation, while in the high-density phase a
large fraction of the rods are in one of three e-
quivalent parallel orientations. As the density is
increased to the close packing density, this frac-
tion increases to one. In Table I the properties of
the systems of Figs. 2 and 3 are listed. The tran-
sitions are quite similar to those found in three-
dimensional spherocylindrical and other rodlike
systems.®!? The packing fractions associated with
the two phases are close to those of Cotter® for
three-dimensional unrestricted orientation models
at common length: breadth ratios, while they are
larger than those of Ref. 9 when orientations are

- restricted to the X, Y, and Z axes.

The properties of models with variable molecu-
lar shape are given in Table I also, and shown in
Fig. 4. When only hard-core repulsions are con-
sidered, the systems exhibit a single-phase tran-
sition, just as the simpler systems do. As the
density of the system increases the a, corres-
ponding to larger values of the molecular area
gradually decrease. All orientational states re-
main equally populated, however, until the phase-
transition density is reached. In the high-density
phase nearly all rods are parallel and have the
smallest possible area. When statistically weight-
ed states are considered, results are qualitatively
the same except that, due to larger w;, some of
the intermediate area states contain a proportion-
ately larger fraction of the molecules. Table I
lists the results of our computation, along with the
values assigned to a and the weights w,. The
transition pressures and entropies are smaller,
and the densities are somewhat larger than the
simpler systems discussed earlier. This may re-
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FIG. 3. m-p plot for a system of 4 X10 (arbitrary units)
rectangular rods.
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TABLE I. Parameters for the 2-dimensional hard-rod transitions: m,=transition pres-
sure, p,=anisotropic phase density, p;=isotropic phase density, AS/NE=relative entropy

change.
Rectangle size wy/ Nk 2 p; 2 AS/Nkg (eu)
5%X 8 (0.751 6) (0.7452)
0.354 0.018 79 0.018 63 0.159
4x10 (0.653 2) (0.6408) .
0.164 0.016 33 0.016 02 0.194
Mixture
(no weights)b 0.135 0.020 95 0.02115 0.061
Mixture
(with weights) b 0.103 0.018 73 0.018 60 0.038

2Packing fractions are given in parentheses for the single~component cases.

P For mixtures b=5 and a=8.16, 9.78, 9.52, 10.38, or 11.42, chosen to match areas in the
lipid bilayer problem. Weights are also chosen by considering lipid chain conformations and
have the values 1, 20, 192, 676, and 192 for the various respective values of ax (Ref. 3).

flect the fact that disordered systems having vary-
ing shapes may be able to pack more efficiently
than disordered systems having no conformational
freedom.

When an attractive potential energy term is
added, we compute pressure (r)-area (A) iso-
therms such as those shown in Fig. 5. For suffi-
ciently low temperature or large C [Eq. (8)], we
find a double van der Waals loop in a mixture mo.
del with no statistical weights. The large loop-
corresponds to the phase transition from a low to
a high density, while the smaller loop is an orien-
tational phase change from randomly aligned mole-
cules to molecules aligned parallel. The larger
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FIG. 4. m-p plots for the two types of hard-rod mix-
tures considered. The upper scale describes the system
in which no statistical weights were utilized. The hori-
zontal lines in both isotherms are obtained by the Max-
well equal-area rule. These isotherms appear flatter
than those of Figs. 2 and 3, but this is largely due to a
difference in scale.

transition is accompanied by a large reduction in
the number of molecules in large-area conforma-
tions. The small transition involves very little
conformational change. Application of the Maxwell
area rule to the lower isotherm of Fig. 5 eradi-
cates the small transition. However, while the
large transition disappears at a critical point (near
the upper curve in Fig. 5), the small transition
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FIG. 5. m-A plots for hard-rod mixtures with an at-
tractive potential energy for two values of C/RT, where
C is the constant in Eq. (8) and A;=38.0. The values for
the molecular shape parameters are given in Table I
R is the gas constant Nkpg.
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does not, so that the system always exhibits at
least one transition. Very near the critical point
of the large transition, the system has two transi-
tions as the two sets of van der Waals loops are
separated.

In summary, two-dimensional mixtures of hard
rods have several interesting properties, at least
when modeled by scaled particle theory. For sim-
ple systems the results described above are simi-
lar to those found for three-dimensional hard-rod
systems by several different theoretical meth-
ods.®'2 The use of the SPT to describe systems of
large molecules with varying conformational
shapes has a wide variety of potential applications
in liquid crystal and biological physics. The un-

usual phase changes described here represent a
sampling of the types of results one may expect if
the methods described here and in Refs. 5 and 6
are applied to these problems. One must always
keep in mind, however, that the SPT is inexact and
not well understood. The only independent checks
on its validity are for simple systems such as hard
spheres. However, the checks for hard spheres
show the theory to be remarkably successful so it
is natural to extend it to systems such as those
considered here to study its predictions.
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