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Fluctuations in laser theories
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The influence of fluctuations on two models relevant in solid-state laser theory is discussed. One model is
the usual solid-state laser model, the other describes a laser with an unstable saturable absorber. For the
usual solid-state laser it is shown that fluctuations act as singular perturbations of a bifurcation. Also
derived is a simplified master equation whose stationary solution is in near-perfect agreement with the
known exact stationary properties of the laser. For the laser with absorber the fluctuations are shown to act
as singular perturbations for some solutions and singular destruction for other solutions. A simplified master
equation is also derived for this model, and its stationary solution is compared with the known exact
stationary distribution. Here too very good agreement is found whenever comparison is possible.

I. INTRODUCTION

Since the publication of the semiclassical the-
ories of Haken and Sauermann' and of Lamb, '
laser theory has enjoyed the unique status of a
trailblazer in physics. This is due to the combi-
nation of two facts: (i) a laser is a real device so
that any theoretical prediction may (and indeed
must) be checked experimentally, and (ii) a laser
may be described by a rather simple model which
nevertheless exhibits all the basic properties of
a highly nonlinear system. The ideas of spontan-
eous symmetry breaking, the emergence of
macroscopic self -organized states, nonequilibrium
phase transitions (to name but a few of the con-
cepts with which laser theory deals) have spread
in many other fields. ' The recent work of Haken'
clearly indicates how concepts developed for the
simple laser model can be extended, e.g. , to
biology, sociology, and hydrodynamics.

For the laser action to take place, two mechan-
isms are required. The triggering of the. laser is
due to spontaneous emission, which plays the role

'of a fluctuating source term. Spontaneous emis-
sion is a stochastic source of radiation because it
is isotropic in space and has a finite frequency
spread. This initial radiation propagates in a res-
onant: cavity which selects one mode (monomode
cavity} or a set of discrete modes (multimode
cavity} with well-defined energies and propagation
directions. These selected modes are then am-
plified by stimulated emission. Stimulated emis-
sion is a coherent source of radiation because it
conserves energy and momentum. In this paper
we shall consider three theoretical approaches to
describe monomode laser action.

The simplest theory is the semiclassical (SC)
theory. As shown by Shirley, ' the SC theory can
be derived from a fully quantum basis by study-
ing the moments of the atom-field distribution

function. Typical moments are the mean field in-
tensity, the mean atomic polarization and inver-
sion. The only assumption to introduce in the mo-
ment equations is the complete neglect of spon-
taneous emission. It was shown independently by
Paul and by the author' that this unique assump-
tion implies that the field is in a pure coherent
state. The SC theory gives asymptotically exact
results far above threshold.

The next level of description gohich soill be con
sidered in this paper is the semiquantum (SQ)
theory as developed by the author. The SQ theory
still deals with moments, i.e. , with mean values
of microscopic operators in order to retain some
of the remarkable simplicity which characterizes
the SC description. However, spontaneous emis-
sion is partially retained so that a more refined
description is reached. In particular, a nonzero
linewidth is derived implying that the field is no
longer a pure coherent state. The SQ theory gives
asymptotically exact results far from the transi-
tion regions, above and below threshold.

Finally ute shall analyze the fully quantum (~)
approach to laser theory The FQ. theory con-
veys, in principle, all the information about the
field properties and incorporates in a quantum-
mechanically consistent way the relative influ-
ences of spontaneous and stimulated emission
processes. The whole art in this case is to find
approximation schemes that lead to tractable
equations. The two main directions followed by
theoretical physicists are: the derivation of
birth- and deathlike equations' and the derivation
of Fokker-Planck-like equations. ' We shall fol-
low the latter direction in this paper. This paper
is divided into two parts. The first deals with
solid-state lasers, whereas the second deals with
solid-state lasers containing an unstable saturable
absorber.

In the first part we briefly recall the results of
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the SC theory for the solid-state laser and discuss
the nature and behavior of the SC stationary in-
tensity. We then proceed to show, via the study
of the SQ description, that the fluctuations, (i.e. ,
the spontaneous emission) induce a singular per-
turbation of the bifurcation which appeared in the
SC theory. The theory of singular perturbation of
bifurcation was recently set up by Matkowsky and
Reiss,"and the laser theory provides an elemen-
tary example of such an effect. More precisely,
it appears that the SC solutions for the intensity
are the asymptotes of the SQ solutions. This is
no new result but a different way to look at known
results whose relevance will appear in the second
part of this paper. Finally, we conclude this first
part by discussing the FQ description. The whole
problem is to derive a manageable equation from
an original set of four coupled nonlinear differen-
tial equations. A cornerstone. in laser theory is
the exact stationary solution of this set of four
equations which was obtained by Casagrande and
Lugiato. " For the time-dependent description,
the simplest equation is the Fokker-Planck equa-
tion with constant diffusion coefficient. " Unfor-
tunately, the approximation of constant diffusion
coefficient gives poor results, so that more soph-
isticated equations are required. The latest
proposition is that of Casagrande and Lugiato, "
which gives poor numerical results, as we shall
see in this paper. However, it is possible to set
up a systematic approximation scheme which
leads to an equation whose stationary properties
faithfully reproduce the stationary properties of
the exact solution of Casagrande and Lugiato. "
Vfe shall call this equation the simplified master
equation; it has much in common with Fokker-
Planck equations but does not allow the unambig-
uous definition of a diffusion constant or function
any longer.

In the second part we study the properties of a
laser with an unstable saturable absorber. The
absorber is called unstable because each of its
two levels have short lifetimes. The theory of

such a system was recently derived for solid-state
lasers. " It was shown that three classes of SC
solutions occur: the zero solution (I,) which cor-
responds to the blackbody radiation below thresh-
old, two solutions (I,) which oscillate at the un-
perturbed frequency when there is perfect tuning,
and two solutions (I,) which always oscillate at
different frequencies than I,. Using the SQ de-
scription, we show that spontaneous emission has
two very different effects on the five SC solutions.
It induces a singular perturbation of the bifurcation
created between the J, and the J, solutions; this is
basically the same type of effect as the perturba-
tion described in the first part of this paper. How-
ever, the SQ theory (as well as the FQ theory)
does not produce solutions that in any way corre-
spond to a generalization or a modification of the
two SC solutions 1,. In this respect, spontaneous
emission acts like a singular destruction of bi-
furcation. This effect is related to an accidental
degeneracy of the SC equations which is removed
by the presence of spontaneous emission. The SQ
theory still preserves one aspect which appeared
in the SC study, namely, the occurrence of a
hysteresis cycle. This phenomenon was recently
observed" in gas lasers. Finally, we derive a
simplified (FQ) master equation which still re-
produces faithfully the results of the known exact
stationary solution for which a usuable expression
was recently derived. '

