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Coherent dynamics of a free-electron laser with arbitrary magnet geometry. II. Conservation
laws, small-signal theory, and gain-spread relations
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Generalized conservation laws and gain-spread relations in the free-electron laser are derived for variable
wiggler configurations. The derivation follows from the general equations of paper I in this series. It is
suggested that bandwidth limitations on the optimization of the small-signal gain-to-spread ratio of a
storage ring FEL might be overcome by transverse velocity filtering of the electrons.

I. INTRODUCTION

Since the experimental realization of the free-
electron laser (FEL),' this device has attracted
considerable interest because of its tunability and
potential for high average output power and high
efficiency. In order to attain high efficiency, how-
ever, it is necessary to develop a good theoretical
understanding of the processes which lead to gain
and electron velocity spreading in the FEL. Our
approach to this problem" has always stressed
the coherent interaction of the electrons and the
light field via a self-consistent solution of the
coupled Boltzmann and Maxwell equations. Other
workers (e.g. , Colson' and Louisell') have ap-
proached the problem by integrating the equations
of motion of single electrons in a prescribed
field and using energy arguments to calculate the
growth of the fields. In a companion paper in this
issue' (Paper I), we resolve discrepancies which
had existed between these two approaches and
develop a theory which combines the best features
of both. Moreover, our new theory applies. to a
static magnetic field configuration with an arbi-
trary slowly varying amplitude and phase.

In this paper we apply these results to a general
discussion of the issues of gain and spread in the
FEL. We show how the gain-to-spread ratio can
be optimized by using a technique directly in-
spired by the "zero-gain" electron-echo technique. '
The limitations of this technique are discussed,
and a possible way around the difficulties is sug-
gested.

Since the multiple-scaling 'approach used in

paper I is rather complex, we proceed by first
deriving our working equations in a more trans-
parent, although less general and rigorous man-
ner. This approach considers the interaction of
an electron and a single mode of the radiation
field in a Lorentz frame of reference moving at
the velocity v, of the ponderomotive potential (the
interference term between the laser and static
fields). In this frame, the electron motion is non-

relativistic, and in the Weizsacker-Williams ap-
proximation, the electron motion and plane-wave
amplitudes are governed by a simple Hamiltonian
(the Bambini-Renier i-Stenholm Hamiltonian),
which can be easily written in quantized form.

In Sec. II, we generalize the BRS Hamiltonian
to a many-electron system and discuss constants
of motion, equations of motion, gain, and velocity
spread in the classical limit. Although this
derivation does not apply in principle to the
general case of a variable wiggler, we show in
Sec. III that, formally, if the equations of motion
derived in paper I are specialized to the case of
steady-state operation, those obtained via the
BRS model have the same mathematical structure.
Thus, although the physical interpretation of the
variables is different, we can use this formal
analogy to readily extend the results of Sec. II to
the general case. The details of the calculations
are relegated to the Appendix.

In Sec. IV, we apply these resul. ts to a discus-
sion of the gain-to-spread problem in a steady-
state, variable-wiggler FEL. We show that by.
choosing an appropriate wiggler design reminiscent
of the "echo" design, both the gain and gain-to-
spread ratio can be made arbitrarily high. How-
ever, the higher the gain-to-spread ratio, the
smaller the electron energy bandwidth over which
this optimization applies. We discuss a possible
way around this problem using transverse varia-
tions in the wiggler and a filamentation of the inci-
dent electrons. Section V is a summary and con-
clusion.

II. HAMILTONIAN THEORY IN A MOVING FRAME

A. Introduction

In a recent series of papers, Bambini, Renieri
and Stenholm' have shown that, in a properly
chosen moving frame, the FEL can be described
in terms of a one-electron nonrelativistic Hamil-
tonian. This Hamiltonian can readily be general-
ized to an &-electron system to get:
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H =Ho+H

a,=au)(ata, +a'a ),
(2, 1)

(2.2)

z~ =P~/M,

P& =-2ghk(ata e ""&+H.c.),
(2.6)

(2.9)

8, =
2 +iong a~@ e 2'~'f (2.3) e ""f, (2.10)

Here a„a~ and a, at are photon annihilation and
creation operators which represent, respectively,
the laser field and the wiggler pseudoradiation
field in the Weizsacker-Williams approximation.
The electrons are represented by the canonically
conjugate variables zf and pf, where j = I, . . . , N
and [s;,P&]=th6, &. The coupling constant g is given
by

g = 2 vcr, /kV, (2.4)

where r, =e'/4v&, m c' is the classical electron
radius, V is the quantization volume, and M is
the electron mass multiplied by a relativistic cor-
rection (M =ma, '~' in the notation of paper I). The
reference frame moves at a velocity v, chosen so
that the laser and wiggler frequencies coincide with

=v =ck. Equation (2.1) is the basic Hamil-
tonian of our discussion. It yields the following
constants of motion:

where we have assumed that the wiggler is so
strong that any intrinsic time variation in a can
be neglected; i.e. , we regard a„as an externally
imposed arbitrary function of time.

