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Resonance f1norescence in Markovian stochastic fields
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A systematic method is presented for averaging the integral equations of motion for the atomic density
matrix operator and its quantum correlation functions over the fluctuations of Markovian exciting fields
with arbitrary bandwidth. The theory takes into account the statistics of the field to all orders. The method
is applied to the investigation of resonance fluorescence in the presence of three different Markovian fields:

(i) a phase-diffusion field, (ii) a chaotic field, and (iii) a Gaussian-amplitude field. It is shown that in the
case of a resonant, intense phase-diffusion field a center line dip develops in the spectrum of resonance
fluorescence when the Rabi frequency is approximately equal to the bandwidth of the field. In the case of
amplitude fluctuations the sidebands of the on-resonance spectrum tend to reproduce the probability
distribution for the amplitude of the exciting field.

I. INTRODUCTION

Recently there has been a growing interest in the
effects of field fluctuations and of the associated
spectral bandwidth in the resonant interaction of
intense radiation with matter. ' " The main rea-
son for this interest is the stochastic amplitude,
phase, and frequency fluctuations in real laser
sources. These fluctuations are made very small
at the expense of reduced power in well-stabilized,
single-mode cw lasers. However, with the excep-
tion of very-high-resolution laser spectroscopy,
most experiments and applications actually do not
require the use of such mell-stabilized lasers.
Moreover, many experiments and applications re-
quire the very high power which is obtained in
multimode pulsed operation. In any case, inde-
pendent of the applied aspects, the role of field
fluctuations in resonant multiphoton processes is
a very interesting theoretical problem in the phy-
sics of interaction of radiation with matter. The
field fluctuations add a new dimension to the theory
of interaction of radiation with matter, which has
many interesting new effects. A number of such
new effects due to field fluctuations have been
found in the saturation and Stark splitting of an
atomic transition. Many more interesting effects
will be found in the years ahead as theoreticians
and experimentalists investigate the role of field
fluctuations in other resonant multiphoton pro-
cesses.

In a recent paper, "we used a diagrammatic
method to treat the effects of Markovian field
fluctuations in the saturation and Stark splitting
of an atomic transition. In this method, the fluc-
tuating field is described statistically in terms of
the infinite sequence of field correlation functions. "
The diagrammatic method, however, becomes very
cumbersome in averaging more complicated in-
tegral equations for other resonant processes over

the field fluctuations. In this paper, we develop a
simple and systematic algebraic method for aver-
aging the integraL equations of motion for the atom-
ic density matrix operator and its quantum corre-
lation functions over the fluctuations of Markovian
exciting fields. The Markovian field is now des-
cribed statistically in terms of the marginal and
the conditional probability densities. The averag-
ing is carried out using the eigenfunctions and
eigenvalues of the conditional averaging integral.
Generally, if a resonant multiphoton process in
the presence of a coherent field is described by a
system of N equations, then the same (average)
process in the presence of a Markovian stochastic
field is described by an infinite number of such
coupled systems of equations. The difference
stems from the fact that it takes only one parame-
ter to specify the complex amplitude of a coherent
field, while it takes an infinite number of parame-
ters (all the moments and correlation times) to
specify the complex amplitude of a stochastic field.
Note that the phase-diffusion field which is a Mark-
ovian field with independent phase increments is
an exception.

The method described above is used in this pa-
per to investigate the effects of Markovian field
fluctuations in resonance fluorescence. Three
different Markovian fields are considered: (a)
the phase-diffusion field, (h) the chaotic field,
and (c) the Gaussian-amplitude field. The phase-
diffusion field undergoes only phase fluctuations
and corresponds to an intensity-stabilized single-
mode laser field. The chaotic field undergoes both
amplitude and phase fluctuations and corresponds
to a multimode laser field with a large number of
uncorrelated modes. The Gaussian-amplitude
field undergoes only amplitude fluctuations. ' Al-
though pure amplitude fluctuations cannot be pro-
duced by a nonadiabatic process, ' we do consider
the Gaussian-amplitude field for two reasons.
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First, because it allows us to isolate those effects
due solely to amplitude fluctuations and second,
because it is an example of a field which undergoes
stronger amplitude (intensity) fluctuations than a
chaotic field. By comparing the results for the
chaotic and the Gaussian-amplitude fields we can
determine the effect of increasing amplitude fluc-
tuations. In Sec. II we describe the statistics of
the three model fields and then in Secs. III and IV
we investigate their effects on the intensity and
the spectrum of resonance flurorescence.

II. STATISTICAL DESCRIPTION OF THE FIELD

In this section we describe the statistics of the
fluctuating field which is assumed to be a Gaussian,
stationary Markovian stochastic process. The
electric field is treated classically and written as

The nth-order correlation for $(t ) is given by"

(&(i,)s*(f.)" &(t,„,)&*(f,.)&"

f (y ] ) e 0 /2'/ i /(2~yf )1/2 (4)

2n-1

& h(t, )8*(t,„)),
j odd

where t, & t, & t,„,& t,„. The factorization
of the nth-order field correlation in terms of
first-order field correlations is a consequence of
the independence of phase increments. The sta-
tistics of a Markovian stochastic process are
completely determined if one knows the marginal
and the conditional probability densities. The
marginal probability density for P(t) is given by"

E(t) = 8 (i)e ' 0'+ 8*(t)e' o' and the conditional probability density by

where ~, is the center frequency of the spectrum
and 8(t) = h(t)e 'e'", the fluctuating complex am-
plitude, with h(t ) and Q(t ) being the real ampli-
tude and phase of the field. The mean value of
S(t) is assumed to be zero, i.e., ( h(t)& =0, where
the angular brackets denote stochastic average.
Since $(t) is assumed to be a Gaussian, stationary
Markovian process, its first-order correlation is
necessarily exponential:

( ~(t, )&*(i,)& = &'.exp(- -'y t'ai
—f2 I)

where y is the full width at half maximum (FWHM)
of the Lorentzian spectrum and h02=(8'(f)& is the
variance of $(t ). Three different stochastic mod-
els are used for h(t): (a) the phase-diffusion (PD)
model, (b) 'the chaotic (CH) model, and (c) the
Gaussian-amplitude (G) model. The higher-order
statistics of each of these fields are given below
separately.

f (pi~ t il $2~ t 2)

=exp — ' ' ' [2iiy(t -i )j' ' f ) i
2y(f f )

1 2 & 1 2 '

( eiiii4(ti)
~ y i )— e"" 'f(4i ii~4'2 i2)"4i

e- (1U /2)'X(&g-&2) 8&i E $(t2) (6)

As it will be shown in Sees. III and IV, the in-
tegral equations of motion for the atomic density
matrix operator and its correlation functions can
be averaged systematically over Markovian field
fluctuations by using the eigenfunctions and eigen-
values of the conditional averaging integral. For
the PD field we can show that

A. Phase-diffusion model

The phase-diffusion field has a constant real
amplitude but its phase is a Wiener-Levy process
(Brownian motion with negligible acceleration or
continuous random walk). " A Wiener-Levy pro-
cess is a nonstationary, Gaussian Markovian
process whose increments are independent; i.e.,

& [e(t,) —e(f,)][y(i.) —y(f.)]&

= (P(i,) —P(f, )) ( P(f, ) —P(i,)),

where N is a positive integer Thus h. (ii) and
h*"(i,) are eigenfunctions of the conditional aver-
aging integral. with eigenvalue e
that the eigenvalues of the conditional averaging
integral are deterministic while the eigenfunctions
are random variables.

