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Coherent dynamics of a free-electron laser with arbitrary magnet geometry. I. General
formalism
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Coupled equations describing the propagation of the laser field (Maxwell equation) and the evolution of
the electron distribution (generalized pendulum equations) are derived classically for the case of
ultrarelativistic electrons moving in a helical magnet with an arbitrary slowly varying amplitude. The
equations apply to coherent transient phenomena, such as picosecond pulse propagation, as well as to
continuous-wave laser operation.

I. INTRODUCTION

In previous works, ' ' we developed a self-con-
sistent classical theory of the free-electron laser
(FEL)" in terms of coupled Maxwell and Boltz-
mann equations. In order to eliminate rapid
oscillations from the equations, the Boltzmann
distribution was expanded in terms of harmonics
of the frequency of the bunching potential, and
harmonics other than the first two were neglected.
This led to a set of "quasi-Bloch" equations de-
scribing the electron distribution, which pro-
vided a good qualitative description of FEL phys-
ics. In particular, it provided the first calcula-
tion of nonlinear saturation of the device, ' clearly
showed the importance of bunching, as well as
first demonstrating velocity spread in the FEL.
Furthermore, by means of these equations, we
were able to show that effects of laser lethargy
are important in the FEL and to provide a good
explanation for such puzzles as the power-tuning
curves and the electron energy distribution. '

Independently Colson, Louisell, Lam, and
Copeland" developed a theory of the FEL in which
pendulum equations are used to describe the
motion of the electrons. While their theory pro-
vides a more accurate description of the FEL in
the strongly saturated regime, it is not a self-
consistent theory and does not apply to the pulsed
regime of the present Stanford experiment. ' In-
stead, the amplitude of the laser field is taken to
be constant, and gain is inferred by using con-
servation of energy. Thus, their theory applies
only to single-mode operation with small gain
per pass.

In this paper we combine the best features of
both of the above approximations, i.e., the present
theory is self-consistent and applies to high laser
powers. " In order to accomplish thzs we use a
multiple- scaling perturbation expansion to carry
out the slowly varying amplitude and phase ap-

proximation without recourse to the "harmonic
approximation". Our equations apply either to
coherent transient phenomena, such as the pico-
second pulse regime of the Stanford experiment,
or to continuous wave (cw) operation. In the case
of small-gain cw operation with a helical magnet
of constant amplitude, our equations for the elec-
trons (generalized pendulum equations) reduce
to the pendulum equations used by Louisell et al. '

Our theory can be used to deal with geometries
in which the static magnetic field is a function of
axial position. In Sec. II we formulate the Max-
well and Boltzmann equations for an arbitrary
magnet geometry. We use the multiple-scaling
technique in Sec. III to eliminate rapid oscillations
from these equations in the case of a helical mag-
netic field with slowly varying amplitude. Section
IV introduces single-particle variables for the
electrons and reformulates the treatment of the
hei. ical magnet in terms of coupled Maxwell and
generalized pendulum equations. Finally, in Sec.
V we compare the present theory to our previous
work which used the quasi-Bloch equations.

The present paper is the first in a series ex-
ploring various aspects of FEL physics. In a
companion paper" in this issue (paper II) we apply
the results of the present paper to the conserva-
tion laws of the FEL, the small-signal regime,
and the relationship between electron recoil and
velocity spreading in an arbitrary helical magnet.

In additional papers now in preparation, we will
present other results based on the theoretical
approach to the FEL given here. In particular,
we will present numerical solutions of the coupled
Maxwell and generalized pendulum equations,
treating phenomena such as pulse propagation and
coherent transients in the FEL. We also will
generalize the results of the present paper to the
case of an arbitrary periodic magnet. This leads
to equations governing nonlinear optical harmonic
generation in the FEL.
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II. FEL DYNAMICS V@TH AN ARBITRARY MAGNET
GEOMETRY

where

e[] (1 +e2A2/@pe 2e2)/y2)1/2

As is appropriate to the Stanford experiment,
.we neglect Coulomb repulsion between the elec-
trons" and also neglect incohereot radiation by
the electrons. Then, assuming that the filling
factor (the electron beam area divided by the
laser mode area)

