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The theory of electron-atom scattering in a radiation field, either spontaneously produced or external, is
formulated in such a way that the effectively strong interaction of the electron with soft photons (those with

frequencies lying below some cutoff co,) is properly accounted for at the outset. Effects of the residual

interaction can then be included using standard perturbation theory. This approach follows that taken some

years ago by Bloch and Nordsieck in their fundamental treatment of infrared radiation in potential
scattering. The fact that the target is taken here to be a compound system which itself interacts with the
field introduces additional complications. A gauge transformation is introduced which helps considerably in

the analysis of these multiparticle effects. Particularly simple results are obtained by treating both the cutoff
frequency eo, and the residual interaction strength as quantities of first order and neglecting second-order
corrections, The cross section obtained in this way, when summed over all final states containing soft
photons, is expressed in terms of the cross section for scattering in the absence of any interaction with the
field. The first-order correction term, not present in the earlier Bloch-Nordsieck version, can be interpreted
in terms of the classical bremsstrahlung radiation emitted as the result of an instantaneous collision. The
low-frequency approximation for the scattering amplitude derived here contains as a limiting case the result

obtained by Low and others for single-photon bremsstrahlung. It also reduces in the appropriate limit to the
recently derived approximation for electron-atom scattering in a low-frequency laser field.

l

I. INTRODUCTION

A nonperturbative treatment of the interaction of
a free electron with the low-frequency modes of
the radiation field, which is required to avoid in-
frared divergences in the calculation of transition
probabilities, was given some time ago by Bloch
and Nordsieek. " In the physical picture presented
by Bloch and Nordsieck one recognizes that for
any given measuring apparatus it will be impossi-
ble to detect individual photons with frequencies
which lie below some limiting value, &„say. The
cross section should then be summed over all
final states which contain these unobservable (or
"soft") photons. It was shown' that for scattering
by a short-range potential, with (d, taken to be suf-
ficiently small, this summation could be readily
performed. The result is just the cross section
for scattering in the absence of any electron-soft-
photon interaction. It still remains to include the
effect of the interaction of the electron with hard
photons, those with frequencies exceeding co,.
Here, however, the standard techniques of re-
normalized perturbation theory are available.

ln a previous paper' (referred to in the following
as I) the Bloch-Nordsieck sum rule was general-
ized, in the context of a nonrelativistic potential
scattering model, to include correction terms of
first order in (d arising from soft-photon interac-
tions. These correction terms take a rather sim-
ple form; they appear. as energy shifts in t.he cross
section formula and ean be interpreted in terms of
the unobserved classical bremsstrahlung radiation

which accompanies the scattering process. The
radiation energy is quite small under normal cir-
cumstances and this provides a check on the under-
lying low-frequeney approximation. The expres-
sion for the scattering amplitude which was de-
rived in I includes as special cases the nonrelativ-
istic version of Low's approximation for spontan-
eous single-photon bremsstrahlung and the more
recently derived low-frequency approximation for
scattering in a laser field. ' Thus much of the
earlier work on potential scattering in a low-fre-
quency radiation field can be viewed as particular
aspects of a single, more general formulation of
the scattering problem.

The result would be more satisfying if the re-
striction to potential scattering were lifted. The
chief motivation of the present work is to extend
the analysis given in I to the case where the target
is a neutral atom. (Electron scattering by an ion
carrying a net charge is explicitly excluded in
order to avoid, at the present time, the addition-
al complications arising from a long-range Cou-
lomb tail. ) lt might be thought at first that the
effect of the internal structure of the target could
be accounted for by introducing an effective electron-
atom potential and then applying the methods used
earlier for potential scattering. However, the po-
tentialmas required to be local in the previous work,
while the effective potential is in general nonlocal.
Furthermore, the field interacts with all of the
electrons, not only the projectile, and this must
be accounted for in some approximation. Rather
than attempting to overcome these obstacles by

21 1939 1980 The American Physical Society



1940 LEONARD ROSENBERG 21

modifying the approach of I we take a different
approach here, based on the use of a gauge trans-
formation. The power and efficiency of gauge
techniques in the derivation of low-frequency theo-
rems has been demonstrated by Low' and others, '
and it proves to be a useful tool in the present
problem as well.