B. Chaotic model

The chaotic field is a complex Gaussian stoch-
astic process. It can be written as h(t ) = h„(t)
+i h, (t), where h„(t) and h, (t) are two real, in-
dependent Gaussian processes with zero mean and
equal variance. The nth-order correlation of b(t )
is given by&9
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( Z(t, )g+(t, ) ~ g(t,„,)g*(f,„)) property (maximum entropy) is associated with the
Gaussian statistics of the field and does not depend
on the time evolution of the field. The marginal
probability density of a chaotic field is given by"

where t, & t, & .& t & t,„and P denotes permu-
tation. It should be pointed out here that a chaotic
field is not necessarily Markovian. The chaotic and the conditional probability density by

I( („(t„((8„t„t,)= ((exp(- ' ' . (
' „', ' ' ((((&'),g2+ r2h2, —2rh, h, cos((t), —(!),)

0

where &=e &('& '2' ', t, t „ is the correlation coefficient. The conditional probability density for the
chaotic field is a generating function for Laguerre polynomials" and it can be shown that

2 2% 00

dy, j d~,L» ~l gtf(&„y„t,l ~„42,&2)

+- [( 2»+ m)/21)'(t 1- t2) Lm 2 (g m
N g2 I 2

0&
(10)

where LN(x) is a generalized Laguerre polynomial. Thus LN(g,'/802)Z," and L„(h2/h2)S*" are eigenfunctions
of the conditional averaging integral with eigenvalue e "'"+

C. Gaussian-amplitude model

The Gaussian-amplitude field has a constant
phase but its real amplitude undergoes Gaussian
fluctuations. The chaotic field consists of two
such independent fields SO' out of phase. The nth-
order correlation of 8(t) is given by"

2fl

(&(t,)&(t,) @(f,„,)h(&,„))=g . , (&(t, )&(t, )),
P j&k

shown that

e- (NP /2) (t1 t2) If (-g /(2g 2)1/2)

where t, &t, & ' & t,„,&t,„. Note that while the
sum in Eq. (7) involves n! terms, the sum in Eq.
(11) involves n!!=1.3.. . (2n —1) terms. For t,
=f = . =t, Eqs. (7) and (11) give (I")c"
=n!(I)" and (I")o=n!!(I)",where 1=2' 82(t) is
the intensity of the fields. Thus a Gaussian-ampli-
tude field undergoes stronger intensity fluctuations
than a chaotic field. The marginal probability
density for ('(t) is given by"

(14)

where H»(") is a Hermite polynomial. Thus HN(82/
(2802)'/2) is an eigenfunction of the conditional av-
eraging integral with eigenvalue e '"& ""x '2'. -

Note that the stochastic average of the eigenfunc-
tions of the conditional averaging integral for the
three fields is zero except for N=O, i.e.,

"
( g N(t ))2D ( Lm ($2(t )/g2 ) g ((((f ))

f ((g) e-E /2S(I/(2)($2)1/2 (12) =(a„(S(t)/v 2 N, ))'= ~„,.

and the conditional probability density by

' (13)

where &=8 ~"~ '2' ', t, &t„ is the correlation
coefficient. The conditional density is a generating
function for Hermite polynomials" and it can be

The fact that the eigenfunctions for the chaotic and
Gaussian-amplitude fields are polynomials, while
those for the PD field are simply powers of 8(t),
is related to the form of the field correlation
functions. Both the sum over permutations in
Eqs. (7) and (11) and the polynomials in Eqs. (10)
and (14) reflect the correlation in the intensity
fluctuations. On the other hand, the fact that b™(t)
and g* (t ) are eigenfunctions of the conditional
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averaging integral for the chaotic field is related to the fact that

(&(t,)$(t,) "Z(t „))'"=(8*(t,)$*(t,)" Z*(t „)&'"=0.

III. INTENSITY OF RESONANCE FLUORESCENCE

We consider a two-state atom with ground state
~ 1) and excited state ~2) of opposite parity. The electric

dipole matrix element is p.» and the transition frequency co». The atom is interacting with the Markovian
stochastic field of Eq. (1). The equation of motion for the atomic density matrix p(t) in the rotating-wave
approximation [i.e., p»(t)=a»(t)e ' 0', p»(t)= a»(t)e~ o', p, , (t)=o, , (t), i=1, 2, where the a;, (t) are
slowly varying amplitudes] can be written in the form

a„(t )

a„(t )

dt a»(t )

a»(t) —,'i (o„*(t) 2,i u)„*—(t )

2i—(o*(t) ~i co~(t)R

gal& (t) 224'(t)
zz --,'r 0

—gQ -2F

'a.,(t )'

a„(t )

a„(t )

a„(t )

(15)

where I' is the spontaneous decay rate of state ~2) and b, =e, —&u», the detuning from resonance. The
parameter co„(t)= 28 p»$(t) is the stochastic Rabi frequency and its root-mean-square (rms) value &7~

= N p, »$, will herein be referred to as the average Rabi frequency. Integrating the system of equations
(15) with initial conditions a»(0) =1, o»(0) =o»(0) =a„(0)=0, we obtain the integral equation

exp[(is+ 2r)(t, —t, )]~„(t,)(u„*(t,)n(t, )dt, ,

where n(t) =a»(t) a»(t) is-the population inversion and the normalization condition is a»(t)+a»(t) =1.
The average intensity of resonance fluorescence is proportional to the population of the excited state

o» ———,'(1+n) averaged over the fluctuations of the driving field. To average Eq. (16) over the Markovian
field fluctuations we must multiply both sides of the equation by the joint probability density

f(8, y, S„y„h„y„t, t „t,) =f (h, y, t
~ 8„y„t, )f(S„y„t, ~ S„y„t,)f(S„y„t,), (17)

where t &t, & t, & 0, and integrate over the random variables 8, Q, S„Q„S„andQ,. Below, we carry
out this average for each of the three model fields.