In the classical limit, all operators in Eqs.
(2.8)-(2.10) are regarded as c numbers. It is
well known" that the relevant physical quantity
for the dynamics of the FEL is the relative phase
8f between the individual electron j and the pon-
deromotive potential. Depending upon 8f, a given
electron wil. l be either accelerated or decelerated,
leading to a bunching of the electron distribution.
Gain or absorption will follow depending upon the
difference between the number of accelerated and
decelerated electrons.

In order to make the physics more apparent in
the equations of motion, we thus reexpress Eqs.
(2.6)-(2.10) in terms of this phase 8&. In the BRS
frame, we have

Ho=ha&(at, a, +ata ) =constant, (2 5) 8, (t) =2hz, (t). (2.11)

P =gP& +h'k(ata, —at a„) = constant.
f

(2.6)

Since Iro is constant, it can be eliminated easily
by going to a rotating frame at frequency e in
Hilbert space. Equation (2.6) states that the total
electron. -field momentum P is constant. (Remem-
ber that the laser and wiggler are counter-pro-
pagating waves. ) Equations (2.5) and (2.6) can be
combined to give

P, =g p~ +2hkata, = constant. (2.7)

Physically, this indicates that on the microscopic
level, the interaction between electrons and the
laser field proceeds via the exchange of 25k units
of momentum. This discrete, quantum-mechani-
cal process can be described as a continuous one
if the gain width of the FEL is much larger than
2hk. In this limit, the system behaves classically.
In this paper, we will consider the classical FEL
only. Following standard procedures, we obtain
this limit by first deriving the Heisenberg equa-
tions of motion of the system, and then treating
all operators as c numbers.

%'e assume for simplicity that all electrons
initially have the same momentum p, and make the
transition to a continuum of electrons by labeling
8(t, 8,) by its initial value 8, and assuming that the
electrons are initially evenly distributed in 00.
Because of the physical equivalence of electrons
entering the ponderomotive potential with phase
differences 2am, only electrons within one period
0 ~ 8, ~ 2v need be summed over in Eq. (2.10).
Thus one obtains

8(t, 8,) = (2k/M)P(t, 8,),
j(t, 8,) =-2gSk(a,*a e ' +c.c.),
a(t) =ga.X(e-'"'"').

(2.12)

(2.13)

(2.14)

In Eq. (2.14) we use pointed brackets to denote
the average over 80:

1
(X(8,)) =2 d8,X(8,) .

0

C. Gain calculation

In the small-signal regime the force on the elec-
trons perturbs their motion only slightly. In this
case the electron motion may be described by
letting

8 =8, +2kpot/M +68 (2.15)
B. Classical equations of motion

The Heisenberg equations of motion for zf, pf,
and a, corresponding to the Hamiltonian (2. 1) are

in Eq. (2. 14) and treating 58 as a small quantity.
That is, the relative phase between the electrons
and the ponderomotive potential does not change
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sl gnif icantly, and the ele ctr on distr ibution be-
comes only slightly bunched. In this way we get

a, (t, 80) = —igi)t'a„exp(-i2kp, /M)(e ' o58). (2.16)

The phase angle change 58, obtained by integrat-
ing Eq. (2.12), is (2.24)

The rate of change of the dimensionless Laser
intensity a(a, is found by multiplying Eq. (2.22)
by a~ and adding the complex conjugate. Using
Eq. (2.20), we find that

d
—(af a, ) =i 2@„)[K*(t)K,(t) —c.c.].

2@k)
t

68(t, 8,) = (2k/M) dt'[P(t, 8 ) —P,].
0

(2. 17) From Eqs. (2. 19) and (2.23) we have

p(t, 8,) =p, —[K,(t)e' 0 + c.c.],
where

t

K,(t) —= dt K(t )
0

and

(2.18)

(2.19)

K(t) = 2gaka, (t)a„*(t)exp(i2kp, t/M) .

Inserting Eq. (2.18) into (2.17), and then (2.17)
into (2.16) gives

58(t) = -[K,(t)e'"+c.c.]