In Sec. II, as a first step in setting up a scatter-
ing formalism which accounts for infrared radia-
tion, we introduce solutions of the Schrodinger
equation for an electron interacting only with the
low-frequency modes of the radiation field. These
so-called coherent states play the role of modified
plane waves. The discussion of the properties of
these states follows along the lines of that given
in I, but is more general, in that effects of elec-
tron recoil are considered. (One might have ex-
pected these effects to modify the form of the first-
order correction term in the cross section. It
turns out that the modification is minimal; it
merely introduces Doppler shifts in the soft-photon
frequencies. ) As in I we include only the p A con-
tribution to the interaction, with the A term ig-
nored; This is justified in the Appendix through a
detailed consideration of the effect of the A' term
on the structure of the asymptotic states. Section
II concludes with a derivation of several addition
formulas involving the expansion coefficients of
the coherent states; these will be useful in the
subsequent analysis. A gauge transformation,
which enables one to extract the effects of the
soft photons from the scattering operator in a
particularly simple way, is introduced in Sec. III.
This procedure also allows for a treatment of the
effect of the soft photons on the target system in
initial and final states. The formalism is then
applied in Sec. IV to the derivation of an approxi-
mation, valid to first order in ~„which relates
the physical scattering amplitude to that which
would be obtained in the absence of any soft-photon
interactions. The result is then used to derive the
generalized sum rule for the cross section. I
conclude by -pointing out how the low-frequency
approximation for single-photon bremsstrahlung in
electron-atom scattering, "as well as various
versions of the low-frequency approximation for
scattering in a laser field, '" can be obtained as
special cases of the result derived here.

w here with ~, =k;c,

II~ = hen,.a,.a,
i=0

and

(2.1b)

E„=ghe;n; . (2.1c)

In the absence of any interaction, and with the
electron in a momentum state lp&, the electron-
field state vector ln; p) =- ln) l p) satisfies

(p.'/2v+H. ) ln p& =(p'/»+~. ) ln. p&. (2.2)

The interaction may be introduced by replacing
the electron kinetic energy operator p, /2 p, with

(p, —eA/c)'/2 p, , the vector potential being repre-
sented as

2mec' "'-A(r)=g, 7.,-(a,.e' ~'~+aIe '"~" ). (2.3)
~ p (dL

An alternative procedure, however, allows us to
focus more directly on the infrared radiation prob-
lem of immediate interest. That is, at this stage
only interactions involving soft photons, with fre-
quencies lying below x„are considered. Hard-
photon interactions must be included in a correct
description of the asymptotic states but this can
be done at a later stage using standard renormal-
ization techniques. Such a renormalization pro-
cedure (which is a finite one because of the low-
frequency and high-frequency cutoffs) is of no
particular interest in the present study and will
not be described here. We consider then, the
soft-photon contribution

A (r) =Q X.(a.e'"&'~+a~e "~)
i=o i

(2.4)

volume L') in order to cut off the spectrum at the
high-frequency end. This is necessary since the
interaction of electrons with photons of arbitrarily
high frequency cannot be consistently described in
a nonrelativistie theory. Let k,. and X,- represent
the wave number and polarization vectors for the
ith mode. The eigenvalue equation for the state
ln) is

(2.1a)

II. PROPAGATION OF AN ELECTRON IN A
RADIATION FIELD

States of the free radiation field can be charac-
terized by specifying an occupation number for
each mode of the field. A state ln), say, will cor-
respond to the set (no, n„.. . ,n„}. The number of
modes is taken to be finite (for finite quantization

to the vector potential and look for a solution of the
Schrodinger equation

I(p, —eA, /c)'/2 p+II~] l y„~) =E„,-l y -); (2.5)

the modified plane-wave state

lpga

is that which
reduces to ln; p) as the interaction is switched
off. We attempt to represent the solution in the
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form

with

E -=E„+P'/2 p+ &&.

Equation (2.5) is equivalent to

[(p,'/2 p, +H~), W1
~
n, p) = ( H,', +—&;)W l n; p) .

(2.6)

(2.7)

(2.8)

[a~, W] =-p,.e'"i' W,

with p, defined by

2m''
n;p;= „. ~. (p, ;).