A. Phase&iffusion model

The averaging of Eq. (16) in the case of a PD field was described in detail in Ref. 17 and for complete-
ness we summarize the results in this paper. Using Eq. (6) we can show that

(~„(t,)co*(t,)n(t, )) =(cu (t,)~„*(t,))' ( (t,)P,

and then we can solve Eq. (16) for (n(t)) by Laplace transform. The steady-state value of the average
excited-state population is given by

S/2
(16)

where

2(1 +'y)=
1 ~ +-,'(r+y) (19)

is the saturation parameter. Note that, compared to a monochromatic field of the same power, a finite
bandwidth PD field exactly on resonance (b, = 0) reduces the saturation by I'/(1" + y), while far from reso-
nance (b, » I', y) it increases the saturation by (1"+ y)/I'.
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B. Chaotic model

Before averaging Eq. (16) for a chaotic field, we multiply both sides of the equation by the Laguerre
polynomial

If we then apply Eq. (10) twice in succession (t —t, - t,), making use of the recursion relations for ortho-
normal Laguerre polynomials, "

L"„'(x) = I,"„(x) L"„—,(x) (20)

xL"„"'(x)= (N+m+ l)Lz(x) —(N+1)L ~„(x), (21)

we obtain the relation
~t

(n(t))„= —b„, —Re dt, e' '"»&'&
M p

x Jl &tt exp [(i~ + 2I)(t —t )j &d
' ((N + 1)e && 2 +&&/2&&&&2 && & [(n(t )) (n(t )) j

0

Ne&&» &&»& &' & 2 &&&[(n(t )) (n(t )) j}.

(22)

where (n(t))„= (I,'„( g'(t)/8, ')n(t)), N=0, 1,
2, . .. , are the coefficients of expansion of n(t) in
orthonormal Laguerre polynomials, i.e.,

(23)

Taking the Laplace transform of Eq. (22) and cal-
culating the steady-state solution [(n(t =~))„
= lim~, pg(n(t ))„], we obtain the following three-
term recursion relation for the expansion coef-
ficients

-a„(n)~ ~+(n)„—bz(n)z+, = —5~,/(1+ S,), (24)

where

1 1
1+S, 1 —b, (n), /(n),

while for N~ 1 it can be written in the form

(n)„a„
(n), 1 - b (n) „/(n)„'

Iterating the last equation we can obtain a contin-
ued fraction for the average population inversion
(n) =(n),. [Recall that I.", (x) = 1.] The other ex-
pansion coefficients (n)„, N ~ 1, which are needed
in the calculation of the spectrum of resonance
fluorescence, can be evaluated by subtituting the
value for (n), into Eq. (24). The steady-state value
of the average excited-state population is given by

I'+ (N —1)y I'+ (N —1)y
E I' ~ E-3,+ y +Ay

I'+ (N —1)yb~= S~ 1+S~+ I SI'+Ay

(25)

(26)

CH I 2(„) 1
a,bp

a,b,

~ ~ ~

(28)

(N+ 1)v~~ —,'[ I'+ (2N+ 1)'Y]
I +Ny 6'+&[I'+(2N+1)y]' '

For N =0, the recursion relation above gives

Note that S, is identical to the saturation parame-
ter in Eq. (19) for the PD field. The equation for
(o») " differs from the equation for (o») only by
the continued f-."action which multiplies the factor
(-,')/(1+ S,) in Eq. (28). Since the magnitude of the
continued fraction is greater than unity (0& a„b„,
&-, ), (v») " is generally less than(v») . Thus,
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the intensity of resonance fluorescence in the
presence of a chaotic exciting field is less than
that in the presence of a phase-diffusion exciting
field with the same first-order field correlation
function. The continued fraction in Eq. (28) has a
different structure from the one in Eq. (33) of Ref.

17, where (v») " was calculated by diagrammatic
summation of an iteration series expansion. The
two results, however, are equivalent. Equation
(28) is identical with the expression for (o») " in
Ref. 18 which was calculated using the Fokker-
Planck formalism.

C. Gaussian-amplitude model

Following the same procedure as in the case of the chaotic field, we multiply both sides of Eq. (16) by
the Hermite polynomial

H. ( &(f )/(2&')")

and then take the stochastic average. Applying Eq. (14) twice in succession (& - f, —f,) and using the re
cursion relation for orthogonal Hermite polynomials, "

»H„(») = (~+1)H„„(»)+-,'H„,(»), (29)

we obtain the relation

0

+e"" '"~"""'[&(~(&,)) +-'(&(~ )) ])] (30)

where (n(t))„=—(H»(b(t)l(2bo2)' ')n(t)), X=0, 2, 4, . .. , are the coefficients of expansion of n(t) in ortho-
gonal Hermite polynomials; i.e.,

«(f) 8(t )~())=Z )J~l(,q )
i «(&) H~ (,q )

i ).E=o ( 0 0

(31)

Note that only even-numbered Hermite polynomials, which are functions of the intensity of the field, ap-
pear in the equation above. Taking the Laplace transform of Eq. (30) and calculating the steady-state sol-
ution, we find the following three-term recursion relation for the expansion coefficients:

1 [I'+ (K —l)y]
2(2K —1) (I'+Ky)

2K [I+ (K —1)y]'"~ 2K 1 (r,Ky) S~-) (33)

2(K+2) S~
2K [I' + (K —l)y]'"~'(2K 1) (r,Ky) S~- )

a,»(n)~, +(n)~+ b~(n),»„= 6», /(1+Sf, (32)

where
(2K+ 1)&u„' 2[I'+ (2K+ 1)y]

(I'+Ky) 6'+ -,'[I'+ (2K+ 1)y]'

From the recursion relation above we can ob-
tain a continued fraction for the average value of
the population inversion (n) =(n),. The steady-
state value of the average excited-state population
is given by
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(v,.)'= 2 —1,'S0