Our starting point is the generalized von Neu-
mann equation associated with the usual model of
a single mode proposed by Haken and his collabo-
rators. ' For a normal laser the equation is

zhB, W(t) = (L „+L + L„+tA„+tA )W(t),

~hereas, for a laser with saturable absorber, we
have

ths, W(t)=(L„+L„+L +L„+L„.
+ i A~+ tA„+i A~) W&, &,

with the definitions:

L~X= II&X—XII&, II& = PK&u(P)at(P)a(P),

L,X= tfv(s'P* —sP}X,

I „~X=a Q [g (P)a (P)PX+ g*(P)a(P)(P* —S)X g*(P)P*Xa(P) —g(P)(P —~ )Xa—(P}],
A X=tf~(s'P~+ sP)X,

A„=-QA(p),

A(p)X=yi(p)([at(p), Xa(p)) + [a~(p)X, a(p)] ]+y&(p)([a(p), Xat(p)] + [a(p)X, a~(p)] )
rj(p) [a(p)at(p)Xa—~(p) a(p) + at(p) a(p)Xa(p) at(p) ],
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with 8 —= 8/8P and 8* —= 8/8p*. The operators I „„
L„,~, and A„, describe the influence of the passive
atoms in the case of a saturable absorber. The
structure of these operators is similar to that of
the active atoms. To distinguish the iwo types of
atoms, we describe the active atoms by the op-
erators at(p) and a(p), the passive atoms by At(p)
and A.(p). The parameters of the passive atoms
are those used for the active atoms but with a bar
above them (e.g. , if a is the active-atom inver-
sion, o will be the passive-atom inversion). (As a
rule we shall adhere to the notation used in Ref.
14). In Eqs. (1) and (2), z stands for the empty
cavity damping of the field whose frequency is p,
g(p) measures the interaction between atoms and
field and p represents in a compact way all vari-
ables needed for the quantum description of the
atoms. The three atomic parameters appearing in

A(p) are related to the atomic inversion (a ), the
polarization (y, ) and the atomic inversion (y„) re-
laxation times through:

a(p)= [yt(p) ri(p)-]/[r)(p)+r)(p)],

r,~(p)= r t(p) + r &(p)

[i(st + r, ) —~] (a)= -g D(t}(p)

i(8, + r„)D(t) =iar„+ 2(g &P&(a'& —g*&P*)&a&), (2 5)

where N is the number of active atoms and D(t)
= (ata) —(aat) is the perturbed atomic inversion.
We introduce the decompositon (P&= E(t)e '~'".
In the long time limit (i.e. , when y, t »1 and y„t
» I), the field amplitude and phase are given by
the two equations

d ~RE(t)
[I+a'(t)+SS'(t)] '

d p, (t) ~XE(t)~(t)
[I+~'(t}+SE'(t)] '

(2.6)

(2.7)
/

where A = Ig I'Na/my~ is the normalized pump pa, -
rameter, S=4 Ig I'/y„y, is the atomic saturation
parameter, and t (t) = [~ —p(t)]y, ' is the detuning
function. Because we are mainly concerned with
the properties of the field amplitude, we may as-
sume perfect tuning (&u= v) without loss of rele-
vant properties of E(t). Perfect tuning implies
p(t} = v. The stationary equation for the reduced
intensity I = SE' is

and

2r, (p) = r ~(p)+ r, (p)+ rt(p) .

g«2 ] =0

whose two solutions are

(2.8)

II. MONOMODE SOLID-STATE LASER

A. Semiclassical theory

0, for& &3.
I=

Q —]. for+a] (2.9)

It is well known' ' that, in order to recover the
traditional working equations of the SC theory,
one may simply start from Eq. (1) and study the
relevant moments of the operator W(t) under the
two factor ization assumptions:

Although mathematically the solution I= 0 is ad-
missible in the whole domain, it is a stable solu-
tion only if A 1. Hence the point4=1 is a bifur-
cation point at which the two solutions cross.

([o.,a(p)+ n,a'(p)]X(P))

=[&i&a(p)&+ &.(a'(p))](&(@&

&a'(p)a(p)&(P) &= &a'(p)a(p) &&X(P)&, (2.2)

[i(8,+ ~) —v] (P)= g*N(a), (2.3)

where X is an arbitrary function of the field vari-
able P=re@. Because such a description com-
pletely neglects spontaneous emission, the field
linewidth vanishes identically, and therefore

P I'&= I&P& I' With this ~q~~lity we may reduce
the complexity of the problem to the study of (P&
and the two additional matter equations necessary
to obtain a closed set of equations. To avoid dif-
ficulties which are irrelevant for the questions we
want to discuss, we introduce the oversimplified
atomic model: All atoms are equivalent (Einstein
solid) and homogeneously distributed. Using the
SC assumptions (2.1) and (2.2), we easily derive
from Eq. (1):

B. Semiquantum theory

(2.10)

[i(8,+ y, + ~)+ v —(u]g*(aP*&

= —Ig I'ln«)D(t) +' [1+D(t)])

i(8)+y„)D(t) =iay„, —2(g*(aP*) -g(atP&) . (2.12)

A glance at the SC equations shows that the only
difference which occurs in the set of Eqs. (2.10)-
(2.12) is the appearance of an additional term

In order to generalize the SC theory, we keep
only the factorization (2.2). In other words we
factorize products of atomic and field variables
if the atomic operator is a di.agonal operator.
Using Eq. (1) and the SQ factorization assumption
(2.2) as well as the low atomic concentration" in
active atoms, we easily derive a closed set equa-
tions for the true intensity, which is defined as
&~'»= & It I'&=.(t):

i(8, + 2z)n(t) =N(g*(aP*& —g(a~P&),
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~ IgI'[1+D(t)] in the second SQ equation. That
this new term should be related to spontaneous
emission is fairly obvious if we compare it with

IgI'n(t)D(t). The latter contribution is propor-
tional to g 'rg(t)a, whereas the former is propor
tional to g '(1+ a}. Consequently both contribu-
tions arise from the atom-field interaction, but
one is a linear function of the field intensity and
can be positive or negative (corresponding to the
possibility of absorption or emission}, whereas
the other term is independent of the field intensity
and is always positive (corresponding to an emis-
sion process). Quite obviously, Ig I'n(t)D(t) will
descr ibe stimulated emiss ion, whereas

