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Small roughness fluctuations in the layer between two phases
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A recently studied autocatalytic chemical reaction model for a nonequilibrium first-order phase transition
is applied to fluctuations in surface density at the phase boundary. The model is exactly soluble for the
dynamics of small fluctuations. The analysis also carries through for fluctuations from solitary solutions.

I. INTRODUCTION

A reaction model for a chemical instability was
constructed especially because it combines sim-
plicity with the capacity to show the phenomenon
of a nonequilibrium phase transition of first or-
der. The inclusion of diffusion of a distinguish-
able "autocatalytic" component turns this model
into a system which shows a close analogy to the
liquid-gas system. The nonequilibrium steady
states with steadily running reaction are very
similar to the equilibrium states of the liquid-gas
system. The density of the gaseous phase corres-
ponds to a lower concentration n, and that of the
liquid phase, to a higher concentration n, of the
autocatalytic chemical component in the reaction
model. The temperature and the pressure in the
equilibrium-state diagram of the liquid-gas sys-
tem correspond to the steady-state concentrations
of two other chemical components held constant
by adequate feeding of the reactor. The two
"phases" separate into different domains in space
with minimal interface. 1hus the domains become
spherical like droplets or bubbles. The coexis-
tence value of the concentration which in the anal-
ogy to the liquid-gas system corresponds to vapor
pressure depends like vapor pressure on the
curvature of the interface. In case of a plane in-
terface it is determined by a Maxwellian construc-
tion.

The model is in many respects simpler than the
models for the liquid-gas system, in particular
with respect to the dynamics of the nonstationary
states. Thus it was analyzed in different res-
pects by different authors. ' " In the so-called
deterministic description, which will be used
in this paper, dynamics is given in the form of a
differential equation in space and time for the con-
centration of the autocatalytic component. Other
descriptions are the stochastic theories in which
the concentration or the particle number of this
component is dealt with as a random quantity.
This is done by a master equation description or

II. DYNAMICAL EQUATIONS

The chemical reaction system is given by the
reaction equations

A+ 2X- 3X,

B+X-C,
(2.1)

(2.2)

between molecules of species A, B,C,X. The
concentrations of A, B,C are held constant in

space and time by adequate feeding. The concen-
tration n of the "autocatalytic" species X is var-
iable. The species X can diffuse in space owing
to Fick's law. By adequate choice of units for
time, length, and concentration& the dynamical
equation takes the form

n = p(n)+ V'n

with the kinetic rate function

y(n) = n'+ 3nn' —-Pn+ y,

(2.3)

(2.4)

where n, P, y a,re the concentrations of A, B, and

C, respectively. The choice of units which leads
to the factor 3 will prove to be convenient.

by the introduction of fluctuating Langevin forces.
1he simplicity of the model allows rigorous

mathematical analysis of many questions that
cannot be answered directly for the liquid-gas
system. Thus the model can help to find features
which are, up to slight variations, common with
the latter system and with other systems showing
an equilibrium or nonequilibrium phase transition.
We use the model in that spirit in this paper to
discuss the dynamical behavior of small fluctu-
ations in the interface layer between the two coex-
isting phases. We also show that the results can
be extended to slowly moving solitary states.
1hese are nonstationary states which describe a
moving interface due to a feeding. The conditions
for such states differ from the conditions for the
steady coexistence state of the two phases. These
solitary states correspond to a vaporization or to
a condensation process.
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The dynamics given by Eqs. (2.3) and (2.4) are
more general than the special reaction system
given by (2.1) and (2.2) and can be considered as
the proper basis of the model. We are interested
in particular in the case where the control par-,
ameter I3, which in the analogy to the liquid-gas
system corresponds to the temperature, is below
the critical value

8 2 8

Bx3 8$
'= v(1 —g') —. (2.17)

For the description of fluctuations in the interphase
layer we introduce tj by

(2.18)

and transform the dynamical equation (2.3) into
the form

P, = 3n',

because then

(2.5)
& '0= f(1 —&')&', +o' '&f0-6&4'-20'

with the operators

(2.19)

p(n) = -(n -n, )(n -n, )(n -n, )

has three real roots

n ncn1 3 2 '

(2.6)

(2.7)

In the homogeneous reactor without diffusion n„
n2 represent two stable steady states, and n3 an
unstable steady state. Steady states are the time-
dependent solution of the dynamical equation (2.3).
If diffusion is included, the two phases n„n2 can
coexist in different domains in space. We are
interested in particular in a plane interface be-
tween the phases. Such a state is steady only if
y has the special coexistence value which is ob-
tained by the Maxwellian construction; that is,
y must have the value for which y(n) satisfies

8 8
+

Bxg Bx28, 81S ——(1 —g') —
~84]

+ [l(l+ 1) —(1 —f') 'm'].