(2.20)

(2.21)

and

The momenta P(t, 80) may be obtained to lowest
order by neglecting the bunching 68 in Eq. (2.13)
and integrating to obtain

(2.25)

. ~NM d=i I, —[@2*(t)K2(t)—c.c.]
I,48k' dt

=i
2+ d

—[K,*(t)K,(t) —c.c.] .N d
28k dt

(2.26)

Integrating Eq. (2.26) finally gives the gain in the
interaction time T:

G = [ I a, (T) I' —
I ai (0 ) I']/ I a) (0) I'

which permits us to eliminate K(t) from Eq. (2.24).
We obtain

d
—

la~ I' =i
I ~k2 l[X.*(t)K;(t) —c.e. ]

d, . I'NMI ..

a, (t) =igNa„exp(-i2kp, /M)K, (t),

where

(2.22) =i[v/Mk la, (0) I'][K,"(T)K,(T) —e.c.] . (2.27)

t

K2(t)—:(2k/M) dt'K, (t ) .
0

(2.23)

If the gain is small, one may treat g, as con-
stant in the integrals (2.19) and (2.23). In this
case Eq. (2.27) reduces to

T F
G =i(4ppg'hk'/M) dt a (t") exp(-i2kp, t /M) dt dt a*(t')exp(i2kp, t'/M) —c.c.

I
.

0 0 0 j
D. Gain-spread relationships

(2.28)

As was shown in our previous work, "the small-signal regime of the FEI, is characterized to first
order by a large spread of the electron distribution and to second order only by gain (in the constant wig-
gler limit). Thus, in order to optimize the system, it is necessary to consider both of these effects, or,
equivalently, the gain and gain-to-spread ratio.

We define the spread in the electron momenta by

(2.29)

In the small-signal regime, where (p& =p„we insert Eq. (2.18) into (2.29) to obtain

(&p)' =2 IK, (t) I'- (2.30)

In particular, if the gain is small, Eq. (2.30) becomes
T 2

(Ap)' =8g'5'k' Ia, I' dt a„*(t)exp(i2kp, t/M)
0

We may then write the ratio of gain to spread from (2.28) and (2.31) as

G i[ Jo dt"a (t") exP(—i2kPot "/M) jo dtfo dt'a„*(t') exP(i2kPot'/M) —c.e.]

I f, dta„*(t) exp(i2kp, t/M) I'

(2.31)

(2.32)
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P,=N(p) +2tlk ~a, ~' = constant .

If we let

(2.33)

(2.34)

be the change in the field momentum, then Eq.
(2.33) be comes

5P = —(2/~)5P, = -(2h]'g j&) la, (0) I'G, (2.35)

where 5P=(P-Po) is the electron recoil. Equation
(2.35) shows explicitly that the electron recoil is
of second order in a, . [This is why it cannot be
obtained from Eq. (2.18), which is only correct to
first order in a, .] The spread dp, however, is
first order in a, as seen from Eq. (2.31), and is
much larger than the recoil in the small-signal
regime. ' In the small-signal regime, we have,
using Eqs. (2.19) and (2.20),

(2.36)

Differentiating Eq. (2.30) and using Eq. (2.36), we
get

d(&P)'/dP, =2K,*dK,/dP, +c.c.

where z is a constant of proportionality. This is
the most important result of this section. As will
be shown in Sec. III, a formally identical relation-
ship between recoil and gain can be derived in the
case of arbitrary slowly varying wigglers. In
order to improve the performance of a FEL, both
the gain G and G/(bP)' will have to be maximized.
We will show that this can be done by using
techniques closely related to the echo technique dis-
cussed in Ref. 7.

Before proceeding along these lines, we conclude
this section by rederiving a theorem due to Madey
and which relates the recoil and spread of a FEL
in the small-signal regime.
. We first recall that, at the microscopic level,
the interaction between the electrons and electro-
magnetic field involves the exchange of 25k units
of momentum, as shown by the constant of motion,
Eq. (2. '7). In the classical limit this may be written
as

(N/2M)(P') +ih(a(a, —c.c.) = constant . (2.42)

If we write a, as a, = ~a, ~
e '~, then Eq. (2.42) be-

comes

(N/2M)(P') +M&8 ~a, ~' = constant, (2.43)

where &0 = P. This shows that the variation of the
electron energy is connected to the variation of
the laser phase. Equation (2.42) relates (p') to
changes in the laser field a, . This relation is
valid even in the strong-signal regime, but only
provided that a is constant. By contrast, Madey's
relation (2.41) is valid for arbitrary variations in

a, but only in the small-signal, small-gain
regime.