F=a,/A,

is small, the motion of the electrons is governed
by the one-dimensional Hamiltonian

H=rnc y=e[p', +m c'+e'A2(z, f))'~ (2)

The transverse canonical momentum is zero for
a properly aligned FEL, so that the transverse
kinetic momentum is —eA, where

A = A,~„,(z) +X~,(z, t) (3)

is the sum of the vector potentials of the magnet
and the laser fields evaluated on axis. These
fields are assumed to be transverse:

A„„;,(z) =2 ' 'S~,(z) +c.c. , (4)

A~,(z, t) =2 '/2e&, (z, t) +c.c. . (5)

For the present A,(z) is taken to be arbitrary.
We assume that the electrons propagate in the
positive z direction. A,(z, t) is also assumed to
propagate in the positive z direction. In the FEL,
light propagating in the negative z direction does
not interact resonantly with the electrons, so we
can ignore it. From Eqs. (3)-(5) we obtain

A2 = IA I2 + lA im+(A+*+ c.c) . (6)

We assu'me that lA, l« lA, l. The Boltzmann equa-
tion corresponding to Eq. (2) is

Bh Bh e' BA' Bh

Bt Bz 2pBy Bz BP

The g, l' term in Eq. (6) is in general dominant.
However, the cross term involving the product
of the static wiggler field and the laser field leads
to bunching of the electrons at optical frequen-
cies, and is therefore crucial to the operation of
the FEL. The term g, l2 is small and will be
neglected. In. order to account for the large-scale
effects of the lA, l' term on the electron motion,
we note that, since the Hamiltonian (2) is time
independent when A, =O, it follows that in this
case y is constant, although p, and v, in general
are not. This fact suggests that we use y as an
independent variable in the Boltzmann equation,
rather than P,. This transformation yields

Bh Bh e2 BA2 Bh
Bt ' Bz 2~2&2y B t By

+vg + =0

y=y, (1+y', v/&J, (12)

where k, is a constant to be defined later. The
second. term in parentheses in Eq. (12) is as-
sumed to be much less than one. %'e assume that
y, » 1, so that v, may be replaced by c in the
third term of Eq. (10). This approximation is not
adequate in the second term of Eq. (10), since
we wish to describe a process which is resonant
in the electron velocity. However, if we define
the function

6(z) =-1 + e' lA, l'/m'c' (13)

then we can get a good approximation to 1/v, by
using Eqs. (9}, (12}, and (13):

1/g .(1 ~/y 2) 1/2/e

= (1+~/2y')/e

= [1 +a(l —2y', p/0, )/2y', ]/c. (14)

In our earlier work~ we defined a relativistic
mass M =~ b' ', so we call 4 the mass shift.
It is a measure of the relativistic nature of the
transverse motion of the electrons.

%'e next define new independent variables ac-
cording to

v=t-z/c, (15)
g

b(z') dz ',
0

where 7' is the retarded time and g is a new posi-
tion variable useful in that it includes the effect
of relativistic mass shift. Transforming Eq. (10)
using Eqs. (12), (15), and (16), and inserting Eq.
(14), we obtain

(16)

(17)

Note that &A'/&t, rather than sA'/&z, appears
in Eq. (8). However, the dominant term g, l' in
Eq. (6) does not contribute to &A'/St, since A,
is independent of time. Using Eq. (6) in Eq. (8)
and neglecting the term of order lA, l', we get

Bh 1 Bh e' Bh
+ ——— » (E,A,*+c.c.)—= 0,Bz v Bt 2m2c2yv ~ ~ By

(10)
where the electric field amplitude is given by

E~ = —BAJBf, (11)

To proceed further, we assume that the electrons
have a narrow distribution of energies centered
at m 'y, . We define a detuning parameter p such
that
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where

z=e'k /2m'c'y (16)

ing. Note that the magnet wave vector

k, =k, d, /2y',

Equation (17) is our basic equation describing
the electron distribution.

