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Composite particles in nonrelativistic many-body theory: Foundations and statistical mechanics
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A new fundamental theory of composite particles in nonrelativistic many-body systems is developed. The
theory is constructed making use solely of the physical Fock space for the basic elementary particles which

comprise the many-body system. In this manner exchange symmetry in the elementary particles is exact.
Physical composite particle creation and annihilation operators are introduced and these operators satisfy
exact Bose (Fermi) commutation (anticommutation) relations depending on whether the composites
correspond to bosons or to fermions. Commuting physical occupation number operators for composite
particles are then constructed in the usual manner from the composite creation and annihilation operators.
These number operators are highly dressed in terms of the basic elementary particle operators. Finally, the
foundations of statistical mechanics for bound composite particles are formulated in terms of the

appropriate occupation number operators.

I. INTRODUCTION

Nonrelativistic many-body theory describes
systems made up of interacting elementary par-
ticles for which the interaction is presumed
known. Further, the total number of elementary
particles of each type usually is taken to be con-
served. It is generally believed that all observ- .

ables can be described in terms of quantities con-
structed from coordinates, spin, etc. , of the
elementary particles which make up the system.
It is assumed that the time evolution of the state
is determined by the nonrelativistic quantum-
mechanical Hamiltonian for the full system. The
Hamiltonian also may contain contributions from
external fields. In the language of second quan-
tization, ever y obser vable may be represented
by an operator, which in turn may be expressed
in terms of creation and annihilation operators
for the elementary particles. We assume that
this quantum-mechanical description is complete.

On the other hand, there are r emar kably ace ur ate
descriptions of complex systems given in terms of
interacting composite particles. Not only for very
tenuous systems, but also for fairly dense sys-
tems, one finds accurate accounts of composite
particle reactions, equilibria, and kinetic effects
such as diffusion all expressed in terms of com-
posite molecular dynamics. The relative stability
of nuclei, atoms, and molecules when kinetic
energies are not too large is, of course, the
main reason why the composites maintain or
nearly maintain their identities even during these
inter actions.

The Ehrenfest-Oppenheimer' theorem states

that composites made up of odd numbers of Fermi-
Dirac-type elementary particles (fermions) be-
have nearly as fermion composites, and compo-
sites made up of even numbers of elementary fer-
mions behave nearly as Bose-Einstein composites
(bosons). In either case the composites may have
any number of elementary bosons. That is, if the
total fermion number I is odd the composites are
approximately fermions, and if I' is even the
composites are approximately bosons. Nearly or
approximately here means that if spatial separa-
tions are large or if composite interactions are
small, one finds the designated composite ex-
change symmetry to be satisfied. Any fundamental
theory of composite particles must take into ac-
count the exact exchange symmetry as reflected
by that of the basic elementary particles.

There are three basic problems, each of singu-
lar importance, in a first-principles approach to
composite particles in many-body systems. The
first has to do with the description of a single
composite embedded in a many-body sea. It is
clear that an "atom" in a dense plasma may be
something quite distinct from an isolated atom.
The type of considerations required for a solution
to this problem lies somewhat outside the realm
of what is common in physical theory. An inter-
esting account of this problem is provided by
Golden in his book' on chemical kinetics. Golden
states "It is now evident that a central problem in
the construction of a mathematical theory of
chemical behavior may be identified with the
question, 'What is meant by a molecule?'. "

There are various approaches to this problem.
For example, one could try to find eigenvectors

21 2050 1980The American Physical Society



COMPOSITE PARTICLES IN NONRELATIVISTIC MAN Y-BODY. . .

of reduced density operators, and then use these
to describe individual composites. Or, one could
try to construct individual composite wave func-
tions by building up the total wave function for the
system in terms of them and then using a varia-
tional principal for the energy to determine the
"best" such composite. Green's -function ap-
proaches may also be used.

The main results of this paper deal not with the
first problem but with the second. We assume
that the first problem has been solved (no easy
task) and that we have at our disposal a satisfactory
description of what is meant by individual com-
posites in the particular many-body context of
interest. The problem then is how to formulate
a description of the given many-body system in
terms of many composites interacting with each
other. (They may, of course, also interact with
elementary particles. )

This problem has received a good deal of atten-
tion starting with the works of Wentzel, ' Dyson, 4

and, in particular, Girardeau. ' Qirardeau has
systematized the idea that composites can be
treated as ideal composite fermions or bosons in
an ideal state space. However, the ideal state
space is too large, so subsidiary conditions must
be imposed on the ideal state vectors if they are
to correspond to physical many-body states. This
means that simple ideal space expressions such
as ideal composite number operators have no
simple interpretation beyond first approximation
in the physical state space.

The present theory operates entirely in the
physical Hilbert space of the many-body system.
All operators are constructed from the elementary
particle creation and annihilation operators. Thus
all exchange effects are automatically taken into
ac,count and there is no problem dealing with un-
physical states. We establish the existence of
well-defined operators from which observables
dealing with composites may be constructed. The
use of.these operators then facilitates the establish-
ment of the foundations of statistical mechanics
for composite particles in a many-body setting.

The third problem is that of practical computa-
tion starting with the basic formalism developed
here. The mathematical structure of the theory is
not conceptually difficult, but it requires some-
what different techniques from the ones we are
used to, so that new types of perturbation expres-
sions, etc. , are required. The difficulties as-
sociated with practical computation cannot be
minimized but should not be regarded too nega-
tively either. We recall the long periods of time
elapsed between the establishment of many basic
equations and discovery of systematic and practical
solutions.

II. SIMPLE COMPOSITE SYSTEMS

1(n.(f)),(n.(j)),". )
[+(f)g]n(k ) [f(j)g)n(J)
V'n(i)! v'n( j)! (2.1)

gy QQy ~ ~ ~ p (2.2)

We consider a many-body system which contains
a large number of elementary particles (e.g. ,
various nuclei and electrons). The elementary
particles interact through a given nonrelativistic

.Hamiltonian 3C. Depending upon the state of the
system, some of the elementary particles (or
even all of them) may combine to form bound
composite particles. That is, bound ions, atoms,
or molecules may for under suitable physical con-
ditions.

A system which is readily describable in terms
of a single composite species is called a singple
composite system. As an example, ordinary heli-
urn gas may be considered to be a simple system,
that is, a collection of interacting helium atoms,
although from a more fundamental point of view
it is a many-body system consisting of helium
nuclei and electrons.