1
a,b„

a4b,
Q654

1 ~ ~ ~

(36)
I.QO

A
EV
Al

b

cu 0.90
b

V

The only difference between this equation and Eq.
(28) for (v») " is in the value of the coefficients in
the two continued fractions. Comparing Eqs. (27)
and (35) we find that S~H/So~= (K+1)/(2K+1).
The factors (K+1) and (2K+1), which multiply
e „' in Ec(s. (27) and (35), originated in the recur-
sion relations for Laguerre [Eq. (21)] and Hermite
[Eg. (29)j polynomials, and are indirectly related
to the moments of the intensity for chaotic
(( I~+')c" /(I~) =K+ 1) and Gaussian-amplitude
(( I~")o/( I~) o = 2K+ 1) fields. The coefficients
a,~b~, in the continued fraction for (v») are
greater (0& a, )) b~, & —,') than the corresponding
coefficients a„b~, in the continued fraction for
(v»)c". Because of this, the magnitude of the con-
tinued fraction in the expression for (v») is
greater than that of the continued fraction in the
expression for (v»)c". Hence, the intensity of
resonance fluorescence in the presence of a Gaus-
sian-amplitude exciting field is less than that in
the presence of a chaotic exciting field, which in
turn is less than that in the presence of a phase-
diffusion exciting field. A precise comparison of
the intensities of resonance fluorescence for the
three model fields requires numerical evaluation
of Eqs. (18), (28), and (36). The continued frac-
tions in the latter two equations are convergent,
but the number of fractions required to obtain a
certain degree of accuracy increases with the
saturation parameter S,.

Figure 1 shows the dependence of the ratios
(v»)c" /(v») and (v») o/(v») on the r'atio &V~/I'

for different values of the bandwidth y, under ex-
act resonance (b, =0). The average population of
the excited state in the presence of a PD exciting
field is always larger than that in the presence of
either a chaotic or a Gaussian-amplitude field.
As was originally explained in Ref. 17, a field
with constant intensity is more effective than a
field with fluctuating intensity in saturating a
single-photon or multiphoton transition. The atom
in essence sees the intensity fluctuations and re-
laxes between spikes in the intensity, going par-
tially out of saturation. Comparing the curves for

O
Z

&~oo
N —h ~/

~n 070
C4
C4

~b 0.65
0

I I I I I I

5 10 15 20
I I

25

FIG. 1. Plot of the excited-state population ratios
(022) / (r22) (solid line) and (0.22) /(g22)
(dashed line) versus the ratio &&/I of the average
Rabi frequency uz to the spontaneous decay rate I', for
different values of the field bandwidth y. The center
frequency of the fields is tuned on resonance.

(v») "/(v») and (v'») /(v») we see that (v»)
is always less than (v»)c". The physical explana-
tion for this is that the Gaussian-amplitude field
undergoes stronger intensity fluctuations than the
chaotic field and thus is less effective in keeping
the atom excited. Note that by stronger intensity
fluctuations we do not mean a shorter correlation
time, which is actually the same for the two
fields (1/y), but a larger spread in the intensity
distribution [see Etls. (8) and (12)]. The differ-
ence between (v») o, (v») ", and (o») o is small
when the fields are either very weak (S,«1) or
very strong (S,»1). In the first case, the excita-
tion depends mainly only on the first-order field
correlation, which is the same for the three mod-
els. In the second case, the average population of
the excited state (v») goes to the limit —,

' inde-
pendently of the statistics of the exciting field,
although the rate of approaching this limit depends
on the statistics. The largest difference between
(v»)', (v») ", and (v») occurs for intermediate
field strengths (9„/I"- 1). As the bandwidth y is
increased the difference between the three popu-
lations decreases. This is because the atom can-
not follow the field fluctuations, which become
more rapid, and responds to fewer field corre-
lation functions. Therefore, as the bandwidth
increases the atom detects less difference in the
statistics of the fields.

IV. SPECTRUM OF RESONANCE FLUORESCENCE

It is well known that the stationary (t -~) spectrum of resonance fluorescence, apart from simple propa-
gation factors, is given by"

S(e)=f e" "(8„(t)8~,()+7))dT, (37)
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where e, is the center frequency of the exciting field, and (&»(t)o'»(t+ v)) the quantum correlation function
of the slowly varying, atomic raising and lowering operators. The equations of motion for the quantum
correlation functions (o„(t')cr,&(t)), i, j=1, 2, of a two-state atom can be written inthe form"

r P

(&»(t ')&,(t)) - I' 0 -2i &B(t) 2i ~B(t) (o'»(t ')o„(t))

(o.,(t ).-„(t))

(&.,(t ')o„(t )) ——,'i (o„(t)

~Z Q)$(t ) —254)g(t ) (a„(t ')o„(t))

(8„(t')5„(t))
(38)

(o»(t ')o»(t)} —,i vg(t ) ,i-ru-g(t ) —ib, --,'I' . (&»(t')&»(t))

where t & t' and the 4X4 matrix is identical with the matrix in Eq. (15). Integrating the system of Eqs.
(38) and eliminating the correlation function (&»(t )8»(t)) we obtain the integral equations

7

g(t, 7) = o„(t)exp[(m --,'I')~] —— exp[(-in+-,'I')(t, —v)]&a„(t + t,)h(t, t,)dt, , (39)

(v„(t+ v)h(t, r) = -(u„(t+ 7)c»(t) -i e '& ' exp[(ia --,'I' )t j(us(t+ r)(ug(t+t, )o22(t)dt,
0

er'~ '~dt, exp[(-id+ ,'I')(t, ——t,)]&a„(t+~)&ug(t+t,)urz(t+t, )h(t, t,)dt,

--,'
J

e""& 'dt, J~ -exp[(i~+-,'1)(t, —t,)]~„(t+T)~„(t+t,)~g(t+t, )h(t, t,)dt„
0 0

where we define the quantum correlation functions g(t, v) (v»(t)o=—»(t+ ~)), h(t, v) =(o»(t) [&x»(t+ T)
a»(t+ v)-]) and the quantum average o;, (t) =(c;;(t)). These equations must now be averaged over the

fluctuations of the Markovian exciting field, in order to determine the average spectrum (S(&u)). Per-
forming a formal stochastic average on Eq. (39) and then taking the Laplace transform we find

(c„(t))--,'zW(t, s)
s -ib +21"

where

(40)

(41)

and

G(t, s) =
4 p

e "(g(t, ~))d~ (42)

W(t, s) =
0

e '"((u„(t, ~)h(t, v))dv. (43)

Since in the stationary limit g(t, -v) =g*(t, v), the average spectrum (S(&u)) is related to G(t, s) by"

(S((u)) = G(t, its, -i~)+c.c.
The averaging of Eq. (40) is more complicated and has to be carried out separately for each stochastic
field, by multiplying by the joint probability density f(8, $, bg„bg„'t v+, t+t„ t+t,), r&t, &t, -0 [see
Eq. (1V)], and integrating over the random variables.