At this point let us consider the right-hand side
of this equation and its relation to electron recoil.
In the small-signal regime we use Eq. (2.27) in

Eq. (2.35) to get

(2.40)

Now from Eqs. (2.39) and (2.40) it is clear that

(2.41)

which is Madey's result. '
Equation (2.41) relates the recoil (gain) of the

FEL to the derivative of the spread of the electron
distribution. Since (hP) is positive definite, it is
impossible to design a system which exhibits gain
but no spread. Intuitively, this is reasonable since
the gain is due to the bunching of the electron dis-
tribution, and bunching clearly requires that some
electrons are accelerated while others are de-
celerated. However, relation (2.41) still leaves
much freedom to optimize the design of a FEL,
for instance by having a spread curve with a very
steep slope near the point (b,p)'=0. This will be
discussed in detail in Sec. IV.

Finally, it is interesting to contrast Madey's
relation with the law of energy conservation. If
the wiggler field a does not depend explicitly on
time, then the Hamiltonian 0, in Eq. (2.3) is a
constant of the motion. Inserting Eq. (2.10) into
Eq. (2.3), we obtain, in the classical limit

IH. THE cw FREE-ELECTRON LASER AMPLIFIER

(2.38)

Combining these last two equations, we obtain

d(dP)'/dP, = -2i[K,*(T)K,(T) —c.c.]. (2.39)

(2.37)

If we integrate by parts and use the definitions of
and K„ it foll ows that

In the preceding section, we described the FEL
in a moving reference frame in terms of a one-
mode model. The major advantage of this approach
is that it gives a straightforward physical picture
of the FEL, and several important relationships
between spread and gain can be derived in a par-
ticularly simple way.

However, one would like to consider more gen-
eral situations than single-mode operation with a
constant wiggler. In particular, we want a theory
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dE,($)/d $ =D,A,'($)(exp[-i8(], 8,)]) .
Here, g is the generalized position coordinate

(3.3)

( =—f d e( )z= fzdz'((+e')Z), {'/zc',c ), (3.4)
0 0

where e' g,, ~'/m'c' is the usual electron mass
shift. Note that $ reduces to z when the mass
shift is negligible. A, and E, are the complex
slowly varying amplitudes' of the wiggler field
and the laser field. The position of the electron
with respect to the ponderomotive potential is des-
cribed by the phase angle

8(g, 8,) = (0,/2rg) —&u, v, (3.5)

where g =f —z/c is the retarded time and 8, the
initial value of the phase angle. The energy de-
tuning P, (g, 8O) between the electron and pondero- ~

motive potential is defined through the identity

r r, (1 +roi=-/&, ) . (3.6)

The constants & and D, are given, respectively, by

and

){= e'0 /2m'c'r4 (3.7)

eI
2mc'r, e,A, ' (3.8)

where A0 is the laser mode area and I the electron
current. All other quantities are defined in paper
I.

Equations (3.1)-(3.3) evidently have the same

which accounts for slow variations in the amplitude
of the wiggler field and laser operation with large
gain per pass. In paper I, a formalism was intro-
duced which allows for a rigorous treatment of
these problems.

A remarkable feature of the general equations
derived in I is that, in the case of cw operation,
they have exactly the same mathematical structure
as those derived in Sec. II. Thus, these last
results not only give an excellent physical insight
into the problem, but can also readily be applied
to the more general case by an appropriate change
in the interpretation of the variables. In this sec-
tion, we proceed to generalize the results of Sec.
II to the case of a variable wiggler. For the sake
of clarity, the details of the algebra are relegated
to the Appendix.

We first note that in the cw cold-beam limit, the
equations of motion (40), (41), and (50) of paper I
reduce to

d8(g, 8 )/0d$ = p, ($, 8O),

d g ($, 8())/d $ = —~(A,*($)E,($)exp[i8($, 8,)] + c.c.},
(3.2)

Here L, is the "renormalized" length of the mag-
net,

L
S(z)dz, (3.10)

and A, ($) is related to the wiggler amplitude A, ($)
via

A, (g) =A, (g)e '»', (3.11)

where p, 0 is the initial detuning between the elec-
trons and the wiggler. By using A, instead of
A„p0 is included in the static field. For a standard
magnet (A, =constant), Eq. (3.9) reduces to the
usual antisymmetric expression for the FEL gain.

The gain-to-spread ratio for a variable wiggler
may be written in the small-signal, small-gain
regime as

i f; dg fo'd]'A,*(]')f; dg"Ad(&") +c.c.
(&p, )' ) f;d~ A(~) ~'

(3.12)

[compare to Eq. (2.32)]. In the next section, we

mathematical structure as Eqs. (2.11)—(2.13),
although they describe different physical systems.
The former equations describe a single-mode
laser in a moving frame; the latter equations de-
scribe a laser amplifier in the rest frame, pos-
sible with large gain per pass. The former do
not treat variable magnet geometry in a rig-
orous fashion, since M=m&'~' and v, are re-
garded as constant; the latter describe an FEL
with a magnet whose spatial frequency is chirped
to compensate for variable A. The former make
use of an arbitrary quantization volume V; the .

latter are expressed in terms of measurable
quantities, although the beam area A0 is treated
phenomenologically. In the Hamiltonian model of
Sec. II it is assumed that the electrons are un-
bunched at time t =0 in the moving frame; in Eqs.
(3.1)-(3.3) the electrons are taken to be unbunched
at the position z =

$ =0 where they enter the mag-
net. The interaction time T in the former case is
analogous to the effective magnet length I '

in the latter. . However, we can use the formal
mathematical equivalence between these two sets
of equations to immediately obtain general forms
for the gain, spread, etc.