We wish to find a suitable description of such
interacting composite systems starting with the
basic properties of the interacting elementary
particles. We assume that we know how to des-
cribe a single composite structure in terms of
its elementary particle constituents. That is, we
assume that the first main problem discussed in
the Introduction has been satisfactorily solved.
The solution of this part of the problem can be
given in the form of a set (PJ„o,of wave functions

which define the bound states of the composite
particle. The label 0. refers to the internal de-
grees of freedom and also to the center-of-mass
degrees of freedom. The wave functions tI)„may
be, and in general will be, quite different from
the wave functions of an isolated composite. As
far as our development here is concerned, we as-
sume that the P„are orthonormal, (g„1P„,) =(a 1a')
=5(a, a'), but that they form an incomplete set
of vectors in the state space of the elementary
particles making up the composite. Symbolically,

1a)(a1 is a projection operator which is less
than unity.

We use the formalism of second quantization and
'designate by 5 the Pock space corresponding to
the elementary particles. Let a(i), b(j), . .. ;
a(i)*, f)(j)*,. . . , be annihilation and creation oper-
ators for the elementary particlesof types&, &, ... ,
where i, j, . . . , label complete orthonormal single
particle states. Then 5 is spanned by the complete
orthonorma1 set of vectors
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—= 6(n; n'),

and complete,

gl &&nl=l, . (2.3)

By 1q ismeanttheunit operator on Band the sum
in Eq. (2.3) is understood as a strong operator
limit.

A single composite A having the wave function
is represented in 6: by

I(r& =A(*.) Io& (2.4)

where'„(I} =&I Ia), and where I is a suitable set
of coordinates and spins for the elementary par-
ticles making up the composite. (See Appendix A. )
The single composite creation operator g* is ex-
pressed linearly in terms of products of the ele-
mentary particle creation operator s a(i) *, &(j)*, . .. .'
For example, a single bound hydrogen atom can be
represented by the vector

I&) =g a(i)*f (j }*&ijl~&lo), (2.6)

where (ijlo. & =(t (ij) is the wave function for the
given bound state Ia), a(i)* is the creation opera-
tor for the proton in the single proton state li&,

and b(j)* is that of the electron in the single elec-
tron state lj).

The composite state vectors Ia& are taken to be
orthornormal,

&ala'& =6(n, e'),
but, in general, incomplete in the single composite
particle subspace of 5. That is,

Q l~)&~I=Il~ (2.6)

is an orthogonal projection operator (Projector)
on the single bound composite particle subspace
of 5: B'„=B„=B„*,and, in general, B„&P„,

where n, =(n, (i)}P,stands for the set of occupa-
tion numbers n, (i) (=0, 1, 2, . . .) of the elementary
particle of type a. The vacuum state is IO) and it
is understood that in Eq. (2.1) the product is or-
dered,

[ (1)*]""'[ (2)"]""
v'n(1)! an(2)!

We may assume that g,",n(i) & ~ for each type of
elementary particle, so we deal with many body
systems having arbitrarily large, but finite, num-
bers of elementary particles. The vectors given
by Eq. (2.1) are orthonormal,

&n„n(„. . . In,', n(„. . . ) =—&n ln'&

(2. 'f)

should be orthonormal and around correspond to
physical states in which there are N(u) compo-
sites of type 4 in the single composite particle
state I(r&. We note that for fermion composites
N(a) =0, 1, since for N(e) ~ 2, [A(a, )*]"( ) =0.
%'e consider now the vectors

(2.8)

where N(a) =0, 1, 2, . . . , and ln& are the vectors
defined by Eq. (2.2). The vectors IN„,n) are not
orthonormal for N„t0 and are overcomplete in g
since (IO, n&] is an orthonormal complete set in F.

If, however, we restrict the elementary particle
states by introducing large but finite cutoffs
io, jo, . . . for the elementary particle states so
that 1 &i &io, 1 & j & jo, . . . , 1 & n + a.o, then we may
expect for suitable values i„j„.. . , ~, that, with
certain mild technical assumptions concerning
the nature of the single composite particle states
In&, the vectors IN„, n) will be linearly indepen-
dent. I,et us introduce the notation

(IN~ n.&] =(IN~ n&);=(..~ =~, .... ~

Then we may take the set (IN„,n,&) to be linearly
independent. In Appendix A we outline arguments
for the validity of the above statements. On the
other hand, in general, the vectors IN„,n, & are
not complete (total} in F. We do argue that we

may choose io, j„.. . , a, and the set (pg„"'„
o.', & ~, in such a way that the vectors IN„,n, &

(2.9)

where P„ is the projector ori the full single com-
posite particle subspace of 5. Physically this
means, in general, that ionized states (scattering
states, etc. ) of A are not included in the bound
states Ia&. 1ons will not be excluded in the gen-
eral theory but will be treated as different com-
posite particles.

The composites A will be called boson cornP0-
sites if the number of elementary fermions making
up A is even (including zero) and will be called
fermion comPosites if their fermion number is
odd. The composite annihilation operators A(a)
=[A(a)*]*and creation operators A(n)* do not
satisfy simple commutation or anticommutation
relations. ' However, on the vacuum state

[A((r), A((r')*).Io& = ()((r, (r') Io&

where the plus sign (anticommutator) holds for
fermion composites, and the minus sign (com-
mutator) holds for boson composites.

If the composite particle annihilation and crea-
tion operators satisfied elementary commutation
(anticommutation) relations, then the vectors
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span a subspace P, of 5 which is sufficiently
large to be comsidered the space of states for
all nonrelativistic many-body states of interest
and at the same time the lN„, n, & are linearly
independent. The main technical assumption
concerning the states lo. & is that they have no
cutoff in the elementary particle states li), lj), . . . ,
from which they are constr ucted.

We may orthogonalize the collection {lN„,n, &j by
the procedure, originally found by des Cloizeaux'
and used by the present authors and Girardeau to
construct completely orthogonalized plane waves. '
(Reference 8 will be referred to simply as SBG.)

The orthogonal vectors which would result from
the orthogonalization of the set {lN„, n,)] have the
property' that they are as close as possible (in
the sense that the sum of the squares of the norms
of the difference between vectors in the original
set and the corresponding or thonor mal vectors is
a minimum) to the original set of nonorthogonalized
vectors. The presence of products of many ele-
mentary particle creation operators in lN„, n, )
means that these vectors (when normalized) rep-
resent states which can be considered to possess
various bound composites corresponding to the
N(a), but the elementary particle part n, cannot
be close to representing free or unbound element-
ary particles. In fact, for fixed {N(o.)], linear
combinations of lN„, n, & can be made to closely
approximate states having more than &„compo-
site particles. Since we wish to construct states
corresponding to definite numbers of bound com-
posites, we must seek a more representative
basis for our construction than {lN„,n, )j. This is
achieved through the use of vectors which are
orthogonal to all vectors having one or more com-
posites. Such vectors may be thought of as cor-
responding to completely ionized or free states
of the elementary particles. Girardeau has termed
such vectors completely orthogonal (to all bound
states) vectors. We now determine how to con-
struct these completely orthogonal vectors.