Ig I'[1+D(t)] is related to spontaneous emission.
The stationary solution for the reduced intensity
I= S~ is (assuming y, » x):

I= g(A —1 —2S+ [(A —1-—,'S)'+ 8qs]'i'}, (2.13)

where q= (1+o)/4o, = Ig I'N(1+ a)/4y, x. This solu-
tion is a hyperbola whose asymptotes are precise-
ly the two SC solutions (2.9). Furthermore the co-
efficient q is exactly the constant part of the dif-
fusion coefficient one can derive in a Fokker-
Planck equation (see Sec. IIG). We see that spon-
taneous emission (which is tantamount to random
fluctuations in our problem} destroys the degen-
eracy of the bifurcation point and produces one
continuous solution in the whole domain of varia-
tion for the pump parameter A. We can still de-
fine a transition region by the equality P = 1+—,S.
As we typically have S =10 ', this corresponds to
the same transition region as in the SC theory.
Three special values of the intensity can be de-
duced from (2.13):

quote the main result, which is an expression for
the linewidth. For the oversimplified atomic mod-
el we have:

(2.1'l)

where I is given by (2.13) and n is a function
which varies from two well below threshold to
one above threshold. Below threshold this expres-
sion is well approximated by

r = 2qS/I. (2.18)

We shall see that there is a close connection be-
tween the SQ results and the FQ results, which
we now analyze.

1 S 1a e 1e' 18——x—+ —, , --—x' C(x, 8;r),
o, „4 xe& ex x'e~' x&x

(2.19)

C. Fully quantum theory

The object of the FQ theory along the line we
shall follow is to study the Glauber distribution of
the field defined in the interaction picture by

P(p; t) = e 'cz' Tr W(t),

where @g~=L~, Tr means the trace over atomic
variables, and W(t) is the solution of Eq. (1). In
the long time limit this function satisfies a set of
two coupled equations which we directly write
down [see Ref. 14(a), for instance, for a de-
tailed derivation]:

8 1 1 81+———x' P(x, 6;r)
8T gt xex

=A -1--,'S,
I = (2qs)'1'

= 2qs/(1 —A),

A»1+-,'S

A= 1+ pS

A «1+-,'S.

(2.14)

(2.15)

(2.16)

(1+a+x'}P(x, e; r)

1+x'-——C x, 8;y,Sx e'lj

4

Because spontaneous emission is taken into ac-
count in the SQ theory, there is a difference be-
tween & IP I ) and I&P& I

which indicates the ex-
istence of a finite linewidth. This is apparent if
we consider the SQ field equations:

[t(S,+ x) —v] (P)= g*N&a),

[t(S,+y, ) —~] &a) = gD(t) &P)—

The difference with the SC scheme is that now the
function D(t) is given by Eq. (2.12), which is no
longer a function of

I
&P) I', but a function of the

true mean photon number &IP I'). This drastically
modifies the mathematical structure of the equa-
tions and, in particular, deeply alters the nature
of the nonlinearities. We have shown elsewhere'
how to analyze the SQ field equations. Let us

0 f 2P
0'g

(2.21)

where we have introduced

C(p;r)= C(x, e;r)= 2e' &c' rTtaa(W)t,

and the scaled variables v = et, x=S' 'y. We as-
sumed for simplicity perfect tuning. An impor-
tant result is that of Casagrande and Lugiato, "
who showed that the exact stationary solution of
(2.19) and (2.20) is

1 + & f. 2(j.+fyt) / Sa~3-&

Xe 2~/ S + -X2
0'p

+g1
P(x) =( if x~

a,
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TABIE I. Mean stationary intensity vs pump parameter (1) with the solution of Eq. (2.21);
(2) with the solution of Eq. (2.23); (3) with the solution of Eq. (2.24); (4) with the solution of
Eq. (2.25). The parameters are 0& = 10,p = lp

0.7
0.8
0.9
1.00
1.02
1.04
1.06
1.08
1.10
1.20
1.30
1.40

1.5284 x] P-2

2.1049 xlp '
3.2156 xlp '
5.6690 x 10
6.4606 xlp
7,3924 xlp
8.47g2 x lp
9.730»10 '
1.1145xlp &

2.PP54xlP &

3.0000 x 10
4.0000 xlp &

(2)

1.5284 x 10
2.1050 x 10
3.2157 xlp
5.6690 x 10
6.46p6 x 10
7.3924 x 10-2
8.4792 xlp 2

9.7301 xlp '
1.1145x]p &

2.0054 x]0 &

3.0000 xlp i

4.0000xlp &

(3)

1.54gV xlp 2

2.1428 x 10
3.2926 xlp
5.8426 x 10
6.6641 x 10
7.6290 & 10 '
8.7509xlp '
1.0037 x 10
1.1485 xlp &

2.0466 x 10
3.0389xlp &

4.0361 xlp &

(4)

1.5711xlp 2

2.17gVxlp 2

3.3615xlp
5.9663 x 10
6.7g86xlp 2

7.772P xlP 2

8.8987 x 10
1.0185 xlp &

1.1629 xlp
2.0569 x 10
3.0507 xlP
4 P507x

where X is the normalization constant. Using this
result we may readily evaluate (numerically) the
mean intensity (I) and the intensity fluctuation
F(I) = ((I') -(I)')l(I)' with the usual definition:

into Eq. (2.19) and make use of the expansion just
derived for R '(x), we shall have an equafion of the
form

8,P(x, 8; r) = r(x, 8)P(x, 8; v),

where

where g =x'= Sy'. The corresponding results are
shown in the first column of Tables I and II. They
are very useful because they give a reference val-
ue with which other results may be compared.
For both tables we choose g, = 10 ' and S= 10 '.

Eqs. (2.19) and (2.20) do not provide a useful set
of time-dependent equations. Indeed let us write
Eq. (2.20) as (1+u+x')P(x, 8; v) =R(x)C(x, 8;r)
If we want to have a closed equation for P(x, 8; 7),
we have to invert Eq. (2.20) and replace the function

C(x, 8; r) in Eq. (2.19)by R ~(x)(1+o+x2)P(x, 8; w).