As mentioned earlier, the relevant quantities
for the optimization of the FEL are the gain and
gain-to-spread ratio. We find that the gain per
pass is given in the small-signal regime by [see
Eq. (A21)]

K L'
G=) (D e)i dfd('A, ,{(') d("A (( )+c.c.) .

0 0 0

(3.9)
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d(ap, )' jdgo =26p, (3.13)

also applies if the input energy distribution is not
sharp, provided that the derivative is taken with
respect to the mean electron energy and the shape
of the input distribution is held constant.

IV. APPLICATION TO THE PROBLEM OF
VELOCITY NARROWING IN THE FEL

Recently we have considered the possibility that
a technique analogous to conventional photon echo
applied to the FEL could reduce the spread in the
electron velocity distribution. ' In that work, we
showed that the insertion of a "time-reversing
magnet" could eliminate spreading of the velocity

I

use this relation to optimize the gain-to-spread
characteristics of a FEI.. Before doing that, how-
ever, we note that in the variable wiggler case,
Madey's theorem

distribution. %hile we felt that this example was
instructive, it was incomplete because, as we
noted in that article, the effects of gain were not
taken into account. Instead, we emphasized that
the main cause of spread is random injection times,
and spread is therefore largely gain independent.
Therefore, one can obtain interesting insights into
these random effects without considering gain.
However, the question remains: In the presence
of finite ggin is it possible to minimize spread' ?
That is, to what extent can we tailor the wiggler
field so as to maximize the gain-spread ratio'?
With Eq. (3.12) at hand, we are now in a position
to answer this question.

Let us return to Eq. (3.12) and write the complex
wiggler field amplitude which appears there in
terms of real and imaginary parts:

A ($) =A ($)e Po

Inserting Eq. (4. 1) into Eq. (3.12), we obtain

a f, deaf, d( f, d( b4($)A(h )-A, (5')A. (h')1

(f;d(A, (())' (+f;d(A. (())'

The numerator X of Eq. (4.2) can be simplified by noting that (see Fig. 1)

(4.2)

{4.3)

Substituting (4.3) into (4.2) and interchanging the dummy variables $ and $" in the second term of the inte-
grand, we obtain for the numerator.

d' d" d — d' d" d A, 'A2(' (4.4)

(4.5)

FIG. 1. Domain of integration in Eq. (4.3).

The integral over $ can now be evaluated trivially
and, replacing g" by y and g' by x, one finds that
the gain-to-spread ratio is proportional to the
simple expression

G f "xf dv{'y x»i(»-A2(y)
(&V) (f, A, {x)dx) +(f, A, (x)dx)'

In order to discuss the implications of Eq. (4.5),
it is instructive to consider a concrete example.
The gain-to-spread ratio takes a particularly
simple form if A, (g) is an odd function of g —I,'/2.

(4.6)

f

In that case Eq. (4.5) reduces to

G f, dx xA, (x)

f dxA, (x)

Thus, one sees that the gain (or spread), and
gain-to-spread ratio may be independently con-
trolled by an appropriate choice of A, (x) and

A, (x).
It is worth mentioning that the magnet design

considered here is closely related to the echo
configuration discussed in Ref. 7. Although in the
present discussion, we do not have a drift region,
the sinusoidal shape of A, is reminiscent of the
FEI. plus time reversing magnet, since the phase
of the ponderomotive potential in the second part
of the magnet is reversed with respect to the first
part of the magnet. (Remember that in the echo
discussion, one of the possible solutions did not
involve a drift region. } Thus, one sees that the
echo concept still applies in the presence of gain,
although a complete rephasing of the electron
distribution is not possible. This, however, is
not surprising, since the extraction of optical
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A, ($) =e '~0 (A, +iA, coswg/L ), (4.7)

energy from the system represents an energy loss
or dissipation as viewed by the electrons. The
fluctuation-dissipation theorem indicates that
such an interaction is irreversible; that is, we
would not expect arguments based on time reversal
to apply. One can draw an analogy between the
process of gain in the FEL and atomic lifetime g,
in the usual optica1. problem. In both systems, the
presence of an irreversible process prohibits a
complete rephasing of the medium. However, the
analogy should not be carried too far, since in the
FEL A, and A, are functions of the detuning go so
that a magnet design which optimizes the gain-to-
spread ratio for a given velocity group may not
(and in general will not) be adequate for other de-
tunings.