Let us next turn our attention to the Maxwell
wave equation. In our earlier work' we showed
that, if we neglect diffraction, A„„,obeys the
wave equation

~ ~

92 ]. 8 8 p dp
Bz2 c St2 dd ypgc e0 ~ Oo

provided that k is normalized such that f« f&P,k
is equal to the number of electrons in the magnet
divided by the electron beam area. In Appendix A
we describe an approximate way of putting dif-
fractive spreading of the beam back into the Max-
well equation. Although the total field A appears
on the right-hand side of Eq. (19), the contribution
from A„„, is in practice negligible. Therefore,
introducing Eqs. (4) and (5) and transforming to
the variables r, $, g, we obtain

e 2+y2
6—4———b,——A, = ' A, dp. h, .8( 9$ c 8$ sr ' cc,k,

(20)

However, since A, is an optical field propagating
to the right, variations in A, as a function of c~
occur over an optical wavelength. By contrast,

fh

variations in A, as a function of $ are much slower
(on the order of the magnet length L). Therefore,
we may drop the first term on the left-hand side
of Eq. (20) and use Eq. (11) to obtain

' =0 'J ddd, — (21)

k =t/L', T =L'u,

where

r =2cy', 7-/L',

L' = ( h(z)«
0

(25)

is the effective magnet length in terms of the (
variable, The time unit L'/2&&0 is typically on
the order of picoseconds in present experiments.
In particular, it is much longer than an optical
period. Inserting Eqs. (22) and (24) into Eqs. (21)
and (17), our working equations now read

dddad=Dd. .— ~ jd;d, (26)

;e
~

+(1- eg) = zL "(E,A,*e'8 +c.c.) . (27)

Here we define

6 = k,g/2 @', —u&, ~

=($ —&)/& (27')

is a function of position unless 4 is constant; i.e.,
unless g, ~

is constant. A magnet of the type
given by Eq. (22) generates nearly monochromatic
radiation mith a wave vector near k We define
a slowly varying complex electric field amplitude
E, according to

E,=E,($, 7)e '
(24)

mhere &, =ck, .
At this point it is useful to introduce scaled

independent variables

where

D = e 'Ey 2O/2 e,k, . (21')

The angle 0 is the phase of the bunching potential
(i.e., the interference term in A ), and e is given
by

Equation (21) is our basic equation for the laser
field which, together with (17), provides a self-
consistent description of FEL physics.

III. FEL DYNAMICS WITH A HELICAL MAGNET OF
SLOWLY VARYING AMPLITUDE

At this stage of the development &, is completely
arbitrary, and Eqs. (17) and (21) contain fields
which oscillate at optical frequencies. We now
specialize to the physically reasonable case of a
circularly polarized (helical) magnet with a slowly
varying complex amplitude A,(g). We define
A,(() and k, by the equation

A,/n, =A,($)exp(- ik,$/2y') . (22)

%'ith this magnet geometry b is also slowly vary-

e =2y', /kQ' = I/(2m'), (26)

where N is the number of turns in the magnet.
For the Stanford experiment, we have e = 10 '.

Because of the rapidly oscillating factors e'
in Eqs. (26) and (27), it is not feasible to solve
these equations as they stand. In order to deal
with these rapid oscillations, we wish to develop
a perturbation expansion of Eqs. (26) and (27) in
the limit of small &. We do this by means of
multiple-scaling perturbation theory. This is a
mell-known technique in the theory of nonlinear
oscillations, "though it has not been much applied
to laser theory. Further description of the multi-
ple-scaling technique is given in Appendix B.