We denote by lf) any completely orthogonal vec-
tor. This vector must be orthogonal to every
vector lN„, n, ) for which N„e 0 [i.e. , some N(cl)
must be nonzero]. Thus

ts=- Z lN~ n.&(N~ n. l

N~so

and observing that

gslf) =o,

(2.13)

(2.14)

since lf) is orthogonal to each lN„, n, &, N„ 4 0.
On the other hand, if lg) is orthogonal to lf),
&f lg& =o,

»m(g, +gl, )-'g, lg) = lg). (2.15)

Therefore, as discussed in SBG (appendix), we

may write

Ps = s-lim (gs+ his) 'gs
/to

= s- limgs(gs + gl ) ',
$to

(2.16)

(2.17)

where s —lim (strong operator limit) means that
for lg& in the domain of gs,

P, lg) =»m(g, +81,) 'g, lg). (2.18)

Since P~ is a bounded operator it may be defined
(by continuity} on the entire Hilbert space F. We
have found other useful forms for P~, P~, e.g. ,

Ps' = s —lim exp( —Xgs), (2.19)

which can be established directly.
We now introduce vectors lN„, n„f& which more

nearly than lN„, n, ) correspond to states having
N„composite particles and n, free or unbound

elementary particles:
~ ~ ~ [g(~)g]N(a)

lN„, n„f) -=.„. ~ (,1
Ps ln, ). (2.20)

The vectors lN„, n„f) are also linearly indepen-
dent (see Appendix C).

The orthonormalization of the vectors lN„, n, f)
is accomplished by the procedure given in SBG
(appendix). Let g be defined by

(2.12)

where P~~ =1~ —Pa is the projector on the ortho-
gonal subspace P~ orthogonal to P~. The pro-
jector P~ is constructed by first forming the
positive operator

(flN„, n,&=0, N„~0

and we observe that

(2.10)
g=- g n„Ng, n„ (2.21}

w(a)lf) =0 v a (2.11)

is a necessary and sufficient condition that lf) be
completely orthogonal to the bound states. If P~
is the projector on the subspace P~ of 5' corres-
ponding to vectors having one or more bound com-
posites, we may express the conditions Eq. (2.10)
and Eq. (2.11) by lN„, n„f) =—limgs '" lN„, n„f).

gyo
(2.22)

where the sum is taken over all N(ct), n(i), n(j), . . .
and is understood to be the strong limit as each
&,n goes to infinity. The operator g =-1&$+g is
strictly positive for $ &0 and is used to form the
orthonormal set {lN„, f)n] of vectors lN„, n„f)
by means of the prescription
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The orthonormal vectors lN„, n„f) are identified
with physical states corresponding to N(n) com-
posites in a single composite particle state cor-
responding to the state lo.) and n(i), n( j), . . . free
or unbound elementary particles in states corres-
ponding to the single elementary particle states
li), l j), . . . . This definition appears reasonable,
since the states in Eq. (2.22) are orthonormal and
are as close as possible (in the mean square
sense) to lN&, n„f), which in turn were construc-
ted to be physically close to what we mean by such
composite particle states. Other definitions are
poss ible but our def inition has the vir tues of
simplicity and direct physical appeal.

The vectors lN~, n„f) span the proper sub-
space P, of 7 which can be made to approach +
by allowing the cutoffs o.„i„j„.. . to become
larger and larger. With the cutoffs sufficiently
large we will take P, to be the physical many-
body space for all composite particle problems
of interest. The vectors lN„, n„f) then furnish
us with a complete classification of many compo-
site particle states within the frame work of non-
relativistic many-body theory. The cutoff repre-
sented by P, is no real limitation of the theory.
As was shown in SBG (appendix) a projector such
as P, has the strong limit 1~ as the cutoff momenta
are allowed to increase without limit.

N(n) = P N(e)+(N„, n), (3.4)

(3.5)

IN. ...,f) =gs'"lN. , N. ,f&

- [(gs'"A( )*g,")]"" „.,-,»
, [A( )q]~(n)

gN( ), Io n. f) (3.6)

where

n(i) = Q n(i)P(N„, n), . . . .
Ng, &~

The number operators N(o. ), n(i), . . . are rather
complicated objects, even though conceptually
they are simply defined. We will show now that it
is possible to express neatly the expression for
N(n) by the introduction of creation and annihila-
tion operators A(n}*,A(n), for which N(n)
=A(o)*A(o.). Further, on P, these operators
satisfy elementary Bose (Fermi) commutation
(anticommutation) relations. The situation is
much more complex for the operators n(i),

In the following, we make use of g& and will as-
sume that in all expressions involving these
operators the limit g 40 is taken. Then

III. . COMPOSITE PARTICLE OCCUPATION
NUMBER OPERATORS

[A(o')]* -=gg '"A(u)'gg" .
If A(n)* is applied to (N„,n„f) we find that

(3.6')

Since the states lÃz, n„f) = (N(n)], (n(i)), (n(j)],
. . . ,f) given by Eq. (2.22) are orthonormal and

by our definition have N(o) 'bound composites cor-
responding to the single composite particle state
lo.), n(i) free elementary particles of type a cor-
responding to the single elementary particle state
li), . . . , we may use them to define a commuting
set of composite number operators and free ele-
mentary particle operators. We define N(o. ),
n(i), . . . , by means of

A(o.', )*lN„,n„f) =$(N&) l. . . , N(o. ,)+I, . . . , n„f)
(3.7)

where h(N„) =1 for boson composites and g(N„)
Z=(-1), 5 —=5~ & N(n) for fermion composites.

If N(ct, ) =1 for fermion composites, of course
[A(e, )]*lN&,n, f) =0. From Eq. (3.7) it is clear
that the operators A(n)* and A(o) —= [A(o, )*]*satisfy
the following commutation or anticommutation
relations:

N(o. ) lN„, n„f) =N(a) lN„, n„f),
n(i) lN„, n„f) =n(i) lN„, n„f)

(3.1)

(3 2)
[A(e), A(n')*], = P,6(n, n') . (3.8)

Furthermore, the composite particle number
operators are expressed simply as

For completeness we may define N(o. ),n(i), n(j), . . .
to be zero on the orthogonal complement P~ of P,
in , since we take P, to be the Hilbert space of
our many composite system. (We will modify this
slightly in our treatment of statistical mechanics. )

If orthogonal projectors P(N„, n) are defined by

N(n) =A(e)*A(n)

=gs'"A(u)*gsA(o. )gs'".
It is noted that the maps

A(o. }-A(n) = g~"A(n)gs"',

(3.9)

(3.10)

(3.11)

P(Ng~n) = IN~)n~f) X~~n f-l

then the operators N(n), n(i), n( j), . . . may be
written as

(3 3)
and

A(a)*- A(a)*=gs'"A(n)*g~"', (3.12)

are noncanonical: They transform the noncanonical
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operators A(a), A(n)* into canonical operators
A(a), A(a) *.