(44)

A. Phase-diffusion model

In carrying out the integration over the random phases on the right-hand side of Eq. (40), we use the
general equation (6) and obtain

O' 7'

(cu„(t+v)h(t, ~)) = —e "' '(cu„(t)o„(t)) —ig~ exp[(I'+ —,'y)(t, —~)] exp[(ib, --,'I' )tJcuz(c„(t))dt,

exp[(l'+ ,'y)(t, - 7))dt, J -exp[(-ib, +-', I')(t, - t,)]~„'(~„(t+t,)h(t, t,))dt,
0 0

7 t~
exp[(I'+-'y)(t, —T))dt,

~
exp[(ib. +-,'I'+2y)t, —tJ~„'(~„(t+t,)h(t, t,))dt, .

.0 dp
(45)
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The Laplace transform of the above equation gives

W(t, s) =
( (t) (t)) - t~'(s+i&+-'I'+2y)(o (t))(s+-'y

(s+ I'+ ~y)(s —is + —,'I )(s+ib, + ~1 + 2y) + (o„'(s+~I" +y) (46)

where W(t, s) has been defined in Eq. (43). The stationary average population of the excited state (o»(t)),
which appears in Eq. (46), is given by Eq. (18). The stationary average (~s(t)o»(t)) can be calculated from
the equation

o„(t)= ,'i exp—[(ib,+ —' I')(t, —t)]rug(t, )n(t,)dt„
4o

which is obtained from Eq. (15}. If we multiply both sides of Eq. (47) by &os(t) and take the stochastic
average and the Laplace transform we find

(47)

where t-~. The stationary average spectrum (S(&o)) n can be evaluated using Eq. (44). It should be
pointed out that the average spectrum of resonance fluorescence in the presence of a PD field has been
calculated before by Eberly' and also be Kimble and Mandel. ' Both those papers, however, are based
on the decorrelation approximation of atomic and field variables, while in this paper the averaging of
the spectrum is rigorous. The calculation of (S((o))PD by Agarwal is also rigorous, but is based on a dif-
ferent method which cannot be applied in the case of intensity fluctuations. Kimble and Mandel have dis-
cussed in detail several of the effects of phase fluctuations. ' In the end of Sec. IV, we will discuss a new

effect caused by phase fluctuations which has not been considered previously.

B. Chaotic model

In order to average Eq. (40) in the case of a chaotic exciting field we proceed as in Sec. III B. Equation
(40) is multiplied by the Laguerre polynomial L„'(8'(t+ ~)/((l2O). The choice of the upper index (m = 1) of the
Laguerre polynomial is dictated by the stochastic Rabi frequency co»(t+ T), which multiplies both sides of
Eq. (40). Choosing m = 0 would lead to a more complicated expression. Taking the stochastic average,
using Eqs. (10), (20}, and (21), we obtain

PT
(u (t 7))' = —e """"~''((d (t)o (t))' iu'

)~
e-+'""'"~ ""& 'exp[(ia--'I')tJ

x [e "~'~(o„(t))„—e '""&'~(o„(t))„,ddt,

—
~ su„' xe(p[I' '+(2N+ l)y] (t, —v) ddt,

0 4p
exp[(- i~+-', r)(t, —t,)](A + 1)

x ( -"~'~- '2' [((o (t, t,))„'- ((o (t, t,))„' J

exp([1'+-', (mr+ 1)y] (t, —i)jdt,
0

—e'"'"~" '[(~2(t t )-)' -((o(t t ))»']}dt

( tg
exp(iS+-,"r)(t, —t,)]

4O

x (e-»~'~-'2'[N(w(t, t,))„' —(X+ I)(~(t, t,))„' J
-(»+ 1)y(tg t ) [(~p I)(zg (t t ))

—(iv + 2)(~(t, t,))„'])dt„ (49)

where the average quantities ((t, 7'))»= (&»(8'(t+v)/ho) ~»(—t+ &)&(t ~)) (~s(t)o»(t))»=—(L»(h (t)/o)~»(t)o2i(t)) ~

and (o»(t))»—= (L'»(h'(t)/g'}o»(t)), N= 0, 1, 2, . . . , are coefficients of expansions of stochastic quantities in
terms of stochastic Laguerre polynomials, as in Eq. (23). The Laplace transform of the integral equation
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above leads to the algebraic, inhomogeneous, three-term recursion relation

y+ s —ii +-,'r+Ny +
s —i i y'r+( N+ ))y" s+iN+-,'r N+y

+ s yi Ny'r y{ N+ )(y)

12(N-+ 1)g„' -', (N+ 1)un2 ), i 2(N+1)~s , (N—+I)~'„
s —ia y —,

' 1'+Ny s + iN y —'r +Nyj "'
.
' '

I(y —( N-' y+r(N~ 1) y s + iN + —'r + (N+ 1)y)

s+ ,'(2N—+1)y s " " "~is —is+ r. l'+Ny s —ib, + ~I +(N+ l)y) '

(c„(t)&„=-,' (I+n(t)&„= -,' [5„,+(n(t)&„] .

The expansion coefficients (+s(t)a»(t)&„' can be calculated by multiplying Eq. (47) by L'„(i)'(f)/hmo) &un(t) and
then averaging to obtain

(&us(t)c»(t)&„' = 2i J) exp({i~+—,
' [I"+ (2N+ l)y]j(t, —t)) (dn(N+ 1)[(n(t,)&„-(n(t,)&~, Jdt, .

0'

(51)

(52)

In the stationary limit, the equation above reduces to

where W~(t, s) is the Laplace transform of (~(t, ~)&„'. The stationary expansion coefficients (o»(t)&„of the
stochastic population v»(t) can be calculated from Eq. (24) using the relation

((u„(t) „o(t)&'„=', i( N+1)-ur„'. , " ""
) ]

.((n&. -& &.„)
zs+, I'+ 2N+1 y

(53)

Because of its complexity, Eq. (50) does not render itself to an analytic solution. For very small aver-
age Rabi frequencies (cu„«I'), however, it is a good approximation to neglect all the expansion coef-
ficients W'„(f, s} with N~ l. In that case, Eq; (N) reduces to

(s + I'+-,'y)(s —ib, +-,'I )(s+id + —,'I'+y), „,, 1F
)& & (~1 qm~o, go —zu~(s + zA + ~ ~+@go'»/0

(s+ib, + —'I'+y)(s+I"+-'y)(s —in+ —,'I')(s+ib, + —,'I'+y)+ —,'&un' 3s —ib, + —,'I'+y+ . ', (s —ib, + —,'I')
(s —i6+ —I'+y J

This equation can be obtained directly from Eq. (40) by making the decorrelation approximations