There are three main stages in the use of multi-
ple-scaling perturbation theory. Fir st, variables
describing the rapid and slow processes in the
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system are identified and treated as independent
variables. A small parameter z is introduced to
describe the relative rates of the slow and fast
processes. Second, the dependent variables are
expanded in a power series in & and solved order
by order. Third, the arbitrariness which results
from regarding the fast and slow variables as
independent must be removed at each step in the
perturbation by requiring that the solutions have
no secular (unbounded) growth in the fast variable.
In the present case 6I describes the rapid oscil-
lations in the electron distribution, whereas T and
7 describe the slowly varying envelope of the dis-
tribution, as depicted in Fig. 1. Following the
usual procedure of multiple-scaling perturbation
theory, we now regard E,(g, 7, 8) and h((, T; p,, 8)
as depending on I9 as an extra independent variable.
This means that we use the chain rule to trans-
form the partial derivatives in Egs. (26) and (2V)
according to 8/&g &/&-( e+'8/88, 8/ey-8/S~
—& '8/88. We thus write Eqs. (26) and (2V) as

efficients of the various powers of &. In the limit
e-0 we are really only interested in E (') and

The zeroth order of Ec(. (29) is

8F (0)/8 8 —0 (33

This says that E is slowly varying, which con-
firms that ~, may be identified as the carrier
frequency of the light. The Eeroth order of Eq.
(30) is

eg(o) 8 p (o) g @(o)

sg sv. 88

eg(o)
= zI."(E~olA,*e' +c.c.) . (34)

If the incident electrons areunbunched, h" (0, 7, p,, 8)

is independent of 8. Since 8 enters Eg. (34} only
through the periodic function e', Eg. (34) clearly
implies that h~'~(t, v; p, , 8} is a periodic function of
8. Thus, k~0~($, 7, p,, 8} may be expanded in a
Fourier series:

~Es ~Es' + e ' = ADA, (()e 'e
J/ de, h, (29)

Iz "~($, 7; p, , 8) = P c„($, 7; p)e'"e. (35)

+(1 —ep}+, p, —= KI ' (E~Aq+($)8 + c.c.)go s

The first order of Eq. (29) is
gE(j. ) 8E(o)

aI9
= " " e
=m. e-"

Next we assume a perturbation expansion

E =E&"+~E(»+ ~ ~ ~

S

g(o) + fall(x) +

(31)

(32)

In order that E ' remain bounded as a function
of 8, the right-hand side of Eg. (36) must not
have a harmonic component independent of 8.
Thus,

gE(o)
=DAq dP c~ ~ g~ P,

We insert the expansions (31) and (32) into Eqs.
(29) and (30) and obtain equations relating the co- Equation (3V) is a necessary and suffici'ent con-

dition that eE" remain small compared to E
for all 8. From Eqs. (3V) and (34), we obtain the
desired slowly varying coupled Maxwell and
Boltzmann equations

Wl GG LER MAGNET:

AMPL I TUDE SLOWLY VARY I NG
COMPARE D TO X q.

eE(&, 7) 1 '"
— e— =DA, d8e '

. dp, h($, r, p., 8),
0

ePi. 1 eh &h ~;e+ p,—=g(E,A,*e' +c c).. (.39)

P ICOSECOND PULSE:
AMPLITUDE SLOWLY VARYING
COMPARED TO 2'�/(ug

FIG. 1. Roles played by the slow variables (, 7 and
the fast variable 0 in the description of the FEL.

We have dropped the superscripts for simplicity
and have restored the units of the independent
variables. In the analysis below we again omit
the factors of 1/2y~oc. The harmonic approxima-
tion (see Sec. V) used in our previous work is
obtained by keeping only the terms n = —1, 0, 1 in
Eg. (35). This is a good approximation in the
weakly saturated regime, but breaks down if there
is strong saturation. '
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IV. THE GENERALIZED PENDULUM EQUATIONS

Equations (38) and (39) can be converted to a
more tractable form by introducing the Lagrangian
(single-particle) variables f($, r„((,(„8o) and

P(g, T„)(.„8o). These are defined to obey the dif-
ferential equations (generalized pendulum equa-
tions)

d8(], 7(), P„8o) /d$ = /i(g, 7;, P„Bo), (40)

dP((, r„ I(,„8o)/df, =- )((A,*($)Z,(g, T, + $)

xexp[$8((r Tor (((or 8())] +c.c.)r .