The presence of P~z in the definition of ~~„,n„f&
meansthatwe cannot express n(i), . . . in such
simple forms as N(n). That is, the n(i), n( j), . . .
are more strongly many-body operators. The
N(a) are also heavily dressed, but because of the
structure of [N„,n„f&, they have a simpler con-
struction. There has been some debate as to
whether, for example, composite fermion or com-
posite boson operators such as A(n), A(a)* could
actually be constructed from elementary Bose
and fermion operators. In Appendix B we present
an explicit example where canonical ideal Bose
composite operators are constructed from ideal
Bose particle operators. The example there is
very simple, but it illustrates the procedure. In
order to construct composite fermions of course,
elementary fermions are required.

ai *ai, (4.8)

N, =gb(j)*b(j),". . (4.9)

The total number oper ator N„ for composite par-
ticles is defined by

etc.
In thermal equilibrium states the statistical

operator is given by

p =Z~'exp[-p(8 —it+, —p, N, —~ ~ ~ )], (4.6)

where p=l/kT and p„g„.. . are chemical poten-
tials for the elementary particles of types a, b, . . . .
Z~ is the grand partition function,

~c =tr exp[ P(l-f —p.N. P—bN/ —".)]. (4 7)

The operators N„N„. . . are the total number
operators for elementary, . particles of types a, &, .. .,

IV. FOUNDATIONS OF STATISTICAL MECHANICS
FOR COMPOSITE PARTICLES N~ =~(n), (4.10)

ir =[a, p]. —dp
dt

(4.1)

In Eq. (4.1), H is the full Hamiltonian operator
for the many-body system and is expressed in
terms of the elementary particle destruction and
creation operators a(i), a(i)*, b( j), b( j)*,. . . , cor-
responding to elementary particles of types
a, b, . . . . The expectation value (0) of any opera-
tor 0 is given by the standard prescription

&0) = tr(p0), (4.2)

where tr is the trace taken over a complete ortho-
normal set of states in 5. The statistical opera-
tor is normalized to unity

trp =1. (4 3)

The average. number of composite particles in
the state labeled by o. is thus

&N(a)& = tr[pN(a)], (4.4)

Once occupation number operators for composite
particles and free particles have been defined and
constructed, the statistical mechanics of systems
of such particles may be formulated directly. The
state of such a many-body system is described in
terms of the statistical operator p, which satisfies
the quantum Liouville equation

d d
dt - dt ~ dt
—&N2. K )—&N &=—X2=o (4.13)

where N(a) are given as before [Eq. (3.9)]. Rather
than deal with free particle operators n(i), etc. ,
it is technically simpler to define the total number
of free elementary particles through the opera-
tors N„N~, . . . , defined simply as follows: Let
l(a), l(b), . . . be the number of elementary particles
of type a, b, . . . , which are present in the single
composite particle state ~a&; then

N, =N, + l(a)N„, — (4.11)

N~ =N~ + l(b)N-~, (4.12)
~ 0

with N„P„.. . defined by Eqs. (4.8) and (4.9).
Since N„ is constructed from products of elemen-
tary particle annihilation operators and the same
number of elementary particle creation operators,
N„commutes with the commuting set (N„N~, . . . ].
of operators. Therefore N„N„. . . ,N'„N„. . . , N„
form a commuting set of number operators. How-
ever, N„will, in general, not commute with the
Hamiltonian, and theref reoN'„N', , . . . also will
not commute with the Hamiltonian. The definitions
(4.11), (4.12), . . . may be employed in nonequilib-
rium situations. For the nonequilibrium case,
since N„g~, . . . commute with the Hamiltonian,

where N(a) is defined by Eq. (3.4) or (3.9). &N(a)&
changes with time according to

d p d ~ d
d

&N', ) + l(b) d—&—y„& = „—(N,) = 0, . . . , (4.14)

an —&N(a)&=ca tr N(a) —p
I =trfnr(a)[fJ, p]),dt did

(4.5)

which relates the rates of increaseof ionizationof
elementary particles to the rate of decrease of
the number of bound composite particles.

In the equilibrium situation, the use of Eqs.
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(4.11) and (4.12) in the grand partition function
yields

Z~ =tr exp[ p(H— g,-N, —p.,N', —~ ~ —p, N„.)),
(4. 15)

where

p. „=- l(a)p, +f(b)p, + ~ ~ ~, (4.16)

and the latter equation, Eq. (4.16), is just the
thermodynamic relationship between the chemical
potentials of the free elementary particles and

bound composite particles. If we treat p, „as an

independent variable in Eq. (4. 15), we may form
the derivative sZ~ jag„, and obtain the result

(4.17)

for the equilibrium average number of composite
particles, and where kT =1} ' is the Boltzmann
constant times the equilibrium Kelvin temperature

It should be pointed out that N', defined above
is not equal to Q&n, (i) in general. We feel that
self —consistent definitions can be made, but we

have not done so.

V. SEVERAL COMPOSITE TYPES

If the system is readily describable in terms
of several bound composites (e.g. , bound H,
bound H, ), we must generalize the preceding pro-
cedures. Again let a, b, c, . . . represent the types
of elementary particles with a(i), a(i)»; b(j),
k(j);.. . their corresponding annihilation and creation
operators. Let A, B, C, . . . represent the types
of bound composites with A(~), A(u) *;B(P), B(P)»;.. .
their corresponding single composite annihilation
and creation operators. Then single composite
states in 5 are given by

(5.1)

(5.2)

where (X~o.'& =/ (X), (Y~p& = $8(Y), . . . are the (pre-
sumed known) wave functions for the single compo-
sites of types A, B, . . . . As was emphasized in

Sec. II, the choice of composites A, B, . . . and

single composite particle states ~a&, ~P&, P&, . . .
depends upon conditions imposed upon the system
as well as the processes to be described. These
choices may be difficult but we assume that we

have made these choices and know precisely the
single composite particle states. The composite
particle states must be independent, and it would

not be acceptable to have, for example, any linear
relation between the wave function g&(Y) and pro-
ducts g„(X)g„(X')of wave functions g .