& .(f") S(f f,) .(f.i.)I (f, i.)&=& .(i") .*(f i,)&& .(i f,)i(f, f,)& & .(f f.) g(i. f,))& .(f")i(f,i.)&,

((d„(t+V){d„(t+t,)(dl((t+t, )h(t, t,)& =(~s(t+r)&vg(t+t, )&((d„(t+t )h(t, i,)&+((ds(t+t )&ug(t+t, )&((ds(t+V)h(ty i )& 1

and using the exact relation (~„(t+7)h(t, f,)& =exp[- —,'y(v —t,)](~„(t+t,)h(t, f,)&. The decorrelation approxi-
mations above assume that h(t, f,) rr- ~g(t) which corresponds to keeping only the first term in Eq. (40) [for
weak fields, indeed, o»(t) rr: &ug(t)]. Clearly, Eq. (54) neglects all field-correlation functions of order
greater than 2. The main difference between Eqs. (54) and (46) is in their denominators. For b. =0, the
polynomial in the denominator of Eq. (54) simplifies to

P(s) = (s+I'+ —,'y)(s+ ~I')(s+ ~) I'+y) +2(d~2(s+ ~I'+ ~y) .
If we compare this with the polynomial in the denominator of Eq. (46), we see that ~n is multiplied by a
factor of 2, which indicates the influence of intensity fluctuations. For strong fields this influence be-
comes stronger. As was shown in the case of double resonance with an intense chaotic field, ""the
stochastic Rabi frequency takes all values, from zero to infinity, with probability given by Eq. (8). For
strong fields, however, Eq. (50) must be solved numerically keeping several hundred coefficients
W'„(f, s). The stationary average spe'ctrum (S(&u)&c" can be evaluated then from Eq. (41), with (c»(t)& given
by Eq. (28) and W(t, s) = War(t, s). In the end of Sec. IV, we discuss the results of numerical calculations
of (S((d)&~ in strong chaotic fields. The spectrum of resonance fluorescence in the presence of a chaotic



A. T. GEORGES

field was calculated recently by a different method using the Fokker-Planck operator for a chaotic field. "
The Fokker-Planck formalism is suitable for averaging one-time stochastic differential equations, while
the method developed in this paper, which uses the conditional probability to describe Markovian fields,
is suitable for averaging multitime integral equations.

C. Gaussian-amplitude model

Multiplying E(I. (40) by the Hermite polynomial H„(8(t+ y)/v 28,) and taking the stochastic average, using
E(ls. (14) and (29), we obtain

&~(t, y)&„= -u~~„((N+ 1).-K"'"'»y (o„(t)&„„+-'e-"»-»/2» (o (t)) p
T

-ig~2 e " ' exp i~--2I' t
0

x(e][ + »/2]y(21 y) [2(N-+ 2)(N ~ 1) -[[»+2)/2]yt2(
(t)& ~ (N+ I) -(N/2} y22( (t)& ]

+e][»-»/2]y(21-y) [Ne (»/2)y2-2(o (t)& + e [(N -2}/2]-y22(o

1 —2—2 C0~
40

ty

e (" '}dt, exp[-i/2, + —,'I')(t, —t,)]
0

1 —2—2 U)g
p

x(e][N+»/»y«2-y} [2(N+2)(N+1)e][N+2)/»y(22 21) (~(t t )&

+ (N + ]) e(N/2) y ( 22- 2 2)( (t t )& ]
e][»- »2/1 y(21 I) [N (N/2) y(22-22)(2() (t t )& + I e][N-2)/2]y(22 22)(2() (t -t

)& ])dt
tg

e " 'dt, -exp[(i~+21')(t2-t, )]
0

x(e]["+'}2]y('2 ')[2(N+2)(N+1)e][»+2}/»y«2 22 (2e(t t )&

+ (N ~ 1)e(»/2) y(t t2)( 2(tM)t )) ]
+e[[»-»/2]y(22 1) [N-(N/2}y(2 2 )2(~I(t t ))

I [(» 2)/2]y(22 21)(

(55)

where &2U(t 7)&N=&HN(8(t +7)/~&8. )~s(i+ y)/}(t, ~)&, &(y„(t)&N -=&HN(8(t)/~&8, )(y„(t)&, and ((y„(t)&»—= (H„(8(t)/
&28,)()22(t)&, N=0, 2, 4, . . . , are coefficients of expansions in Hermite polynomials, as in E(I. (31). Tak-
ing the Laplace transform of the above equation we obtain the inhomogeneous three-term recursion rela-
tion

+I(s+I'+ '(N+1)y
+ s+I'+-'—(N —1)y ]Is —is '(I' Ny)s+ +is '(Is'+yNy)s)

+W ts 1 1
s+r+-', (N —1)y s —12+-'[I'+(N —2)y] s+iss+-', [I'+(N —2)y])

(N 2) (+N+ 1) (d)2 1 1
s+I'+-'(N+1)y iss'[Is'+( N2) s] yisss'[sI' (Ns2)+])y

, —.(N+1)& „(t)&.„-.'&o„(t)&, ~

s+ ,'(N+ l)y s+ ,'(—N-1)y/]-
-2 I

~

2(N+2)(N+ I)&(y22(t)&N" ( + )&(y22(t)&»

y '(N sly)y (ss —iss s —'[I'+(N+2)y] ia '[Is' y]s)sN
N& ..(t)&, , -'& .,(t)&. ,

s+I'+ ,'(N —1)y ~(s —i', + —,'-(I'+Ny) s -i/}, +-,'[I'+ (N-2)y] )
(t, s) is the I,aplace transform (2() (t, T)&» The coeffic.ients (o»(t)&„are related to the coefficients

(2)& in E(I. (32) through Eti. (51), which holds for chaotic as well as Gaussian-amplitude fields. The co-
efficients ((y,(t))„can be calculated by multiplying E(l. (47) by H»(8(t)/&28o) and averaging to yield

~ t
&(y„(t)&»=

'
J exp([is+ ,'(I'+Ny)](t-, —t)) ~„[(N+ I)(}2(t)&N„+-.'&22(t)&» Jdt, .

0
(5&)



21 RESONANCE FLUORESCENCE IN MARKOVIAN STOCHASTIC. . . 2045

In the stationary limit, the above equation reduces to

( )
i(u„[(N+ 1)(n(t))„„+-,'(n(t))„J
v 2 i~+ -,'(r +Ny)

(58)

For weak fields (G„«r), it is a good approximation to neglect all the expansion coefficients W„(t, s)
with ¹ l. Under this approximation, Eq. (56) reduces to

Wo(t, s) =

(s+ I'+-,'y)(s —iS+-,'I')(s+itL+-,'I')
((s+ y)-1 &so2z o i~B(s+i+ + 2r o22 o

(s+I'+ —'y)(s —ib, +-'r)(s+ia+-'r) + 9„'(s+-'r) (59)

where we have used the relation v 2 &us(o»(t)),
=(1d„(t)o»(t))o. Equation (59) can be obtained di-
rectly from Eq. (40} by making the decorrelation
approximation

(~„(t+~)~„(t+t,)~„(t+t,)h(t, t,))

=(~„(t+~)~,(t+t,))(~„(t+t,)a(t, t,}) .