(41)

together with the initial conditions

8(0, ~„P.„8o)= 8„ (42)

or ( or 8o} I"o ~ (43)

The variable 7, is the time at which the electrons
enter the magnet. The derivatives in Eqs. (40)
and (41) are of course really partial derivatives
in which To JL('p and 0, are held constant. How-
ever, we write them a.s total derivatives to
empha, size the single-particle nature of the equa-
tions. It is easily shown that Eq. (39) has the
formal solution

2'
/l(( 7 fl r) = f dq

~
dr r(ov —(,, g„r )r(u—ii((,v —(, r„,r ))r(r —r((, & (, r', r )).

0

lf we insert Eq. (44) into Eq. (38), we may carry out the integrations over 8 and @to ob,tain
2 fl

8E ((, y)/ag =DR,(g) dp, ,—J
d8 h(0, v —(, y.„8o)exp[-i8($, T- (, p,„8o)].

27K 0

(44)

(45)

From Eq. (39) we see that h(g, T, p, 8), when integrated over 8 and I(., is a function of T g. Th-is means
that the temporal distribution of the electrons does not change appreciably during propagation through the
magnet. Taking into account the definition of D [Eq. (21 )] and the normalization of h given following Eq.
(19}),we have

D dp. = d0hg, v, p., o =, IT-

where I(T- $) is the electron current and we define

o. = e/2mcy„

c = ( eoAoc}'

(4"I)

(48)

Recall that Ao is the laser mode area. Assuming that the electrons are unbunched at $ =0, so that
h(0, ~, p, , 8) is independent of 8, Eq. (46) suggests that we define s(Tr p} to be the current per unit interval
in p. entering the magnet:

Dh(0, 7; p,, 8) =(o(/o )s('vp) .,
Substituting Eq. (49) into Eq. (45) gives

(49)

(50)

In writing Eq. (50) we have allowed the possibility
that &($) is a function of $ so as to approximately
account for diffractive spreading of the laser
beam. This generalization is of some practical
importance. Further discussion of diffraction is
given in Appendix A. We note that the beam power
I' (see Appendix A of Ref. 4) is given by

~=~,a,c(Z.j2= J~Z, ]'. (51)

Equations (50) and (40)-(43) are the fundamental
equations for a helical magnet with slowly vary-
ing amplitude. These equations may be solved

numerically by conventiona. l techniques. Solutions
for the pulsed regime of the FEL will be dis-
cussed in a future publication. There are several
ca.ses in which these equations simplify.

A. . ere operation. This limit is obtained by as-
suming that all variables are independent of 7.
Even if & is independent of ~, cw operation may
not result, because of the large number (-10') of
modes within the gain ba.ndwidth. However, pre-
sumably cw operation can be achieved by using an
intracavity etalon. In cw operation, the equations
do not determine the frequency of the field self-
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consistently. This means that one cannot center
&(Po} at +0=0 without loss of generality, unless
one compensates by redefining A,(g). This is
explained further in paper II.

B S.mall-diffraction limit. In this case we may
take o as constant.

C. Cold-beam limit. If the electrons all enter
with the same energy, we have

BC BC f BC&' + "=«iE,A, ' «c.c.}, (53)

vious theory may be obtained by substituting the
expansion (35) into Eq. (39), keeping only the
terms n =- 1, 0, I, and neglecting products which
lead to higher harmonics than the first. In this
way we obtain the coupled quasi-Bloch equations

&(~, ~.) =l(r)6(~.) (52)
Bc Bc . Bc

+ + i p.c~ = IcE~A f (54)

In this case one may suppress the variable p;, in
the equations.

D. Small-gain limit. If @ is sufficiently small,
gain of the field can be neglected. One can never-
theless investigate the motion of single electrons
as they traverse the magnet and calculate effects
such as energy spreading and recoil.

E. Standard magnet. If A, is constant or is of
the form A,(t') =A,e "', then we have the standard
constant-amplitude field used in the Stanford ex-
periment. However, it may be possible to improve
the performance of the FEL by considering more
general magnet geometries. In particular, we
are investigating the possibility that other geome-
tries may help to minimize the problem of energy
spread.