We introduce vectors [N, n„f) analogous to the

vectors (N„,n„f& defined in Eq. (2.20),

[A(~)»]N(n) [B(P)»]e(8)
[Np+»lf &, gN( )t QN(p}t

' ' ' Ps I+c&

(5.3)

the set ( g,&) is a sub set of ( g&j, the complete
set of orthonormal vectors spanning 5, chosen so
as to make fg, n„f&) linearly independent. The
main point to be made here is that the vectors
~N, n„f& must be linearly independent, which in

turn depends upon suitable choices of ~n&, ~P&,

~y&, . . . , and (g,&]. The projector P~ is the pro
jector onto the subspace orthogonal to all bound
states. The construction of the vectors [|V,n„f)
cannot be a unique process. Physical considera-
tions must be used in order to obtain the set ap-
propriate to a given physical situation. That such
a set (~N, n„f&] exists may be shown directly. For
example, suppose boson composites of type A
are built up from two elementary particles and
fermion composites of type B are built up from
three elementary particles (for simplicity, all of
the same type a}. Let a» stand for any elementary
particle operator and consider the five- (element-
ary} particle subspace of F. Vectors of the form

(a) A*A*a» ~0&

are linearly independent by the choice of the ~n&.

Vectors of the form

(b) A»P', a»a»a» ~0&

are linearly independent with vectors (a) and

among themselves by choice of n, . Vectors of
the form

(c) B»Psa»a» ~0&

are linearly independent of vectors in (a) and (b)
by choice of B»(p)'s and among themselves by
suitable choice of n, . Vectors of the form

(d) A*B» P&

are linearly independent by choice of the p*, B*'s.
Finally, vectors of the form a»a»a»a»a» ~0& are
complete in the five- (elementary) particle sub-
space, so we may choose a suitable set of vectors
from these of type

(e) Ps a»a*a»a»a» ~0),

which are linearly independent among themselves
and with vectors of types (a), (b), (c) and (d).
[They are, of course, orthogonal to vectors of
type (a), (b), (c}, or (d).] We show in the Appen-
dices how this may be done in a specific way. Thus
we may take the vectors ]N, n„f& to be linearly
independent and total in $.

Mathematically the problem appears to be
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straightforward. We are given an overcomplete
collection of vectors such as

A(a) * B(P)*~ ~ ~ P a(i) * b( j)* ~ ~ ~ ~0)
a 8 i f

(5.4)

Ng= N n

where

(5.8)

(no restrictions on i, j, . . . ) and we must select
a complete linearly i@dependent set which is then
orthonormalized. One could carry out the selec-
tion one step at a time and use the Schmidt ortho-
gonalization process. Mathematically one would
arrive at a complete orthonormal collection of
vectors. However, aside from the practical tedious
details of actually carrying out the Schmidt pro-
cess, the selection procedure is undemocratic,
and gives greater weights to directions in 7 as-
sociated with earlier selections. Once the inde-
pendent set has been selected on physical grounds,
our procedure yields, using the des Cloizeaux
orthogonalization method, an orthonormal set of
states which closely resembles the physically
selected vectors.

Once the vectors given by Eq. (5.3}have been
determined, we may orthogonalize them. The re-
sulting orthonormal set consists of the vectors

(5.5)

where N stands for the set {N(a),M(p), .. .},
1 & n & u„ 1 & p & po, . .. , and n, =(n, (i), n~( j), . . .},
i ~i ~i„1~i ~ io, 1 ~j ~j„... , which are taken
to represent states for which there are N(n) com-
posites of type 3, in the single composite particle
state ~a), N(p) composites of type B in the single
composite particle state ~P), etc. The operator
g~ = 18+g where

N(a) g, n„f) =N(n) g, n„f)
N(P) Q, n„f) =N(P) Q, n„f) (5.9)

p, „=t(A, a) p, , + l(A, b)p, + ~ ~,

g s
-=l(B, a)g, + l(B, b) p. ,+, (5.12)

As before, we may treat p, „,g~, . . . as indepen-
dent variables in Eq. (5.11}, so that

Q

P (N„) .= lnzg,

P(Ns) = lnZg, . . . .
8 p. g

(5.iS)

The total numbers of unbound elementary particles
then appear as

(5.14)

The grand partition function Z~ is now given by

Zg =tr exp[-P(H —p, N, —p~N~ —~ ~ ~ )], (5.10)

or, if we use Eqs. (5.7),
Il

Zg = tr exp[-P(H —p, N, —.p~N~ —~ ~ ~

—p J4 —VsNa—

where

g = g, n„f)(N, n„f i.
,Ng

(5.6) a
P(N, ) = lnZg, . . . .

8Pa

Let L(A, a) be the number of elementary particles
of type g in the single composite particle states
of type A, l(A, b) the number of elementary par-
ticles of type b in the single composite particle
states of type A, l(B, a) the number of elementary
particles of type a in the single composite particle
states of type B, etc. Then the number operators
N„N, , . . . for the total numbers of unbound (free)
elementary particles are defined by

g a(i) *a(i) =N, =N, + l(A, a)N„+ l(B, a)Ns +,
(5.7)

gb( j)~b( j) =N~ =N~+ l(A, b)N„+ l(B, b)Ns &

Equations (5.13) and (5.14) can be regarded as
fundamental equations which lead to generalized
Saha-type equations.

The operators N(u), bf(p), n(i), n(j), . . . may be
used in nonequilibrium situations where the state
of the system is given by a time-dependent den-
sity operator p(t). Then the expectation values

(5.15)

represent average number of composites in single
composite particle states. This formalism there-
by furnishes a basis for the statistical mechanics
of interacting composite particles.

VI. CONCLUSION

As in Sec. III, the operators pf„,~ are given by
A treatment of composite particles in nonrela-

tivistic quantum many-body theory has been pre-
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sented. The basic assumption made was that we

have full knowledge of single composite particle
states la&, lp&, . . . . For example, we may assume
that wave functions P„(X),$8(Y), P&(Z), . . . are
given which correspond to single composite par-
ticles, and these may then provide the starting
point of our treatment. Many-particle states are
then introduced which correspond to arbitrary
numbers N(n), M(P), O(y), . . . of composite par-
ticles. These states reside in the elementary par-
ticle Fock space, so that exchange symmetry is
always exact. Finally, creation and annihilation
operators for composites are constructed as well
as number operators for composites and free
elementary particles. These number operators
are then used to formulate the foundations of sta-
tistical mechanics for interacting composite par-
ticles.

The authors are pleased to acknowledge helpful
discussions with N. Ashby, R. Flickinger, M. D.
Girardeau, W. Love, and W. Wyss.