This decorrelation, unlike the decorrelation made
in obtaining Eq. (54), neglects even the second-
order statistics of the field [see Eq. (11)]. The
fact that Eq. (50) to lowest order (N=O) contains
information about the first- and second-order
correlation of the chaotic fields, while Eq. (56)
to lowest order contains information about only
the first-order correlation of the Gaussian-
amplitude field, stems from the different re-
cursion relations for Laguerre and Hermite poly-
nomials. As a consequence of neglecting the
second-order field correlation, the bandwidth y
adds only to the diagonal relaxation rate and the
factor multiplying co& in the denominator of Eq.
(59) does not show any influence of intensity
fluctuations [compare Eqs. (46), (54), and (59)].
The decorrelation approximation above was used
by Eberly' and Agarwal" to study the effects of
amplitude fluctuations on the spectrum of reson-
ance fluorescence. These authors, not realizing
that the decorrelation is valid only for weak fields
(cu„« I'), made predictions for the case of strong
fields (ur„» I', y) which are not correct They.
predicted a triplet structure for the spectrum of
resonance fluorescence, while actually the triplet
structure is completely washed out in the case of
a strong Gaussian-amplitude field. For strong
fields Eq. (56) must be solved numerically, re-
taining several hundred coefficients W„(t, s}.

D. Numerical calculations and discussion

We present now some representative results
of numerical calculations of the spectrum of re-
sonance fluorescence in the presence of each of
the three models for the stochastic exciting field.
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FIG. 2. Resonance fluorescence spectra for a phase-

diffusion field (dashed line), a chaotic field (solid line)
and a Gaussian-amplitude field (dotted line). The values
of the average Rabi frequency uz and the bandwidth y
are given in the figure in units of the spontaneous decay
rate I'. The detuning of the fields is zero.

I

Figure 2 shows the spectra (S(u&)) (dashed line),
(S(&)) " (solid line), and (S(&u))" (dotted line) for
an average Rabi frequency +~ = 10I' and zero de-
tuning (b, =0). The spectra are symmetric about
the center frequency of the exciting fields (~= u&o)

and only the upper half (1d & coo) is shown. Three
different characteristic values were used for the
bandwidth y=0.1I', I', and 10I'. In order to show
the difference in the wings of the spectra more
clearly, a semilog plot is made. Starting with
(S(&))~o, we see that as the bandwidth y is in-
creased, the familiar triplet structure" broadens
and the spacing between the two side peaks de-
creases from its maximum value of 29„(e„
»I', y). The ratio of the heights of the center
peak to the side peak decreases. ' ' When the
bandwidth y becomes -2&, the height of the center
peak is smaller than that of the side peaks and a
center line dip develops. This effect is reported
for the first time in this paper. For y= (d„= 10I",
the difference between the center line dip and the
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FIG. 3. Resonance fluorescence spectra. Same hs
Fig. 2 but for a different Rabi frequency.

side peak is only 2%, while the spacing between
the two side peaks is -0.64~~. If the bandwidth
is increased further (y&~„), the spacing between
the two side peaks vanishes and the three spectral
components coalesce into a single line. The width
of this line decreases with increasing bandwidth.
For y» 1", (d~, the width of the line tends to 1."
Examining next the curves for (S(&u))c" and

(S(~)), we see that there are no side peaks for
co~ = 101. The intensity fluctuations in both fields
smear out and suppress the sidebands which are
associated with the imaginary part of the dipole
oscillating at the Babi frequency. ' The suppres-
sion is stronger for (S(&u)) because the Gaussian-
amplitude field undergoes stronger intensity
fluctuations. The central peak, which is as-
sociated with the real part of the dipole, ' is not
affected by intensity fluctuations for 6 = 0. Thus,
no center line dip develops in the case of in-
tensity fluctuations. The center line dip develops
only in the case of phase fluctuations, which couple
the real and the imaginary parts of the dipole
even for 4 = 0, and suppress the center peak more
than the side peaks. It should be mentioned here
that for y=0. 1I', Eqs. (50) and (56) were solved
with six hundred expansion coefficients. The con-
vergence is excellent ((n)c"= —3.4x 10 ', (n)„,
= —5.7x 10 ", (n), = —9.8x 10 ', (n)„,=4.1
x10 '4).

Figure 3 shows the resonance fluorescence
spectra for Q~ = 50I' and 6 =0. In the case of the
PD field, the triplet structure is resolved more
clearly than in the previous figure because of the
larger Rabi frequency. A triplet structure de-
velops also in the case of the chaotic field, but
the side peaks are much lower and broader than
those for the PD field. For y=0. 1I', the spacing
between the center peak and the side peaks of
(S((u)) " is -0.69(us. In the limit (I'+y)/2& —0

this spacing tends to gs/W2, which corresponds
to the most probable value in the Rayleigh dis-
tribution [Eq. (8)] of the real amplitude of the
chaotic field. In fact, the sidebands of (S(&u))c"
form a two-sided Rayleigh distribution with aver-
age value equal to (d~ i6, xs Generally, in the
strong field limit and for 6 = 0, the sidebands of
the resonance fluorescence spectrum reconstruct
the probability distribution of the stochastic field
amplitude from the infinite number of moments
(h' ), K= 1, 2, . . . , which enter into the equation
for W(t, s). Note that the odd-numbered moments
(h' ") do not enter in Eq. (50), but they are not
needed to reconstruct the two-sided amplitude
distribution which is an even function. The re-
construction of the amplitude distribution becomes
more accurate as the ratio (I'+y)/&u~ decreases
and the atom responds to higher moments of the
field amplitude. The amplitude distribution re-
produced by the sidebands is partly masked by the
center peak which for a chaotic field has a width
-(I'+y). In the case of ac Stark splitting in double
resonance the amplitude distribution is reproduced
unmasked. ' '" " The spectrum of resonance
fluorescence in the presence of a Gaussian-ampli-
tude field does not exhibit a triplet structure.
This is because the amplitude distribution is a
Gaussian with zero mean value [Eq. (12)]. The
spectrum (S(v)) consists of a sharp Lorentzian
peak with width I' and a broad Gaussian peak with
width 2v'2 ln2 u~, both centered at (d = ~,. The
height of each peak is inversely proportional to
its width. A spectrum of this type, but with the
Lorentzian peak having width y, was predicted
qualitatively by Avan and Cohen--Tannoudji for
the chaotic field. ' Although their physical argu-
ments were correct, these authors assumed a
Gaussian distribution for the amplitude of the
chaotic field, which actually is a Rayleigh dis-
tr ibuti on.