We discuss this aspect of the problem for the
specific example of Fig. 2. Here, we take

with A, and A, constant. Clearly, for p,, =0 the
gain-to-spread ratio reduces to (4.6) and can be
optimized by taking A, »A, . The question that we

address is then to determine the gain-to-spread
ratio for other values of p.

As seen in Eq. (3.12) [see also Eq. (A20)], the
spread (b,g)' is given by

LI 2

(~~)' d~ A, (~)
0

(4.8)

which reduces for the example of Eq. (4.7) to

From the recoil-spread theorem [Eq. (3.13)], we
see that the gain is proportional to the derivative
of (d, g)' with respect to p, :

(Ag)2 ~ ' sin ~0 + 2~0 cos~o (4 9)
2A . L 2A L

2 p, o+(m/L ) 2

cc —'sin~o + 2 0» cosA . L A
2 p', + (v/L')' 2

2+ L$2 2 @ ~2+ + LI 2 p2+ + L& 2 . 2 )
(4.10)

For p, ,=0, we obtain

6 ~A,A, L"/w',

and with Eq. (4.9)

1 AA, L ABI
/( ~) " '(2A, I.')'" A

(4.11)

(4.12)

We can define a critical detuning p, , as the de-
tuning such that for ~g )& g„ the terms propor-
tional to A, become dominant in Eq. (4.9). If one
considers only values of p, much smaller than the
gain bandwidth m/L', then one finds

consistently with Eq. (4.6). As ~p, ~
increases,

however, the terms proportional to A, become
dominant in Eq. (4.10), if we choose A, «A, in

order to optimize (4.12).

Ap

Al

FIG. 2. Magnet geometry used in Eq. (4.7}to illu-
strate optimization of gain-to-spread ratio.

(4.13)

(Note that this value is consistent with p & w/L'

for A, «A„.) For ~g ~» g„we can neglect the
first term in Eq. (4.9). Both the gain and spread
are then proportional to IA, ~'; that is, the gain-
to-spread ratio is independent of the choice of
A, /A, . Consequently, a wiggler design which
optimizes the gain and gain-to-spread ratio at
p, o =0 is ineffective for ~g ~& p, .

Since p, scales as (A, /A, ), one sees then that
the product (gain divided by spread) times (optim-
ized gain bandwidth) is roughly constant, inde-
pendent of A, and A, . In other words, if one
chooses a strong optimization for a given p, o, it
will be effective for a very small range of de-
tunings only. If, on the other hand, one is inter-
ested in a wiggler effective for a wide range of
detunings, then the gain-to-spread ratio cannot be
improved significantly as compared to that for a
standard wiggler.

However, we have another degree of freedom to
work with, namely the transverse dimension. This
gives an extra possibility of improving the output
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of the FEL. To get a sense of how this might help,
let us consider Eq. (3.11) and replace A, ($) by

A, (), r), where r is the transverse dimension of
the magnet (i.e. , we now consider transverse
variation of the wiggler). Also let us define P(g, r)
to be the phase of A, (g, r). Equation (3.11) now

becomes

A ($, r) = P, (&, r) ~exp[-ig, $ +P(g, r)]. (4. 14)

It is easily seen that by injecting electrons with
various initial energies at various transverse po-
sitions (see Fig. 3), so that p, ,(r) is a function of
r, we can design a wiggler such that all electrons
interact with an optimum gain-to-spread ratio;
that is, we choose g such that

-ip, (r)$ +g(g, r) = —sV, », $, (4.15)

where p, „,is the "velocity" at which the gain-to-
spread ratio is optimized. One way of carrying out
the optimization physically is to use a magnet of
constant period, but with a transverse gradient in
the field strength. By adjusting the transverse
dependence of the mass shift a(r), one can largely
eliminate initial spread in the z component of the
electron velocities. Thi.s is related to the gain-
expansion technique proposed by Madey et a/. " An
alternative approach is to introduce an actual
transverse dependence in the magnet period, as
indicated in Fig. 3. However, it remains to be
seen whether such a scheme can be developed
into a practical device.

In conclusion, then, we see that by combining
the echo technique with a gain-expansion wiggler
design, or with a transversely varying wiggler
period, it should be possible to obtain a magnet
configuration for which both the gain (or spread)
and the gain-to-spread ratio can be optimized for
a wide range of electron energies. We are cur-
rently initiating a detailed study of the complete
three-dimensional FEL problem in order to
investigate this possibility in detail.