APPENDIX A: LINEAR INDEPENDENCE OF
j N,n, ~

Let a(i), a(i)*, b( j), b( j)*,. . . be annihilation and
creation operators for elementary particles of
types a, b, . . . corresponding to complete sets of
orthonormal single particle states li&, l j), . . . .
Then as in Sec. II we may introduce a complete
orthonormal set of vectors

&=In. , nb, . . . &

I =1, (A4)

or if we use continuous I variables,

dI4„4~ I =1. (A5)

C~ + C~qAe*g =0, (A6)

then

Since the vectors lI& span the entire Fock space
y, the vectors A(o. )*lI& and lI) cannot be linearly
independent. The set (lI&j of vectors lI) may be
considered linearly independent in the sense that
if QC, lI& =0, and if the coefficients C, are anti-
symmetric in fermion indices and symmetric in
boson indices, then C~

—= 0. In the following dis-
cussion of linear independence, all coefficients
C~ are assumed to possess this symmetry.

We introduce cutoffs e„P„.. . in the composite
particle states and i„j„.. . in the elementary par-
ticle states. The labels o, , etc. , are ordered,
1 &(y &00, (y =1,2, 3, . . . ; i =1,2, 3, . . . , io; j
=1,2, 3, . . . , jo,'. . . . The collection of such ele-
mentary particle labels is called {J3&lI], so that

/ ~ ~ ~JE(J] means J=(z„.. . , z„;g„.. . , j„;.. . ), z, ~z„
jr jo~

The basic technical assumption concerning
ln&, lP&, . . . is that 0 (I) =(Ila& have no cutoff in

It then fol lows from a m ild as-
sumption that lJ) and A(cz)*lJ& are linearly inde-
pendent. Let, for fixed a,

[ (z)*]""'[f ( j)*]"'"
[n(z) f ]1/2 [n( j) f]1/2

It is also convenient to work with vectors lI),
where

(A 1) A(n)*g c IJ& = —g c, IJ&

so A(/2)*Q~C„~ lJ& lies entirely in the subspace
P, spanned by [lJ&]. Hence by our requirement
that A(n)* have no cutoff in I, the only vector lf&

for which A(a)*lg& is in P, is g& =0, so that

„. (,)* (.)* ~ ~ Io&.
jN tN 1'' '] (A2) (A7)

The index I includes &„&„.. . , the numbers of
the various elementary particles, as variables.
The vectors ]I& are complete in 7,

and by the linear independence of f lJ&],

C., =0. (A8)

I I =lg, (A3)
Therefore

as are the vectors ln&. The inner product (IlI') is a
Kronecker delta, symmetrized in the boson indices
and antisymmetrized in the fermion indices. If
lA) is any vector in F, we designate by 4„(I) the
wave function corresponding to lA). lf lA) has a
definite number of elementary particles, 4„(I)
will be zero for I not corresponding to the pre-
cisely prescribed number of variables in lA). If
(AlA) =1, then

g c, IJ&=0

and (A9)

C, =o,

so the vectors lJ&, A(/2)*lJ), JR(J] are linearly
independent for a given a. Next we show that lJ&,

A(n)*lJ) are linearly independent for 1 ~ zr ~u, .
Let
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Qc, (»+Q C.,A(a)*(» =o,
J a,J

(A 10) A(o. „)*survive. Hence the linear independence of
the g's yields

and write ~@=8/ ~0), where K has none of its
indices equal to any of those of any J. Then if
we multiply Eq. (A10) by 8», where K has the
same number of indices of each type as t, we
have

C~S~A a * (A 11)

since 8» ~J) =0. By Wick's theorem

a,x(a)+(Z) =q„(K))»,
since only the complete contractions of Q~ with
A(a)* survive. Therefore from Eq. (All) we have

g g c„,) „(») Ii& = o . (A12)

CaJ =0.

Therefore Eq. (A10) yields

(A8)

The ~» are linearly independent, so the coefficient
of ~» is zero:

gc )„pn=o, (A13)
a=1

(K)fl(p=)II). The wave functions $„(f) are linearly
independent and since there are an infinite number
of equations [Eq. (A13)] and only a finite number of
n's, we make the reasonable technical assumption
that p „(K) are also linearly independent. Hence

0= S, , ~ ~ ~ „K C
nN

(A16)

where K=(K„K„.. . , K„), and S antisymmetrizes
fermion indices in the & and symmetrizes the
boson indices in the K. Even though the g (K) are
orthonormal, the S(g„, ~ ~ g„„)in general are not.
Again the sum over o. 's is finite and Eq. (A16)
holds for an infinite number of K's, and we as-
sume that (S)t) ~ ~ ~ P„)(K) are linearly indepen-
dent. Hence

n] ''ag J =0.

We have therefore shown that

(A 17)

0 =g g g C„,.... ,A(o. ,)' W(n„)*(»,
ay, ~ ~, , ar

(A 18)

and by our inductive assumption, Cn a J 0.nz"'ar J
Therefore the vectors

A(o. ,)* A(a„)*~»

are linearly independent, M =0, 1, 2, . . . .
The case for several composites is treated

quite similarly. Several additional requirements
are necessary. For example, we cannot allow a
composite ~B) = B(P)*~0) to be expressible as

ap

c, (»=o,
B(P)*= g Cs, ,A(a, ) *A(o., )*.

nl a2 =0
(A 19)

and C~=o. Therefore (» and A(a)*~» are linearly
independent.

We now proceed by induction to prove that
A(o. ,)*A(a,)* ~ ~ A(n„)*~», 0 &r & M are linearly
independent in the sense that

0 = C a ...ar J A. Cr, *~ ~ ~ A e, *
r, ag, ..., ar J

(A14)

where C a ...ar J has composite boson or fermion
lÃy ''ar J

symmetry with respect to the indices o. , implies
C =0. Multiply Eq. (A14) by 8»~, where I indi-
cates that Q~„has-precisely the same number of
elementary particle destruction operators as
A(a, )*~ A(n„)* has creation operators. Then

C, ...„„6~(a,)* ~ ~ ~ A(a„)*~J},n" a J1 N

(A 15)

and by the same argument as before only the com-
pletely contracted terms of 8»„with A(o. ,)*,. . . ,

Consider two distinct types of composites A, B
with single composite states ~n) =A(o. )*(0) and

~p) =B(p)*~0). We will show, under certain mild
conditions, that the vectors

lr, s, » =-&(~,)* A.(~,)*B(f),)* ~ ~ B(P.)*I»
(A20)

are linearly independent. By the previous a'rgu-
ment Ir, o, » are linearly independent and ~0, s, »
are linearly independent. We make the technical
assumption that the combined set consisting of
both types Ir, 0, » and ~0, s, » are also linearly
independent. This only means that the states ~e)
and ~P) have been chosen so that there is no linear
relation between A(n, )*.~ ~ A(o.„)*~» and

B(P,)~ ~ ~ ~ B(I3,)"g, even when it turns out that
these two sets of vectors have the same numbers
of elementary particles. We partially order the
given vectors by a number N, which orders the
number of elementary particles, and proceed by
induction. Any zero linear relation among vectors
having N or less elementary particles yields upon
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operating on that linear relation by 8„(K) the following:

C& (Xlp ~ ~ ~ p Q&y' lp ~ ~ ~ p ~p J8N K A Ql A CV~ *B l B
r, 8' ( fy)( 8)

where the sum on r, s is such that all vectors corresponding to N elementary particles are included.
Wick's theorem then yields, since the 1") are linearly independent,

0 = P C„',"'(c/„.. ., c/„; P„.. ., ti„Z)S(y.,(Z, ), . . . , y.„(A„);y, ,(If,), . . . , g, ,(Z".)) .
(n (S)

(A21)

(A22)

Again (A22) represents an infinite number of rela-
tions (all K corresponding to N elementary par-
ticles), and we assume the finite set of wave func-
tions g, gs to be such that these (Sg)(K) are lin-
early independent. Therefore all C/,"'(a„.. . , a„
P„.. . , I „g)=0, N fixed.

Our inductive assumption then implies

C„, (o'„.~ . , a„;P„.. . , p„J)=0 for R &N, and
thus the vectors given by Eq. (A20) are linearly
independent. The argument for more composite
types is similar.

APPENDIX B: A SIMPLE EXAMPLE

Since the procedures outlined in Sec. II are
somewhat abstract, we show by means of a very
simple example how the method works. Let a, b

be two Bose destruction operators corresponding
to two bosons, each of which has only one single
particle state. The normalized vector

l/2

g '/'= Z, 1
P(N+n, N)".n +n '/

and the vectors 1N, n) =g '/'(N, n, ) are just

[,n) =1 +n, N)

and

P, = N, n -,n = P +n, N .
N, n N, n

A = g v'N+1 1N+n, N)(N+n+1, N+11. (Slo)

The destruction operator for the fyee boson a is
given by

gl/2 ag
-1/2

=g v'n+I 1N+n, N)(N+n, N1 ~

N, n

Similarly the destruction operator for the bound
boson A is given by

, „,(s*)"'(f'*)"'1o)
1

l' 2'

represents a state which has n, bosons of type a
and n, bos ons of type b.

We introduce the composite boson operators
A = ab, A* = a'b*, so that

It is a simple computation to show that

[a, a*]= P(N +n, N) = P, ,
,n

[A, A*] =P, ,

[a, A] = [@,A*] = [a*,A] =0,
(B11)

[A, A+] =1+a*a+b*b,

[a, A*] =&,

etc.
Introduce next the vectors

(a2) so that a, A are simPle Bose destruction opera-
tors on P,. The commuting number operators for
a, A are

n =a*a= nP +n, N
Nsn

or

(Ag)N (sg)n
c) (Nt)1/2 ( ~)1/2 Io) (a4)

and

N =A*A = Q NP{N+n, N) .
N, n

(S12)

&( +N)i
1N, n,)=1, 1N+n, N).

The self -adjoint operator g is then

g=Q P{N+n&N) & (s6)
n, N

where P(N, n, N) is the projector on the one-dimen-
sional subspace spanned by 1 +n, N). If g is res-
tricted to the subspace P, spanned by the vectors
given by E'I. (B4),

Even though this is a very simple example com-
pared to any realistic many-body problem, it
shows that the bare operators a, A = ab, must be
Wearily dressed to produce a, A, which satisfy
strict elementary Bose commutation relations on

P,. We note that, for example,

A = g 4++I [+ ) ]„,(a+)"'"(f&+)"P,
t

(

[(N+I)t(N+n+1)l] /
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where P, = ~0, 0)(0, 0 ~. In order to express A solely
in terms of a, b, a~, b*, we must so express Pp.

.e-(e*e + O*O) . (SI4)

( I )I»+&2 (a»&)»y(kg)»2(l )»p( )»g (PI5)
1

n, !n2!
1 2

so P is a fairly complicated operator in terms of
a, a*, b, b*. We observe that the number operators

pg and g, besides commuting with each other, com-
mute with the bare Bose number operators a*a and
b*b.

APPENDIX C: LINEAR INDEPENDENCE OF I,N, n, ,f)
For convenience, we restrict our considerations

to composites (atoms) made up from a single
species of elementary fermions and eachatom con-
sists of only two elementary particles. Let

where

(n, ( &k„j=l,. . . , r

~f (
i %g) ) 1

y ~ ~ ~ p
is

~ 1I ( t

and

P~s(s} ~Q)
= ~g) if and only if gs(s) ~g) =0. (C3)

We will show that the states, ~n, ~ n„i, ~ ~ ~ i, f),
are linearly independent, outside of the trivial per-
mutational linear dependnece, i.e. , that

6 ~ ~ ~ 9 S ~ ~ ~

2r+s =N ay'''ar
f ~o ~ ~ f

g(N) — g ~n ~ ~ n z ~ ~ t f)(n ~ ~ ~ n z, ~ ~ c f~
r, s&0

2r +s =N
x C(n». . . , n. '~» &

's&- (c4)

iaaf)(ix iaaf l+gs+}

where

~n, ~ ~ ~ n„i, ~ ~ i, f)

(cl)

1=
(„) )

)~(2A(n, )*A(n, )' ~ ~ A(n„)'

x P~s(s) (ia,}' a(i, ) + ~0)

1

( l)„, A(n, ) ~ ~ ~ A(n„)*PJj(s) ~i, ~ ~ ~ i,). (C2)

implies C(n„. . . , n„i„.. . , i,) =0, where the C's
are symmetric in the n's and antisymmetric in the
z s ~

The proof depends upon the skew-symmetric pro-
ducts of the bound state wave functions being
linearly independent. This in turn depends upon
the mild technical assumption that the interatom
exchange operators cannot be expressed solely in

terms of the bound state wave functions, which are
not complete. For example, for four particles,

Q &p,(i, i )y,(i, i )5 =(2l) [&p (i„ )i&p(i„i,)+&p (i„i,) p&(i„i,)

+ &p (i„i,)y (i„i,) +(n,—,)]

Pa ii, Z2 Pa' t'3, 4 C &, Cr

a, a'

As a consequence, then, there is no way to satisfy

(C5)

Q bra, (ip, ip, 4e, (i~, i~,)C(ni n2}=o ~ (G6)

For all values of i„i„~i~&k„except C(n„n, ) =0 [of course, C(n„n, ) =C(n„n, )]. The last term in (C5)
cannot be restricted to the bound states alone, but must include four scattering states. For general, y,
then we assume

Q6p&'p, (ip, , ip, )&p (4...4,,) ~ ~ ~ &'p (i~,„,), ip(,„))& Q A(n, ~ ~ ~ n„)&p„;(i„i,)y, .(i„i,) ~ ~ ~ y„.(i,„,& i„),
a) ''' a

(C7)

where the sum is restricted to bound states only.
To proceed with the proof we can realize (C4) as

tn, ~ n„&, ~ ~ &, f)C(n„. . . , n„;s„.. .
& c,)

2r+s =N (a f)

~n, ~ n„ i, ~ ~ i,) ( C„n. . . , n„;i„.. . , i,), (C8)
2.+. =N (a)(~)
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where

i.&
= (1/«! )A(a, )*A(n.)*~ ~ ~ A(a„)* Ii, ~ ~ ~ i,&, (C9)

which differs from (C2) by the absence of Pi~.