Figure 4 shows the development of the center
line dip at ~& = 50I'. For y=25I the triplet struc-
ture in (S(e))pn is barely resolved As the . band-
width y is increased the center line dip appears.
For y= 50I', the difference between the center
line dip and the side peak is -

ll%%uo, while the
separation of the side peaks is -0.88~~. As the
bandwidth is increased further, the side peaks
come together and the center line dip disappears
as shown for y =100I'. Note that the center line
dip in the spectrum (S(~))pn appears only for
y- ~~ » I'. Since phase fluctuations, in general,
tend to suppress the center peak, the dip should
develop also in the case of other types of phase
fluctuations besides the Wiener-Levy type. The
spectra (S(~)) " and (S(&u)) do not exhibit a dip
because the intensity fluctuations suppress the
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FIG. 4. Resonance fluorescence spectra. Same as
Fig. 3 but for different values of the bandwidth.

sidebands. As can be seen from Figs. (2)-(4),
(S(&u,)) is always larger than (S(~,))c" and
(S(e,))pn for 2„»I". This is because, as we
mentioned earlier, intensity (amplitude) fluctua-
tions do not affect the center peak and for the
Gaussian-amplitude field the Gaussian sideband
has a maximum at a=co. For u~»F and y&F,
(S(&u,))c" is larger than (S(&u,))pn. The width of the
center peak in the case of the chaotic field is
-(I'+y}, while in the case of the PD field it is
-(I'+2y). For &uz»I' and y&1', however,
(S(coo))c" can be either larger or smaller than
(S(&u,)) n, depending on the relative contributions
of the inelastic sidebands and the elastic com-
ponent at e = e,. The sideband contribution is
larger for the chaotic field, while the elastic
component contribution is larger for the PD field.

Note that for &uz = 10I' and y = 0.1I' (Fig. 2),
(S(&u,))c" is larger than (S(&u,))pn, but for 2„=50I'
and y= 0.1I' (Fig. 3), (S(cu,))pn is larger than

Figure-5 shows the resonance fluorescence
spectra for an average Rabi frequency u~ = 10F
and detuning b, = 5F. As is well known, the off-
resonance spectrum for a monochromatic field
is symmetric around ~ = cu„while for a non-
monochromatic field it becomes asymmetric. "
As was explained in Ref. 12, this asymmetry
arises because photons in the tail of the exciting
spectrum are in resonance with the atomic transi-
tion and excite atoms which subsequently emit
within the natural line. This contribution to re-
sonance fluorescence makes the side peak which
is closer to the atomic transition frequency more
intense than the other side peak, and even the
center peak in extreme cases. As can be seen
from Fig. 5, for a given detuning the asymmetry
depends on the bandwidth y and the statistics of
the exciting field. " Off resonance, the genera-
lized Rabi frequency Qz(t) = [b, '+

~ ~~ (t) ~']'~' is not
linear in the field amplitude and the sidebands
do not tend to reproduce the amplitude distribu-
tion. Because of the detuning, Q~(t) is not com-
pletely stochastic and the triplet structure de-
velops even in the case of the Gaussian-amplitude
field. The asymmetry ratio (side peak to side
peak) for (S(&u)) is larger than the asymmetry
ratio for (S(~))c", which in turn is larger than
the ratio for (S(&u))'n. Off resonance, the intensity
fluctuations suppress the two side peaks by dif-
ferent amounts. For y= 10F, it is interesting to
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FIG. 5. Resonance fluorescence spectra. Same as Fig. 2 but the detuning is &= 5I'.
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note that the side peak at (d &(d, in the spectrum
(S(e)) ' has not merged with the center peak as
in(S(u)) "and (S(&u)) . This is because, off re-
sonance, the broadening of the central peak by
amplitude fluctuations is less than that by phase
fluctuations.

V. SUMMARY

A simple and very general method has been
developed to treat the effects of Markovian field
fluctuations with arbitrary correlation time in
resonant multiphoton processes. In this method,
a Markovian stochastic field is described sta-
tistically by its marginal and conditional proba-
bility densities. Using the eigenfunctions and
eigenvalues of the conditional averaging integral,
one can systematically average the integral equa-
tions of motion for the atomic density matrix
operator and its quantum correlation functions.
The method has been used in this paper to study
the effects of Markovian field fluctuations in re-
sonance fluorescence. Three different models
were used for the stochastic field: (a) the phase-
diffusion field, (b) the chaotic field, and (c) the
Gaussian-amplitude field. We have shown that
the intensity of resonance fluorescence in the
presence of a field with intensity fluctuations is
less than that in the presence of a field with only
phase fluctuations, having the same average power
and bandwidth. The largest difference in the in-
tensity of the fluorescence excited by two such
fields occurs for intermediate field strengths
(average Rabi frequency- spontaneous decay rate).
For very strong fields the intensity of resonance
fluorescence is independent of the statistics of
the exciting field. This is due to the saturation
of the atomic transition. We have also shown that
the spectrum of resonance fluorescence depends

critically on the statistics of the exciting field.
For very strong fields the sidebands of the re-
sonance fluorescence spectrum, like the doublet
structure in double resonance, ' ' tend to repro-
duce the probability distribution for the amplitude
of the exciting field. " " Therefore, unlike the
total intensity, the spectrum of resonance fluores-
cence does not become independent of the sta-
tistics of the exciting field in the limit of very
strong fields. Intensity fluctuations, in general,
tend to suppress and broaden the sidebands.
Phase fluctuations, on the other hand, tend to
suppress the center peak of the spectrum more
than the side peaks. Because of the latter ef-
fect, a center line dip develops in the spectrum
of resonance fluorescence in the presence of a
phase-diffusion field. This dip, which is re-
ported for the first time in this paper, occurs
for strong fields when the average Rabi frequency
is approximately equal to the bandwidth, and the
detuning is zero. Off resonance, the spectrum
of resonance fluorescence in the presence of a
nonmonochromatic exciting field becomes asym-
metric." Although the asymmetry is basically
a bandwidth effect, the degree of asymmetry
depends on the higher-order statistics of the ex-
citing field.
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