Except for the stationary problem, this yields a
partial differential equation containing derivatives
of all orders, up to infinityt Fortunately, a sys-
tematic approximation scheme can be set up which
will lead to a very good approximate equation.
Let R(x) be the operator

Sx
R(x) =1+x'-——.

r(x, 8) = g S"r(x, 8;n).
n=o

In the lowest approximation we have I'(x, 8)
= 1'(x, 8; 0), and the evolution equation becomes

8 1 8—P(x, 8;r)= ——x' 1—,P(x, 8;r).
x ex 1+x

This equation can be solved by the method of
characteristic equations, leading to

—= 2Kx 1—

which is exactly the SC [Eq. (2.6)] with perfect
tuning. Therefore all corrections to I'(x, 8; 0) will
be directly related to the influence of spontaneous

TABLE II. Same as in Table I but for the stationary
fluctuation of intensity.

(4)

Then the inverse operator R '(x) satisfies the
identity

1 1 Sxe
R '(x)=, +,——R '(x),1+x' 1+x' 4 8x

which may be iterated to give

1 Sxe 1R-'(x) = x' .=0 4 ~x 1+x
If we now introduce

C(x, 8; v ) = R '(x)(1+ (r+ x')P(x, 8; r)

0.7
0.8
0.9
1.00
1.02
1.04
1.06
1.08
1.10
1.20
1.30
1.40

1.9229
1.8713
1.7677
1.5705
1.5190
1.4649
1.4099
1.3555
1.3037
1.1228
1.0561
1.0315

1.9231
1.8713
1.7876
1.5706
1.5190
1.4649
1.4098
1.3555
1.3038
1.1229
1.0561
1.0315

1.9209
1.8674
1.7600
1.5579
1.5057
1.4514
1.3965
1.3427
1.2919
1.1179
1.0545
1.0309

1.9448
, 1.8950
1.7901
1.5880
1.5356
1.4811
1.4259
1.3719
1.3207
1.1411
1.0710
1.0434
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emission. The next approximation is to retain the first-order contribution in S in the evolution op-
erator: I'(x, e) =I'(x, e; 0)+ Sl'(x, e; 1). This yields what we shall call the simplified master equation:

8 1a, A ] S 18 x 81+0+x' S 1+v+x'8'—P(x, e;r)= ——x' 1-,l+ 2 + P(x, e; r)av' ' ' x 8x 1+x') 4a, x 8x 1+x' ax 1+x' 4u, x'(1+x') ae' (2.22)

Because we know the exact stationary solution
(2.21) of the coupled Eqs. (2.19) and (2.20), an ob-
vious test for the validity of (2.22) is to study its
stationary solution and the corresponding mo-
ments in order to compare them with the results
derived from the distribution (2.21). The sta-
tionary solution of (2.22) is

P(x) =X(1+x')(1+(r+x') exp[ x'(-x'o, + P)/S],
(2.23)

where u= -1-2o'(1+g,)/S and P= 2(o, —o' —at&,).
The mean intensity and intensity fluctuation eval-
uated numerically by using Eq. (2.23) are shown
in the second column of Tables I and II. The
agreement between the two sets of results is quite
remarkable. It indicates that the expansion in

powers of S for the evolution operator is quickly
convergent for the choice S= 10 4. Because rea-
sonable values of S are equal to or smaller than
10 ', we may safely use the expansion that leads
to Eq. (2.22). It must be emphasized that Eq.
(2.22) is not a Fokker-Planck (FP) equation in the
usual sense. Indeed, in order to have a FP equa-
tion, one must have an evolution operator with the
structure

1 8, 1 8 8 H(x) 8'——x'E(x) + ——x—F(x) +xex
'

xex ex x ie ~

where E(x) is related only to the "systematic"
force; in our problem this means that E(x) must
be a purely SC contribution, being therefore in-
dependent of S (apart from the obvious scaling of
the radial variable r). Then one may interpret
F(x) and H(x) as the radial and angular diffusion
coefficients. Without modifying the SC drift term
1-A/(1+x'), it is impossible to transform the
simplified master equation into a conventional FP
equation. Hence we cannot define in a clear-cut
way a radial diffusion coefficient any longer.
Such an attempt was made by Casagrande and
Lugiato, "who derived a renormalized Fokker-
Planck (RFP) equation by neglecting all terms
which do not preserve the FP. structure. In our
notation their RFP is

8 1 e 2)t' A. S 1+x2+g e2—P(x, e;~)= ——xml1, +1+x' 4~, x'(1+x') ae'

S 1 9 8 1+g+x'
+ ——x—,, p(x e;~).

40, x ax ax (1+x')'
(2.24)

Comparing this equation with (2.22), we see that
a term of order S is missing in the drift coeffi-
cient. Although one may argue a priori that
this term is small compared to the SC drift coef-
ficient, it nevertheless gives a significant devia-
tion from the exact results when the stationary in-
tensity and intensity fluctuation are computed.
The third column in Tables I and II display the re-
sults obtained by using the stationary solution of
(2.24). The real problem in the derivation of a
master equation is the relative influence of the
nonlinearities in the diffusion coefficients. To
have at least some idea of this influence, let us
also consider the most drastic approximation, in
which the diffusion coefficients are replaced by
constants. This is usually assumed to be a good
approximation at low intensities. The correspond-
ing FP equation is

8 1 e, A,
P(x, e;r)= ——x' 1—

„x ex 1+x'

1 8 e 1 a'&
+qS ——x—+ —, , ~

P(x, e;&),x ex ex x' ee'&

(2.25)

with q=(l+ o)/4o, . The last column in Tables I
and II gives the intensity and intensity fluctuations
evaluated numerically with the stationary solu-
tion of Eq. (2.25). From Tables I and II we con-
clude that our simplified master equation gives
the closest approximation to the exact results,
although it is obvious that the absolute difference
between the four sets of results is small. We
made this comparison between four different
equations because the problem is fairly simple
and clear for the model me considered in this sec-
tion. This mill not be the case in Sec. III. Let us
mention that, for all stationary properties dis-
cussed in this paragraph, the effect of detuning
may ve incorporated most easily by replacing
everywhere the polarization relaxation time y~ by

y, [1+((o —v)'/y, '].
In order to see what the connection is between

the three descriptions we have discussed until
now, let us derive from Eq. (2.22) two asymptotic
forms. Well below threshold the stationary dis-
tribution is peaked around the origin x= 0. Fur-
thermore, it is a domain of low intensity so that
the coupling between the field and the atoms may
be considered to be weak. Hence we linearize the
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drift and diffusion coefficients with respect, to

~g~ (which is identical to expanding these coeffi-
cients around x= 0). This yields tbe linearized FP
equation:

8 1 8 1 8 8—P(x, &; r) = ——x'(1 —A) + qS ——x—
X ~X X ~X GX

1 8'
+ —, , P(x, e; r), (2.28)x' &~'

whose exact solution is
00 +CO

P(x, e;r)= g g A(~, m) exp[am&-~(~, m)r]
n=o m="

x xi nial
e-z Llml(e&)

In this expression of the solution, the constants
A(n, m) are determined by the initial condition,
the L„' '(g') are tbe associated Laguerre poly-
nomials, and

e'=x'(1 A)/2qS,

x(n, m) =(2n+ ~m ~)(1-A).