V. SUMMARY

In this paper, we have used the multiple-
scaling analysis developed in paper I to discuss
the issue of gain and spread in a variable wiggler
FEL. We have shown that one can obtain an in-
tuitive understanding of the general cw FEL equa-
tions by considering the simple Bambini-Renieri-
Stenholm approach' and generalizing it to an &(-
electron problem. The rigorous results for the
variable-wiggler cw case can then be rederived
trivially by a simple change of interpretation of
the BRS variables. The electron-echo technique
discussed in a previous paper' has been shown to
essentially still apply in a system exhibiting gain.
However, the irreversibility due to the extraction
of energy from the electrons limits the extent to
which this technique is applicable. We have used
a simple example to show that the product (gain
divided by spread) times (optimized gain bandwidth)
is constant, so that only a narrow band of electron
energies will interact in an optimum way with the
ponderomotive potential if the gain-to-spread ratio
is strongly optimized.

However, the FEL case offers an extra degree
of freedom, since electrons with different energies
can be injected at different transverse locations of
the wiggler field. Thus, by the use of transverse
gradients in the magnetic field (gain expansion)"
or of transverse variations of the wiggler period,
one should be able to optimize the gain-to-spread
ratio for a significant range of electron velocities.

In order to assess the limitations of the pro-
posed technique, it will be necessary to study in
detail the complete three-dimensional FEL. This
analysis will also have the advantage of providing
a detailed description of the transverse electro-
magnetic mode geometry and of diffraction effects.
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FIG. 3. Schematic diagram of how a transversely
varying wiggler period could be used to compensate for
initial velocity spread.

APPENDIX

In Sec. II we described the FEL in a moving
reference frame in terms of a one-mode Hamil-
tonian model. In this appendix we connect this
analysis to the results of paper I. In paper I, we
derived coupled Maxwell and generalized pendulum
equations for the FEL, using a multiple-sealing
technique. These equations are very general, in
that they allow for coherent transient behavior,
an arbitrary initial energy distribution, arbitrary
slow variation in the amplitude of the static field,
and diffractive beam spreading. Now we restrict
these equations [Eqs. (40), (41), and (50) of paper
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I] to the case of cw operation in the cold-beam
limit, neglecting diffraction. In this case the
variables 7 70 po may be suppressed and these
equations become

«(&, 8.)/« = P(&, 8.), (A1)

dP ((, 80)/d$ = -i(lA,*($)E,($)exp[i8(g, 80)]+c.c.),

dA, /d p, , = -ipoA (A9)

The coupled linear equations describing the FEL
in the small-signal regime are

ings to be zero. We adopt this frame of reference
now in discussing the small-signal regime. Note
that, if we do this, we have

dE,($)/dg =DQA, ($)(exp[ —i8($, 80)]).

The constant D, in Eq. (A3) is given by

Do = aI/o' = eI/2mc'yoeo+,

(A2)

(AS)

(A4)

dE.($)/d$ =ADA, ($)K (()

dK, (])/d] =K,((),
«,(&)/« ~~,*(—~)E.(&),

where

(A 10)

(A11)

(AI2)

and all other quantities are defined in paper I.
Equations (A1)-(AS) evidently have the same

mathematical structure as Eqs. (2.10)-(2.13).
Therefore, the analysis carried out in Sec. II
goes through in the same way for Eqs. (Al)-(AS).
In this appendix we merely state the principal
results without repeating the detailed proofs.

The law of conservation of energy is obtained by
multiplying Eq. (AS) by o'E*, adding the complex
conjugate and inserting Eq. (A2):

K, =-(e ' '58),
z', = —(e op),

(A13)

(A14)

P(g, 8,}=-[K,(g)e'"+c.c.],
and the velocity spread is given by

(&~)'=&P') =21K,(()I'.

(A15)

(A 16)

and the changes in phase angle 68($, 8,) =8 —8,
are assumed to be small. The electron velocities
are given by

d, d (nI ')
(A5)

The explicit form of the velocity distribution may
be found by substituting Eq. (A15) into Eq. (A8) and
carrying out the integration over 8,. We obtain

~(4, V) =(I/~)(4IK I' —u') '"

8(0, 8,) =8„
P, (0, 8,) =p

(A6)

(A7)

We have used Eqs. (47) and (18) of paper I in
obtaining the last step. The left-hand side is the
rate of change of the optical power, I/e is the
number of electrons per second, and [from Eq.
(12) of paper I] mc'yo(p)/k, is the average recoil
energy per electron. This conservation law is
the counterpart of Eq. (2.33). Thus, conserva-
tion of energy in the rest frame corresponds to
conservation of momentum in the moving frame.
This is consistent with the ultrarelativistic nature
of the electron motion.