(2.20)

(2.21)

mpm(~) 0 (2.22)

III. REGRESSION OF SMALL FLUCTUATIONS

For small fluctuations the terms in Eq. (2.19)
which are nonlinear in f can be neglected. This
leads to

The latter is the linear operator of the differential
equation for the Legendre functions PP(g)

dna n =0. (2.8) o 'g = (1 —V)X)23/+ v '4P . (3.1)

Then

n =n —v1 3 P &
(2.9)

There is no complete set of solutions separable
in g; x„x„t. However, a separation in & and the
new variables

S2 = 'Pl 3+ V P ~

This yields

(2.10) $, = v(1 —P)'~'x; (i = 1,2),
r = o'(1 —g')t

(3.2)

(3.3)

A(3= Q,
v2=P -P .

(2.11)

(2.12)

is successful. Expressed in these variables the
dynamical equation assumes the form

Wit

we can write

(2.13)

8, 8' 8' 'Ij

+2+ 2+
BT ' st', 9(22&

Let X()„t', ) be the solutions of the eigenvalue
problem for the differential equation

(3.4)

y = -v(v' —v'} . (2.14}

v vp tanho. x, =- v*= vpf (2.15)

The dynamical equation (2.3}with vanishing n
shows that

The detailed contour of the interphase layer is
described by the dependence of v on the Cartesian
coordinate x„normal to the layer. In the steady
state of coexisting phases

(82 82

Ea ', s', (3.5)

with suitable boundary conditions leading to eigen-
values k. As the introduction of (, by Eq. (3.2)
is connected with the distinction of a zero point
of x; in the interface, we can immediately write

X = ~.(4)e'"' (3~ 6)

with

2~ =vp2 ~ (2.16) $,+i(,= pe'~ (3.7)

We replace x, by the new variable f introduced
by Eq. (2.15) for which

in terms of the Bessel functions J„of integer
order p, provided that no finite boundaries are
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present. The variable p is related to the cylin-
drical coordinate

quence of the invariance of the dynamical equation
(2.3) against a shift in space.

by

r = (x'+ x')' ~'
1 2

p = o(1 —0')'~ 'r .

The separation ansatz

y=u(g)}t(p, 4)e "'

leads to the differential equation for u:

G,' u(f)= 0,
where

(3.8)

(3.9)

(3.10)

(3.11)

IV. EXTENSION TO THE SOLITARY SOLUTIONS

If y is different from the coexistence value
which is determined by the Maxwellian construc-
tion, no steady plane interface between the two
phases can exist. Yet nonstationary states are
possible in which the plane interface moves with
a constant velocity. These states are of the gen-
eral type of solitary solutions; solutions are so-
called which do not change in an adequate moving
system of reference.

If the Maxwellian construction is not satisfied,
t(l+ 1)= 6+ A. —k' . (3.12) -'(n, + n, ) =n (4.1)

We require that the fluctuations are restricted to
the interphase layer. Therefore u has to vanish
for infinite x, corresponding to g going to 1. This
is possible only for

(3.13)

with integer l ~ 2. 'These solutions form an ortho-
gonal system of functions which is complete in the
space of functions in the interval between+ 1 and
-1 and vanishing in these limiting points propor-
tional to 1 —f2. Any fluctuation which vanishes
not slower than these functions as g' approaches
1 is a linear combination of the modes given by
Eq. (3.10). These modes are explicitly written
with use of Eq. (3.6)

is different from n, . We write

v=n-n
7

v, =-,'(n, —n, ),
n, =n+ voa.

Then we obtain

y = -(v —v,a)(v' —v,') .