E. Small-signal limit. If the laser field is suf-
ficiently weak, the angles ~8= & —(80+ po(} are
small, and it is possible to linearize the equa-
tions. Further details are given in paper G. If
one considers the case where A, B, D, and E,
all apply, then one recovers the pendulum-equa-
tion description of the FEL which has been de-
veloped by Colson, Louisell, etc.'

V. COMPARISON KITH PREVIOUS THEORY

In this section we compare our present results
with our previous theory, ' ' regarding notation
and accuracy

Most, of the notational changes in this paper
were made in order to be able to deal with arbi-
trary magnet geometries. This general approach
led to the realization that the electric field,
rather than the vector potential, is the natural
variable with which to describe the laser field.
In addition, we have found it convenient to change
the normalization of the field amplitudes and the
sign of the detuning parameter p. The previous
theory applies in the case of a helical magnet
with constant 4. The transition from new notation
to old notation is then as follows: a 't'-z,
b, ' 'y -y A' m -M —p, A- p c(1-A/2y')

&D

—ik"g*(zg ps 'r).

The harmonic approximation used in our pre-

co =(uI/rr'D)5(p),
in Eq. (54), so that

B C . KQ'. I)' + i p, c,=, ~E,A,*&'( p,) .

(55)

In order to solve Eq. (56}, we make the ansatz

c,(5, p) =( II&'&)[~A (4)~( p) +&,(&)~'( p)] (5'I)

Substituting Eq. (57) into (56), using the identity
p~'(p) =- ~(g), and equating coefficients of &(p)
and ~'(p), we obtain

rK, /dg =K„
dK, /d( = zA,*E,.

(58)

(59)

Furthermore, substituting Eq. (O'I) into (3'I), we
obtain

dEJdg =(inI/a'}K, . (60)

Equations (58)-(60) are the same as Eqs. (All),
(A12), and (A10) derived in paper II using our
new theory. It is not hard to show that this equiva-
lence of our old and new theories holds also for
the pulsed FEL and for a broad incident energy

These equations, - together with the Maxwell equa-
tion (37), are structurally the same as the basic
equations of our old theory. The bunching ampli-
tude c„obeys the initial condition c,(0, 7; p) =0.
If we had kept the higher harmonics, then the
equation for c, would have been driven by c, and
c„and the equation for c, would have been driven
by c, and c„etc. If le~I~~ Ical, then it should be
a good approximation to neglect the higher har-
monics. The small-signal limit is obtained by
replacing c, on the right side of Eq. (54) by the
input distribution c,(0, 7; p). Equations (54) and
(3'I) then form a closed set of linear equations
for the field E, and the bunching amplitude c,. This
procedure gives the correct small-signal behavior
of the field, but has the disadvantage of neglecting
electron energy spreading ab initio.

To illustrate the equivalence of our old and new
theories in the small-signal regime, let us con-
sider the diffractionless cw cold-beam limit. In
this case we may put
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distribution.
Louisell et al. ' have calculated saturation-de-

tuning curves for the single-mode FEL, using
the pendulum-equation approach. These results
differ at high power levels from our less accurate
results obtained using the quasi-Bloch equations. '
Louisell's results were obtained in the cold-beam
limit, and ours were close to this limit. The
quasi-Bloch approach should be more accurate
with a broad incident distribution than it is in the

cold-beam limit. This is because &-function
singularities in &, give rise to singularities in
c, [see, for example Eq. (5V)], so that one cannot
assert that ic, i« icoi. In this case the neglect
of higher harmonics does not seem to be justified.
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APPENDIX A: DIFFRACTIVE BEAM SPREADING

In Eq. (50) we allow for the possibility that o'($) may be a complex function of $ in order to account ap-
proximately for diffractive spreading of the laser beam. The way in which &($) is included in the Max-
well equation (50) is motivated by the requirement that energy be conserved. Recall that E, is the on-
axis field. The optical energy 5,„,of a light pulse passing the point $ is found by integrating Eq. (51) over