The normalized stationary solution is

x'(1-A}Px =
2

exp-

With these results it is elementary to calculate
the stationary intensity, intensity fluctuation, and
linewidth, which are given by:

(I)= 2qS/(1 -A), E(I)= 1,
1 = X(0, 1)= 2qS/(I).

These results for (I) and 1' are in perfect agree-
ment with the corresponding asymptotic expres-
sions deduced from the SQ theory [Eqs. (2.16) and
(2.18)]. On the other hand, the SC results in this
domain are (I)= 0 and I'= 0 which are bad approx-
imations.

Another asymptotic description can be deduced
from Eq. (2.22) when the laser operates far above
its threshold. In this domain the stationary dis-
tribution is sharply peaked around its maximum
which is located in the vicinity of A —1(=(I)).
This suggests at once the quasilinearization pro-
cedure, "in which the evolution operator is lin-
earized around XM = A —1. I,et y = x -xM. The
quasilinearized FP equation. is

B A —1 B S (A —1)(A+a) B'—P(y, 8;r = 2 —y+—
A By o, A' By'

4o, A(A —1 ale'

and its solution is

P(y, &;r) = g g A(n, m) exp[im0 —X(n, m)r]

xe ~ II (py),

where the functions II„(Py) are Hermite polynom-
ials P=a, /[S(1+v, )] and

2A —1,S A+crX(nm}=2n +m'
( )

.

The stationary solution is

P(y) = X e ~"'= Z exp [-p'(x' —x„')],

where Z is the normalization constant. The three
typical functions we are interested in are easily
evaluated by using the results:

K = 2PS [v'~ ' erfc(-a) ] ',
Z

(I)=x„' 1+
zv 7l erfc(-z)

( I') = x„'(I)+ ,' P', —

where e = Px„'= P(A —1). Because z» 1, we may
approximate (I)=x„' so that we finally have

(I)=A-1, P(I) =-.'e'«1,

1 =~(0, 1)=—, 1 — 1- t «l.qS o' o'

XM

Here too we recover for (I) are I' the asymptotic
results of the SQ theory. Furthermore the agree-
ment with SC results is very good. Therefore we
may conclude that: (a) below threshold, the SQ
theory and the linearized FP equation give as-
ymptotically exact results; (b) above threshold,
the SQ and SC theories as well as tbe quasilin-
earized FP equation give asymptotically exact re-
sults; and (c) in the threshold region, the SQ the-
ory gives a qualitative picture, but only the sim-
plified master equation (2.22) reproduces with suf-
ficient precision the exact result.

Such a conclusion holds only because the normal
laser displays a behavior which closely resembles
a (out-of-equilibrium) second-order phase transi-
tion. It is the uniqueness of the intensity (versus
pump parameter) which makes it possible for mo-
ment theories like the SC and the SQ theories to
give good to accurate predictions.

III. LASER WITH SATURABLE ABSORBER

In this second part we consider the problem of
a monomode solid-state laser with saturable ab-
sorber. Physically as well as mathematically the
difference between this problem and the usual
(monatomic) laser is tha. t, besides the nonlinear
amplification and linear absorption, we now de-
scribe nonlinear absorption. It was guessed by
many authors' "that such an addition would in-
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duce drastic changes and in particular first-or-
der phase transition-like behavior. However,
none realized the full extent of the modifications
brought about by the nonlinear absorption, which
was only recently discovered. '

a=Q.'7 d=d
C =10

A. Semiclassical theory

We use as a starting point Eq. (2) and the SC
factorization assumptions (2.1) and (2.2). This
yields in a direct way the basic equations: 10 12 14 A

[i(s, + «) —v] (p) = Ng*(a)+ N g~ (A),

[i ( s, + y, ) —v ] (a) = gD(t)—(p),

d+y)))+ }= 'y)) + g& )&p& g (a)&p)

[~(S,+y, ) v] &—A)= g@-f)&P&,

~(S +y, )D(f)= y„o 2g&A'&(P&-2g'&A&&P&',

where we have already introduced the oversim-
plified atomic models for the active and passive
atoms. For our purpose it is sufficient to consider
the stationary solutions of the SC equations, for
which we introduce the decomposition

(p) Ee foal

Let us define

&=(0 —v)/y„ I=SE', A= o'/o, =

hagi'No/«y~,

1 —C= o/g„a=S/S, d=y~/«b

Z=y, l«, b=(y, ly, )'.
In terms of these variables the stationary field
amplitude and frequency satisfy the set of coupled
equations:

I =IX/2 j./2
2 +

1-C
1+a2+ I 1+a% +al

FIG. 1. Semiclassical intensity versus pump para-
meter. Class A and 8 solutions. Active atoms saturate
more easily than passive atoms.

f(a, b)= b —)+(d —d) +
)

1:i — 1 —C Ab

1+d d(1+d
To be complete we ought to give a full discussion
of the various domains of existence of the five
solutions and a stability analysis. This is already
in itself a huge piece of work and will be published
separately. " The only result we need for our dis-
cussion is that all solutions, except I, have a
finite stability domain in parameter space. Hence
within the SC frame they do exist. The most pe-
culiar property of the class C solutions is that
they oscillate at a frequency Qw p although we as-
sumed perfect tuning: p= ~= (d. This can be re-
lated directly to the nonlinear absorption. Be-
cause both the field amplitude and the frequency
vary as functions of the pump parameter A, both
functions can display first- and second-order
phase transition-like behavior. Figs. 1-V display
some typical situations.