As ansatz for a solitary solution we choose

P = vof(x„t)

with

g(x„t) = tanho(x, —ct),

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

g=CP,'(f)J„(kr)e'"~e "',
where

k = o(1 g~)~t ~$

X=o (1 —g~)X.

'Thus for a given k we obtain

(3.14)

(3.15)

(3.16)

where c is the constant velocity of the interface
into the x3 direction. This function v satisfies
the equation

~
Q

2

v —y(v) — P= v (1 —f')Bx'
3

&& [-co —v', (f —a)+ 2o'f] . (4.8)

&= k'+ o'(1 —g')[l(l+ 1) —6) . (3.17)

Qf particular interest is the case that the eigen-
values k are restricted by cylindrical boundary
conditions, for instance, if g has to vanish for a
certain radius r=R. Then kR are the zeros of
J„(x). The coefficient

o= Q(P, —P))"' (3.18)

tanho(x, + 5x,) = tanhox, + ,'P, (g) 5+x~ ~ ~ . (3.1—9)

'That such a shift does not regress is a conse-

vanishes as the system approaches its critical
point. This corresponds to a critical slowing down
of the fluctuations. Equation (3.17) is a dispersion
equation connecting X with k. The mode l = 2 for
vanishing small k is time independent. It des-
cribes an infinitesimal shift of the interface

The right-hand side vanishes and thus P indeed
becomes a solution of the dynamical equation if
Eq. (2.15) holds and if

c= 20'8.

Thus the solitary solution is

P = o2'~ ' tanho(x, —2oat) .

(4 9)

(4.10)

v P=vog. (4.11)

After linearization in g, the dynamical equation
takes the form

P= vo(1 —3f'+ 2af)g+ V'P. (4.12)

If we generally go over from x3 to the variable
&, we obtain

Now we write small fluctuations from such a so-
lution as
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[S,'+ 4af(1 —&') ']u(g) = 0, (4.14)

instead of Eq. (3.11), where aga, in Eq. (3.12) holds.
If the velocity of the solitary solution and with

it a is small enough, the new term with a in Eq.
(4.14) can be dealt with as a small perturbation.
The unperturbed solution is

Let

uo(&) = CP,'(f) .

Q =So+A~

(4.15)

(4.16) .

be the perturbed solution. Then we obtain for the
first approximation a perturbation 5A. of A. by the
relation

+1 +1
6A, dgu02= -4a dg g(1 —g') 'uo.

1 1
(4.17)

Qwing to the antisymmetry of the integrand at
the right-hand side, 5X vanishes in the first order
of the perturbation. Hence, in the reference
frame-moving with the layer, the fluctuations in
the solitary solutions for the interface layer are
the same as those of the- stationary layer if the ~

velocity of the solitary solution is slow enough.
Strictly speaking, changes in the behavior of the
fluctuations can occur only in second or higher
order of a.

V. SOME CONCLUDING REMARKS

The simple cubic model represented by (2.3) and
(2.4) is not only useful because it leads to exactly

(4.13)

which differs from Eq. (3.1) by the addition of
the last term.

We again introduce new variables $, r by Eqs.
(3.2) and (3.3) where, to be sure, f now is given
by Eq. (4.7). The separation ansatz of Eq. (3.10)
leads to

soluble equations. We wish to point out that the
model also has the characteristic that it becomes
an exact model in the vicinity of the critical re-
gion, for all but pathological cases. This is be-
cause the cubic is the first nonvanishing term in
the expansion of the isotherms in the vicinity of
the critical point, just as the quadratic is the first
nonvanishing term in the expansion of a potential
in the vicinity of a minimum.

Lastly, we wish to point out that the exact sol-
uble model presented here should be looked upon
as a first step toward more realistic analyses of
one kind of surface roughening. By introducing
additional inhomogeneous terms into Eqs. (2.3),
(2.4), and (2.19), one can represent forces and
constrairits that are at the command of the ex-
perimentalist. Qne can envision, for example,
introducing boundaries or fields that vary spatial-
ly, such as variable-diameter pipes with axes
along the x, direction. In the neighborhood of the
critical region, where the correlation length is
large, such variations can be expected to have
significant influence on the behavior of the two-
phase system.

The stability of fluctuations of finite size is a
problem for which this model seems appropriate,
and we have begun to consider it.
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