(Al)

In order to obtain conservation of energy, we differentiate Eq. (Al) and insert Eq. (50) [multiplied by
E,*($, r)] to get

] 2 7I'«" (()/«= f «d~ &(~-(, ~)—J d~ 8(()& ((, ~)~ v(-~&((, ~-(, ~., &))+~~ }
Converting the integral over r to an integral over 7, = 7' —( and inserting Eq. (41), we obtain

2'F

d&opt(k)/4=-(~/~) — dro j d&0~(~0, &0)—) «0&(& ro, uo ~0) (AS)

It follows from Eqs. (12), (18), and (4't) that the
right side of Eq. (AS) is the rate of change of the
net recoil energy of the electrons passing the
point (. Thus, total energy is conserved.

The ratio A.q(()/&+($) ls the function of pr111clpal
importance in determining the dependence of
FEL behavior on magnet and laser geometry. To
some extent at least, it should be possible to af-
fect the behavior of the FEL in the same way
either by changing the magnet geometry or by
putting optical elements {lenses, apertures, etc. )
into the beam. The latter method would obviously
be experimentally simpler and more versatile.

It remains to be seen how &{$) should be deter-
mined. In general, this is not clear. However,
if the mirror losses are small, it should gen-
erally be a good approximation to use the function
o'(() corresponding to Gaussian beam propagation'~
in the bare resonator. If the beam waist ~, is
located in the center of the magnet, then we take

o = (—,
'

we, c)'i'u), [1 + i(2z —2)/u)', 0,] . (A4)

(&/Bz + V~/2ik, )E,(g, r, r) =u(r) J($, r) . (A5)

Here V2r is the transverse Laplacian, u(r) is the
normalized transverse distribution of the elec-
trons, and J($, r) is defined by

Note that the function & accounts for both the beam
spreading and the optical phase shift associated
with diffraction. The phase shift acts to decrease
the frequency of the laser radiation by an amount
typically on the order of the gain bandwidth. Also
note that in the limit of zero current, Eqs. (50)
and (A4) give the correct z dependence of the on-
axis field for the fundamental Gaussian mode of
the resonator.

We may derive the Maxwell equation (50) cor-
responding to laser beam propagation in the
fundamental Gaussian mode by starting with the
paraxial wave equation'

2 I'

J(g, r) = A,($) dp, ,s(r- $, g,)x —
~i d8, exp[-i8($, 7-$, (((.„9,)]. (A6)
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Equation (A5) provides a more exact treatment
of diffraction than Eq. (50), but is considerably
more complicated to solve. We now show that
Eq. (50) may be obtained by projecting Eq. (A5)
onto the fundamental Gaussian mode of the re-
sonator.

The resonator modes g„(z, r) are a complete
orthonormal set of sc,lutions of the homogeneous
paraxial wave equation

(&/Bz+ V '/2ik, )g„(z, r) =0. (A7)

where

ve(z) =ut, [1 + v(2z —I.)/ve2ok, ].
We may expand E,($, v; r) in terms of the mode
functions g„(z, r ) as

Egg, T, r ) = Q C„(z, T)g„(z, r ) . (A10)
n=0

Inserting Eq. (A10) into (A5) and using (A7), we
obtain

(A11)

If we multiply Eq. (A11) by P„*(z,r) and integrate
over the transverse coordinates, we obtain

&C (z, v)/&z = Jt d'rg*(z, r)u(r)J($, r). (A12)

Let us consider the term m =0 in Eq. (A12). Since
the filling factor is assumed small, we may
evaluate g,*(z, r) at r =0 on the right-hand side
of (A12} and carry out the transverse integration
to get

In particular, the fundamental mode is

g,(z, r ) =(m/2) ' '[I/u{z)] exp[- r'/w~ve(z)], (A8)

complicated than simple Gaussian beam spread-
ing, it is not clear whether Eq. (50) gives a good
description of diffraction, or, if so, how one
should choose 0'($). For instance, it may be nec-
essary to use the paraxial equation (A5) to account
for the results of experiments at Stanford" in
which the cavity losses of the FEL were adjusted
by aperturing one of the resonator mirrors. 'Q7e

have done numerical calculations of the funda-
mental mode of the bare resonator and obtain sub-
stantial disagreement with Eq. (A4) when such
aperturing is present.