8. Semiquantum theory

AQT ' 1I"'(fl —v}= -I"'(fl —v), +

(3.2}

As in the first part of this paper we investigate
the SQ description of the laser with saturable ab-
sorber by starting with Eq. (2) and using the ~
factorization assumption (2.2) only. The set of

These equations admit three classes of solutions:

I=0,
(i) Class A:

0= v~

a
1

(ii) Class B: —C+ {[a(A—1) —C]'
-4a(C -A)P/'),

I&i
0=1 d=d
C=10

I = I =f(a, b),
(iii) Class C:

0,= v +y, [f(b, a)]'/'; 10 12 14 A

with
FIG. 2. Same as in Fig. 1 but with equal saturation

parameters.
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a= 1.1

C= 1 0
d=a

I)i
a=1.6 d=10

C=10 d=2

0

10
I

12 14 A

(0)
I

FIG. 3. Same as in Fig. 1 but passive atoms saturate
more easily than active atoms (a &1).

equations mhich determine the intensity is

i(8, + 2«)n(t) = N(g~(aP*) —c.c.)
+ N( g» (AP~) —c.c.),

i(&, + y, + «)g'(aP*) = —Ig I'&n«)D(t)+ 2 [1+D(t) ]},

-1-
-2-
-3-

10 A

AI + F (1 —C)I+ FI=, +1+ I+—'S 1+a(I+'S) ' (3.3)

i(a, +y, + «)g~(AP~)

= —Ig I'(n(t)D(t)+-.' [1+D(t)]},

i(&, + y„)D(t) = iy„o' —2( g*(aP*)—c.c.),
i(9, +y„)D(t)=iy„o 2(g —(AP~) —c.c.) .
We recognize in the right-hand side of the second
and third equations the occurrence of spontaneous
emission through the terms which are independent
of the intensity. The existence of these contribu-
tions will have far-reaching consequences. Let us
introduce two auxiliary parameters which are re-
lated to the spontaneous emission gain:

F= S(o+ 1)/2o„F= S(o+ 1)/2ot.

Then the stationary SQ intensity is the solution of

FIG. 5. Solutions of class A, B, and C without hy-
steresis cycle.

This leads to a cubic equation which can have one
or three real roots. They generalize the SC solu-
tions of classes A and B in exactly the same way
as the $Q intensity (2.13) generalizes the SC re-
sult (2.9): sharp bifurcations are replaced by
smooth variations. The SC zero solution is now

replaced by a finite solution which, to first order
in the spontaneous gain, is given by

[(1+o)lo, + (1+ o)Io, ]
2 (C -A)

t]i
a=5 d=

C=lo d =

a=15 d

C =10

0-v "
K

-2-
-3-

10 12 A 10 A

FIG. 4. Example of bistable domain with class A and
B solutions.

FIG. 6. Solutions of class A, B, and C with simple
hysteresis cycles for the intensity and the frequency.
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2-

gy Ji

K

2-

-2-
-3-

0=10 d =10
C=10 3= 2

how this degeneracy is responsible for the singu-
lar destruction of the class C solutions. Let us
consider the SQ equations for the field:

[i(9,+ «) —v] &P)= Ng» &a)+ Ng~ &A),

[i(S,ir, ) —v]g*&~&= —lg I'&P&D(t»

[i(s, + r, ) —v] g &A) = —lg I'&P&D(t) .
The difference with the SC description is that we
add to these three equations the two equations for
the atomic inversions D(t) and D(t) which are func-
tions of & IiI I') and not of

I & p) I
Introducing the

decomposition &P)= E(t)e '"'" into the SQ field
equations yields in the long time limit".

d
( ) ( )

Ig I'ND(t) Ig I'ND(t)
&I

r. [1+& (t)] r, [1+~'(t)b] i

(3.6)

10 A

FIG. 7. Solutions of class A, B, and C with composite
hysteresis cycle between three solutions for the intensity
and simple hysteresis cycle for the frequency.

In this respect spontaneous emission again in-
duces a singular perturbation of the bifurcation.
However, there is no room left in this description
for the class C solutions. They cannot exist in a
true stationary state according to the SQ theory
(and the FQ theory as well). Therefore we can
say that for class C solutions, spontaneous emis-
sion induces a singular destruction of the solu-
tions. To use the language of bifurcation theory, "
the stationary SC equations can be written in com-
pact vector notation as

E(t) [Q(t) —v] = —E(t) [n(t) —v]

1 Ig I'ND(t)

r, r, [l.b~'(t)] '

where h(t)= [v —Q(t)]lr, . These equations clearly
show where the paradox lies: if we (incorrectly)
assume that & IP I'&= 1&P& I' then Eqs. (3.6) and
(3.V) become closed nonlinear equations for E(t)
and Q(t); in the stationary case they will have
other solutions than the trivial solution E= 0.
These other solutions correspond to class B and
C solutions. On the contrary, if we keep &Ipl')
e

I &P) I', we have a linear differential equation for
the field amplitude of the form

= -r(t) E(t),
f(y;A) = o, (3.4)

E(y;A;6)=0, (3 5)

where the additional parameter 5 measures the
magnitude of spontaneous gain (i.e. , we multiply
the spontaneous gain in the SQ equations by 5).
Hence 6= 1 corresponds to the SQ equations.
When 6-0 Eq. (3.5) reduces to Eq. (3.4) and so do
its solutions:

y(A;O) =y(A), Z(y(A;O);A;O)=f(y(A);A).

The converse is not true: to each solution of (3.4)
there does not correspond a solution of (3.5). In
other words, Eqs. (3.4) (i.e. , the SC equations)
have an accidental degeneracy which is destroyed
by the spontaneous process. This degeneracy can
be traced back to the zero linewidth, which im-
plies the equality & IP I'&=

I &P& I'. We now show

and one studies the branching solutions of the non-
linear equation f= 0. The SQ theory leads for-
mally to the study of the nonlinear equation

where r(t) is no longer a function of E(t). The
only stationary solution of this equation is the
trivial solution E= 0. This result is consistent
with the existence of a linewidth.

Should we conclude that the class C solutions
do not exist? Not really. We know from other
examples that whenever a stable SC solution is
predicted, it corresponds either to a true sta-
tionary state or to a long-lived (metastable) state.
These metastable states have a finite lifetime be-
cause the linewidth is finite, but they decay very
slowly because the linewidth is very small. The
ultimate test for the existence of stable or me-
tastable class C solutions will be experimental.