We shall first show the C's are zero. Assume N even and take the inner product of (C7) with fi, ~ i„)
where all fi» f&k,. Then

1
i, ql/2 ~ 5g&g & (zp & zp ) ' ' '

p&y (zg(N 1!p zg )C(ng~ ~ ~ ~
& as/2) —0 .

L+1~2+~ t 1 1 2 NI2
(C 10)

By the linear independence of the skew-symmetric states and the symmetry of the C's, C(a„.. . n„/) =0.
The remainder follows by induction. Assume C =0 for r &r, Take the inner product of (C7) with

fi, ~ ~ i„) where fi» f&k„k=1,. . . , 2r„and fi, l(k„k=2r, +1, . . . , N. One then obtains

P rtst Nt 1/2 w ny Pl) P2 w nz I'2„y) P2& . ' 1& ' ' t rt +2Y+1 ' P//r ~rp (or)(i) P ~ ~ ~

2r+s =N

(N - 2r, )!Z P i 1'-- 2 )1~1/2 0 n (iP 1 P ) /i/a (iP iip )C(nyi ~ y a~ ii2~ iyy ~ ~ ~ &i») 0 ~ (C11)1 1 2 nrp 2rp -1 2rp 0 rp

Again by linear independence, and the symmetry properties of C, C(a„.. . , n„;i„.. . , i„,„)=0, and
hence all C's are zero. The ease N =odd is proven similarly, except that the states, fi, i„), have odd
numbers of i's with

I
i

I
in each step of the proof.

We now return to the problem of proving (C8) by explicitly relating the C's to the C's and showing that
all C=O implies all C=O. %e observe

P (s)' Ii, ~ ~ i.&
= Ii, ~ ~ i,& -g (s)[&1+g (s)1 'Ii, ~

= Ii, ."i,) — g g A(n, )* A(n-, )*P,(s) fi,
r & 0 (n)(F) ~+

2r+s =s

x&i, ~ i , f(gs(-s)+8) 'li, ~ i,).
One can similarly expand Ps(s) f(i )) in terms of Ps(s)i, ~ i,), etc. , so that we eventually obtain

(C 12)

P, (s) fi, ~ ~ ~ i,&= Ii, ~ ~ ~ i,&
— g g fn, . n„-i, ~ ~ ~ i, )Ds(n„. . . , n—,—;i„.. . , i, fi„..—. , i,),

2r+s =N (n)(f}

where D~ s are coefficients symmetric in the n s and antisymmetric in i„.. . , i-, and i„.. . , i,.
ally,

p;(0) lo& = lo&,

P'(1)l)=l &

Ps(2) li,i,) = li, i,&
—g ln&&a li,i,&,

(C13)

Specific-

(C 14)

(C15)

(C16)

P,(8) fi,i.i.&= Ii,i.i.}-Q In, i&&n, il- .8 1 li,i,i.&, (C17)

Ps(4) Iiii2i»i4& = Iiii2isi4& - 2 Iniiim&&n'ii2 fg. (') I

ni 1j2

, a&n[&n, a, fgs (3) li,i,i,i,) —&n,i,i,)&a,i,ig fgs (4) fi, ~ ~ ~ i &] ~

n1n2

As a consequence of (C12),

(C 18)

la a„s, i, f) =-(1/~r! )A(a, )* A(n, )*li, ~ i, f)

V (r +r)!Z T In, n, n, ~ nr i, ~ ir&Ds((n)(i)(i)).
+ s = s ( n)(T ) +.~ ~

t

r&p, s & 0

(C 19)
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Thus,

~ ~ ~

f~s s' ~ f

' ' 1 f)c(nl~ ~ ~ ~ arsi» ~ ~ ~ z )~ ~ ~
~

~ ~ ~

la, ~ ~ ~ a„i, ~ i,)C(a„.. . , a„;i„.. . , z, )~ ~ ~
~

~ ~

{~)(&)

(r +r)!& 'z'
Ds(nl» ar,' ll, . . . , z s i zl~ ', 1 )c(a 1~ ~ ~ ~ ~ ar; z». . . , z )

Xl Fs ) {f )(C!){)){q)

where

C
km™ I

R ]. s) rk™].F ~ ' P ™Rp ].) ~ ~ ~ p

R~r {n){f)
2R+s =N

(C20)

C„(n». . . , n» z». . . , z-, ) =
& -1

[Z!r!(a —r)!]'" c(n, ,, . . .
iy

x DR(nR

C(a». . . , n» z». . . , z „,„), 8 =r

Qp &
'Lg

~ ~ ~ ~ y Zs)
R

(C21)

/

~ ~

~ ~ ~ ) Qp )lg ~ ~ ~ 1 ili ~ ~ ~ l ) A)1
R

where P is the permutation of g atoms. Thus

lal ' ' ' a Zl ~ ~ Zs f)C(nl) ~, n~ Zl, . . . ~ Zs)
(a)(&) 2r+s =N

Z 2 lal ' ' ' nR 1, ~ ~ ~ z-, )c„(a„.. . , ng, „z. . . , z),
~

~ ~ ~ ~ ~ ~

r OR r2R+s =N {o!){f)

so that

C
s

n r (~~r&~l& ' ' '
& ~Ri ~lt ' ' &Zs)

O&r~R

1
C( lt ' ' ' u Ru 1& ~ r s) ~ [pt !(~ )!]1/Z Z

~ I 'I )n ( ~ ~ I ~ Ihn (C Qp p ~ ~ ~ p Op y Syp ~ ~ ~ p Zs I JL/ S&(Qp y's ~ ~ p Qp y Z] p ~ ~ ~ p ls Zyy ~ ~ ~ y gsz ~

f' p 1 1 s r+1 R
st

(C22)

Thus, taking R =0,

0 =C(z„.. . , z„)-=C(z„. . . , z„).
The remaining follows by induction with the result C(n„. . . , a„i„.. . , i,) =0. Thus the vectors
ln, ~ ~ ~ n„ i, ~ ~ ~ i, f) are linearly independent.

(C24)
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