APPENDIX 8: A SIMPLE EXAMPLE OF MULTIPLE
SCALING

Although the techniques of multiple-scaling per-
turbation theory are described in the textbooks,
few laser physicists seem to be familiar with the
theory. Therefore, we believe it is justified to
include a simple example here for pedagogical
purposes. Consider the equation

x(t)+ (,)'(t)x(t) = 0, (Bl)

x(t) =Ae'"'+Be '"' (B2)

The phase angle of the oscillator is 8 = {dt. If ~
is not constant, we define the phase angle by

where ~(t) is a prescribed slowly varying positive-
valued function such that

~

v
~

«uP. We wish to
use multiple-scaling perturbation theory to find
an approximate solution to Eq. (B1}valid uniformly
1n t,

We begin by noting that, if ~ is constant, Eq.
(B1) has the solution

8 CO(z, v)/Bz =r/)o(z, 0)J(t, T) . (A13)

At this point we assume that we can truncate the
sum in Eq. (A10) and only retain the term for
n=0. Thus, we have

We use 6I as the "fast" variable of the system.
To describe the slow changes in fs we define a
"slow" variable

E,( $, r) = E,(g, v; 0) = Co(z, r}go(z, 0) . (A14)
s=&t, (B4)

Using Eq. (A14) in (A13), we obtain

s[Z,(t, v)/y, (z, 0)]/&z = p"(z, 0)J(t, r).

Comparing Eqs. (A8), (A9), and (A4), we find
that

0.(z, 0) = (e.e)"'/~(0,

(A15}

(A16)

where e is a small parameter. We regard x(s, 8)
as depending on s and 0 independently. However,
&u(s) is regarded as depending only on s. From
the chain rule we have

(B5)

Inserting Eq. (B5) into Eq. (Bl), we obtain
so that

~*(&)s[c(&)&.(&, T}]/sz = e.«(&, T), (A17)

which is equivalent to Eq. (50).
In situations where diffractive effects are more

9 x & x , &x

(B6)

where ~'(s) =d~/ds. We next assume a perturba-
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tion expansion and. e ' on the right side must vanish. Thus, we
get

g n~(n)

n=o

Using this expansion, the zeroth order of Eq.
(B6) is simply

82~ (0 )
(0)+g =0)

(BV)

(B6)

2~'+ (g'A. =0,
2'&'+ v'& = 0.

These equations have the solution

A.(S) ~d(l &u ~~2(S),

B(s)=B,(0' '(s) .

(B11)

(B12)

which has the solution

X "'(S,&) =di(S)e"+B(S)e " . (B9)

The first order of Eq. (B6) is
8'x'& 8 &~ ) a&&0)

CO -—
g
— +& = -2M — —40

2 . (1) I
88~ Bg8g 88

= -2~(iA.'e" —iB'e ")
—(u (iA.e"—iBe "). (Blo)

This equation is that of a driven harmonic oscil-
lator. However, in order to prevent secular
grbwth in x N', the oscillator must not be driven
on resonance. Therefore, the coefficients of e'8

Inserting Eqs. (B12) and (B3) in (B9), we obtain
the lowest-order solution

I

x(t) d, w "*(t=)exp (t J dt w(t ))''
0

t
+ B,w 't*(t) exp(—t dt'w(t'j)

0
(B13}

For this simple example the mulitple-scaling
technique is a more powerful tool than is actually
required. Equation (B13) is, in fact, the familiar
WKB solution to the linear equation (B1). How-
ever, the multiple-scaling technique can be ap-
plied successfully to many complex nonlinear
problems, such as the FEL, where more elemen-
tary methods are ineffective.
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