C. Fully quantum theory

Because there is such a discrepancy between the
predictions of the SC and the SQ theories, it is
highly advisable that we seek the FQ description
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of the laser with saturable absorber. Proceeding
along the same lines as in the first part of this
paper [see also Ref. 14(a)], we easily get in the
long time limit a set of three coupled equations
which link the field distribution function (P) and
two atomic functions def ined by

P(p t) = e'~&'Tr W(t)

C(p; t) = 2e'~F' TrataW(t),

C(P; t) = 2e'~~' Tra'X W(t) .

This master set of equations is

8 1 1 18,~ 1 S 1e e 1 e' 181+—+———x' P(x, e;7)=—— ——x—+ —, , --—x' C(x, e;r)0, 0, x~x ' ' o, 4 x ex &x x'8~' x&x

1 S 18 8 1 92 1 8
+ —— ——x—+—,--—x' c(x, e;r),

a, 4 x8x 8x x' 8e' xex (3.8)

()+a+a)1'(x, (r;r)=(lax'- 1
—)C(x, 8;x), (3.9)

(1+rr+ax')X(x, 8;x)= (1+ax' — "—
) C(x, a;r),

(3.10)
for the oversimplified atomic models. Fortunate-
ly, here too the exact stationary solution is known.
It can be expressed in terms of hypergeometr ic
functions. Because this solution is quite com-
plicated to define, the interested reader is re-
ferred to the original paper [Ref. 14(b)] for ana-
lytic expressions. By means of this stationary

I

solution, Dembinski et gL" have been able to
compute numerically the mean intensity and in-
tensity fluctuation. They are given in the first
columns of Tables III and IV.

In order to get a simplified master equation for
the field distribution function, we apply the method
devised in the first part of this paper for the de-
rivation of E(I. (2.22). It amounts to inverting
Eqs. (3.9) and (3.10) and expressing the functions
C(x, e;r) and C(x, e;r) in power series of S. These
series are introduced in E(I. (3.8) and all zero-
and first-order contributions in S are retained.
This leads to

8, , 1 8 2 A 1 —C S 8' &1 1+a+x' 1 1+g+ax
+ar ' ' x ax 1+x' 1+ax' 4x' ae' rrr, 1+x' ir, 1+ax' )

S 1 8 x 8 1+a+x' S 1 8 x 8 1+o'+ax'
+ +

4o, x 8x 1+x' 8x 1+x' 4o, x 8x 1+ ax' 8x 1+ax' (3.11)

The stationary solution of this equation can be de-
rived analytically; because its expression is rath-
er lengthy, we leave its explicit evaluation for the
Appendix. Numerical results obtained by using
the stationary solution of Eq. (3.11}are reported
in the second column of Tables III and IV. Here
again we reach a very good agreement between the
two groups of results. This indicates that Eq.
(3.11}might be a very good approximation of the
master set of equations. To give a reference
point, the last column of Tables III and IV display
the results deduced from the FP approximation
with constant diffusion coefficient. This equation
ls
9 1 8, A 1 —C

P(x, e;r)=———x' 1—
&7' ' ' x &x 1+x' 1+ax'

1 8 e 1 e'~
+ qs ——x—+ —, , P(x, e; r),xex ex x'»',

(3.12)

I

where q= —,
' [(1+a)/o, +(1+o)/o, ]. The correspond-

ing stationary solution is

P(x) =3I[e " (1+x')"(1+ax')" ')"]', (3.13)

with e= (2qS) '.
Recently Casagrande and Lugiato" derived a

renormalized Fokker-Planck equation to describe
the laser with saturable absorber. We do not try
to make any comparison with their results for
two reasons. First of all, they approximate their
stationary solution by a superposition of Gaussian
functions. Hence it is impossible to trace the
origin of the descrepancies which arise with the
exact results. Secondly, they introduce the pa-
rameter e= (2qS) ' but assume it is a constant.
This is in contradiction with the fact that q, and
therefore q, is a function of the pump parameter.

A characteristic of all the FQ stationary solu-
tions discussed in this second part of the paper
is that there is a correspondence between the
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(2) (3)

TABLE III. Mean stationary intensity vs pump param-
eterA (1)with the solution of Eqs. (3.8)-(3.10); (2) with the
solution of Eq. (3.11); (3) with the solution of Eq. (3.13).
The parameters are 0&=0'&=10, S=10 4, a =4/3, and
C =20.

Simplified but still valuable information can be
gained if we consider the asymptotic behavior of
Eg. (3.11). Below the transition region we may
linearize the simplified master equation around
the origin which is the most probable stationary
value of x. This leads to

18.44
18.46
18.48
18.50
18.52
18.53
18.54
18.56
18.58
18.60
18.65
18.70

6.6851xlo '
6.7814 x10
6.8929 x10
7.6417 x10
4 5090 x10
2.7244 x 10-~
1.1072
l.9983
2.0585
2.0952
2.1830
2.2672

6.6855 x10
6.7821 x10 '
6.8936 x10 '
7.6600 x10 3

4.6166 x10 2

2.7928 xl0 &

1.1222
1.9991
2.0585
2.0952
2.1830
2.2672

6.7949 x10
6.8947 x10
6.9976 x10
7.1047x10 3

7.2215 x10 3

7.2934x10 3

7.3975x10 3

8.0863 x10
1.3531x10
6.3189xlo '
1.9498
2.2746

8—I (z, e; r) = ——&'(C -a)
8~ ' ' „x8x

1 8 8 1 8'
+qS ——x + 2 2 P{xy ej r)x 8x 8x x'88'„

The only differences between this equation and Eq.
(2.26) is that 1 -2 is replaced by C -& and the
diffusion coefficient is now defined by

1 1+0 1+0

number of extrema they have and the number of
SC or SQ solutions. This property was discussed
at length previously [Ref. 14(a)]. More precisely,
it usually turns out that stable (unstable) states
correspond to maxima (minima) of the PQ distri-
bution, i.e. , to most (least) probable values. A
property of the FQ stationary solutions of Eqs.
(3.8), (3.11), and (3.12) is that their extrema cor-
respond to SC solutions of class A and 8 when they
exist. However, there does not seem to be any
relation whatsoever between the FQ distributions
and the class C solutions. This substantiates our
conclusion that, when first-order phase transi-
tion-like situations are studied, the SQ theory
provides a more faithful picture of the system and
that the class C solutions do not exist in the true
stationary state of the field.

TABLE IV. Same as in Table III but for the stationary
fluctuation of intensity.

(3)

Thus we may directly use the results derived
from Eg. (2.26). This yields for the three impor-
tant functions:

(I)= 2qSt (C —2), E(I)= 1, 1'= 2qS/(I).