The initial conditions associated with Eqs. (Al)
and (A2) are

(A 17)

The distribution has singularities, as is generally
the case in the cw cold-beam limit. It is therefore
simpler, and just as physically illuminating, to
deal with P($, 8,) rather than w($, p).

Although Eq. (A15) does not give recoil, we can
nevertheless calculate linear gain by using the
Maxwell equation (A10). We get

d iE, i'/d$ = iD~ E)K, +c.c.

iao dpi*

i

~(5, p) = &6(p P((, 80)})— (A8)

The normalized electron velocity distribution is
given by

« i d$ l
' d( ' d$ i

'
i
—(K,K,*—z,*K,) .

K i d$
(A 18)

If one performs the transformation P =P —g„
8' = 8 —p, g, A, ($) =A, ($) exp( i p, $), th—en .both the
unprimed and primed variables satisfy Eqs. (Al)-
(A3), but Eq. (A7) is replaced by P.'(0, 8,) =0.
Thus, it is possible (and sometimes convenient)
to include the energy detuning in the static field
amplitude and thus take the initial electron detun-

G = fz,(1.') P//E, (0) P —1

=(iD./1~ IE,(0) I']H~. (I')K,*(~')

—K,*(L,')Z, (I.')]. (A19)

We may integrate Eq. (A18) to get the gain per
pass:



2018 BONIFACIO, M KYSTRE, MOORE, AND SCULLY 2l

One can see from Eq. (A16) that the spread van-
ishes at the end of the magnet if and only if K,(L')
=O. However, in this case Q is also zero. In the
small-gain limit E, is practically constant and we
may write explicit expressions for the spread and
gain: ~ (g,*Z,~L"«1. (A28)

The small-signal theory is valid provided that
~K, ($) ~

is, everywhere, much less than one. By
integrating Eqs. (A12} and (All), we see that this
is true if

LI

(&p, }2=2~«.~' dt'A,*(g) ',
0

( t
L, ' K

6 =(Do/c)( s J~ d$ d('A,*((')
p p

(A20)
This is not a necessary condition, however. If
A, oscillates appreciably, as it will if ~l), , ~

&vL,
then the electrons undergo quasifree motion and
the condition

(A 29)
Lt

x d("A, ((')+c.c) . (A21)
0

(A22)

we have

(&p}' = 2 l«~,*L' I'(sing/q)' (A23)

For the standard magnet, where there is a con-
stant A, such that

g, (~)=A,e +',

is sufficient and less restrictive.
In Sec. II we obtained a conservation-of-energy

law [Eq. (2.42)] if the wiggler a„was indepen-
dent of time. In the present context, this law
may be obtained by assuming that g is con-
stant (i.e. , a standard magnet). In this case
we use the frame of reference in which Eq. (A7}
applies. Thus,

and

G =(D, L)(")~A, ~'(sing)(q ' sing —q
' cosy),

(A24)

d$ ' ' dP,—(i'(& e.})=2 lI

=2)( —A, E*e ' +c.c.d0, e

d$ s

where

q = p, ,L'/2. (A25)
2ivA -E*—(e )+c.c.cf

'd$

d(Ap}2/d p, , =26p, (A 26)

by the same method as was used in Sec. II.
It can be shown that Eq. (A26) also applies if

the input energy distribution is not sharp, pro-
vided that the derivative is taken with respect to
the mean electron energy and the shape of the in-
put distribution is held constant.

If we integrate Eq. (A15), we get

68 = -[ff,(])e'go+ c.c.]. (A27)

Equation (A24) is the usual antisymmetric ex-
pression for the FEI. gain. The maximum gain is
near @=1.3.

With an arbitrary helical magnet geometry, the
energy detuning still enters A, ($) as in Eq. (A22),
except that A, is a function of $. In particular, if
we differentiate Eq. (A20) with respect to p, , and
make use of Eqs. (A9), (A21), and (A5), we obtain
Madey's theorem

2ie d'E,= ——E* ' +c.c.
D s d/2

2i~ d dE, dE,*

(Ap)' = —6p, (2go +5p)

P' (', dZ, dZ,
kD, &

' dg ' dg
(A 31)

Note that this relation is valid even in the
strong-signal regime.

(A30)

We have obtained the second line by substituting
from Eqs. (Al) and (A2), and the fourth line
by substituting from Eq. (A3). By integrating
Eq. (A30), we obtain a relation between electron
spread hg =((p, —(p, )}')'", recoil 6g =(g —l(o),
and the laser field:
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