At the other extreme, namely, above the transi-
tion region, we adopt the quasilinearization pro-
cedure which amounts to linearizing Eq. (3.11)
around the SC solution I, (for all practical pur-
poses, the corresponding SQ solution is the same
in this domain). Let z=+' —I, and

a(1- C)
(1+I,)' (1+aI,)' '

1 1 1+g+y 1 1+g+ay
4 g& 1+y g& 1+ay

18.44
18.46
18.48
18.50
18.51
18.52
18.53
18.54
18.55
18.56
18.58
18.60
18.65
18.70

1.0491
1.0507
1.5285
2.2380 x10&
6.6667 x 10'
3.5701 x10&
6.0795
7.9429xl0 ~

1.0148 xl0 '
1.5882 x10
4.1421 x10
3.7650 x10
3.3027 x10
2.9408 x10

1.0495
1.0609
1.5408
2.2852 x10i
6 6951 x10&

3.4998 x10~
5.9106
7,7057 x10
9.8436 x10
1.5500 x10
4.1364 x10
3.7629 x10
3.3027x10 3

2.9408 x10 3

1.0688
1.0709
1.0731
1.1105
1.1787
1.3770
1.9581
3.6571
8.4922
2.1035x10&

6.8091 x10
2.8727 x10
1.3591 x10
1.0812 x10 2

1 1+g+y 1 1+g+ay
o, (1+y)' g, (1+ay)''

With these notations, the quasilinearized FP
equation takes the form

—I (z, e; ~) =
~
2I,d—z+

s ( s sq(I, ) s'
8v ' '

~
'8g I, 88'

82
+ p(l.)SI. , p(z, e; r),88

which is analogous to Eg. (2.2'I) so that we may
write at once the general solution and therefore
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the three functions of interest:

(I)=I. ,

F(I) = [SP(I,)/d] /2I, «1,
1'= Sq(I,)/I, = (qS/I, ) G(I,),

where G(x) = q(x)/q(0). Hence, in the whole do-
main of variation of the pump parameter A, we
may write

r = qsn/(I), (3.14)

with u= 2 well below the transition region and n
= 1 well above the transition region. This is the
same behavior as in the normal (i.e. , monatomic)
laser case. However, there is a deep difference
in the behavior of the function n= n(g) in the
transition region. For the monatomic laser the
function u decreases monotonically from two to
one. On the contrary, for a laser with saturable
absorber, a has a large maximum in the transi-
tion region. This behavior is similar to that of
the fluctuations of intensity F(I). This relation
can be partially elucidated in the framework of
the $Q theory, where it is easy to show that the
linewidth is given by

1+D 1+D S 1
a, o, 4(I) a(l) '

where D(D) is the stationary inversion of active
(passive) atoms and

a(n) = (x")/(x" ') (x').
This functions as a direct characterization of the
field fluctuations. For blackbody radiation we
have a(yg) = yg/2, whereas for a coherent state
a(yg) = 1. Furthermore, the intensity fluctuations
are related to this function by the simple relation
E(I)= a(4) —1. The inverse of the function a(1)
may be interpreted as a measure of the field am-
pli. tude fluctuation.
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APPENDIX

The stationary solution of Eg. (3.11) may be
written as

P(e)=Xexp — ' U(x*)),Sa a+1
where g is the normalization constant and

U(z) (1+s)'(1+as)'-A(1+ as)'[~S+(1+z)'] -(1-C)(1+z)'[2aS+(1+as)']
a(a+ 1) (1+z)(1+ az) [(1+o'+ z)(l+ az)'+ (1+a+ az)(l+ z)']

p(z) = (1+o+ z)(1+az)'+ (l+(r+ az).(1+z)'
= a(a+ 1)(s+ n)(z+ P)(z+ y) .

In terms of the three roots n, P, and y, we define
three sets of coefficients. The first set is

D(1)=(P r)/D, -D(2) =(r —n)/D,

D(3) =(n P)/D, -
D= nP(n P)+ nr(r —n)-+yP(P r), -

with the properties:

QD(I) = o, g ~b)D(I) = o,

gD( )~'(') =1,

where, for the sake of compactness, we defined
5(1)= n, 5(2) =P, and &(3)=y. These coefficients
come from the reduction a(a+ 1)y '(z) =Q, D(i)/
[z+ 6(i)]. Another necessary reduction is

a(a+ l.) F(i) F(4)
q(z)(1+as), [s+g(g)] (1+as) '

where

E(1)= (r - 8) [a'Pr - a(P+ r) + 1]/F,
E(2)=(n y)[a'ny —a-(n+y)+1]/E,

E(3)= (P —n) [a'nP a( n+ P) + 1]/E-,

E(4)=a'[Pr(P r)+ nr(r —n-)+ np(n P)]/'F, -
with

F= Pr(r P) [a'» -a(P+ -r)+1]

+ ny(n —y) [a'ny —a(n+y)+ 1]+nP(P —n) [a'nP —a(n+ P)+ 1]+a'nPr[Py(P —y)+ nr(y —n)+ nP(n —P)] .
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The properties of these coefficients are

' a QE(i)5(i}+F(4)= 0, a QE(i)+ E(4)= 0.

The last set of coefficients arises from the reduc-
tion

a(a+ 1) g E(i) E(4)
(1+z)y(z)

g [z+ 5(i)] (z+ 1}

The E(i) are obtained by taking the corresponding
coefficients F(i}and replacing a by one.

We may then write

U(z) = p(2)z'+ p(l)z+ Q v(i) ln [z+ 5(i) ]

+ v(4) ln(1+z)+ v(5) ln(l+ az),
with

p(2) = a'/2, p(1) = 2a(a+ 1) —a'A —a(1 —C) —a' g D(i)5a(i),

v(i) =aa54(i)D(i)+[-2a(a+ 1)+a A+ a(1 —C)]D(i)5'(i)
+ 5'(i) [D(i)(a'+ 4a+ 1) - a'A& SE(i) -Aa(a+ 2)D(i) —a(1 —C)aSE(i) - (2a+ 1)BD(i)]
+ 5(i) [-D(i)2(a+ 1) + aASE(i) + (1+2a)AD(i) + aBSF(i)+ (a+ 2)BD(i) )
+ D(i) AaSE—(i) -AD(i) —aBaSF(i) —BD(i),

v(4) = -(a -1)'AaSE(4), v(5) = ——,(a —1) BaSE(4), where B= 1 —C.a
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