In this notation we have

I ik. P 1 -ik "P
t=O

(2.isb)

(2.i9)

(2.2o)

In the following the A,' contribution to the soft-
photon interaction II,', will be ignored, an approxi-
mation which is justified in the Appendix. We
have then

H,', = —(e/p, c)p, A, . (2.8)

Note that p, fails to commute with ~ due to small
recoil effects (which were neglected in I). Now the
total momentum operator, which is p, +p~ with

N

p, =g m,.a,.a„ (2.io)
i=O

does commute with ~ so that

Equation (2.8) then reduces to"
S

—g 7i,.p',.W
~

n; p ) = 6;W
~
n; p) . (2.2i)

This of course cannot be satisfied in general.
However, with p,. taken to be of zeroth order (a
point discussed further below), il, p', is seen to be
of first order in id, and the commutator [g;p;, W]
is, in view of Eq. (2.14), of second order. To first
order, then, pip,. may be repla, ced by its eigenval-
ue ii,.;p2; corresponding to the state ~p). The ap-
proximate solution is then defined by the commuta-
tion relations (2.18) and the expression

[p., W] =-[p W]. (2.ii) 2
g wPp tp tp

i=O
(2.22)

This is a quantity of first order in w, since

[a,, W] = [a, , W] = 0,
It follows that

(2.i2)

[p,'/2 p, W] = [p„W].p, /2 p+ (p, /2 p) . [p„W]

=(p./p) [p., WI, (2.13)

ignoring second-order corrections. From Eqs.
(2.10) and (2.11) we have

[p„W]=—g hk,.a,.a, , W
i=O

so that

(2.i4)

[(p, /2 p, +H ), W] = [Hz, W],

with

(2.i5a)

H~= ~ q.a. a. .t
t=O

(2.15b)

We have defined q; =Ax,. for ~,», and

7/; = K(d; —p ' Sk;/p, , id; ~ (d (2.16)

S

[H» W] =g il,.(a,. [a„W]+[a,, W]a,.) .
t=O

(2.1V)

This is evaluated using the commutation relations,
assumed for (d,. «u„

[a, , W]=-p, e '"i ~W, (2.18a)

Returning now to Eq. (2.8) we expand the commutat-
or on the left-hand side as

for. the level shift.
Note that the electron-soft-photon coupling ap-

pears on the right-hand side of Eqs. (2.18) in the
form of the operator p;, defined in Eqs. (2.19) and

(2.16). Thus, the effective strength of the inter-
action is determined by the ratio of the interaction
energy to the photon energy. The effective coupling
cannot be considered to be weak since perturbation
theory gives unphysical results. Here p,. is treated
as a quantity of zeroth order; the interaction ener-
gy and the soft-photon energy are treated as first-
order quantities and second-order corrections
are ignored. The failure of ordinary perturbation
theory in a construction of the asymptotic states,
i.e., the inapplicability of a finite expansion in
powers of p, in the solution of Eqs. (2.18), may be
ascribed to the existence of near degeneracies in
the energy levels of the electron-soft-photon
system. With regard to the electron-soft-photon
interaction in intermediate states of the scattering
process there are no near degeneracies (assuming
the absence of sharp resonances) and first-order
perturbation theory will be adequate. The target-
field interaction may be treated perturbatively for
a similar reason. "

In the remainder of this section we review some
of the properties of the wave operator ~ whi. ch
will be useful later on. To begin with we note that
8' is unitary. This may be proved by using Eqs.
(2.18) to show that W~W commutes with a, and af;
it is a c number in the space of photon states.
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Since W~w conserves both total momentum and
photon momentum it must conserve electron mo-
mentum and hence must be a c number in electron
momentum space. The relation Whew= 1 follows
by choice of normalization. We then have the or-
thonormality relation

&q,„,, Iy„)=&„;p Iw wI;p)=6, „6(p p)

(2.23)

where P and P' represent the total momenta of the
states In;p) and In';p'), respectively. Suppose
now we represent W by the expansion

wln~p&= Q wr. II~ &-p&), (2.24)

W,*„,W,„=5„,„, P' = P .
E

(2.25)

With electron recoil accounted for the various
modes are not independent and in general an ex-
plicit closed-form solution of Eqs. (2.18) cannot be
found. Fortunately, the unitarity property (2.25)
allows us to determine the leading term in the ex-
pression for the cross section summed over soft-
photon states; this is shown in Sec. IV. More de-
tailed, properties are required to determine the
first-order correction to the cross section. Here,
however, we may approximate the expansion co-
efficients appearing in Eq. (2.24) by neglecting the
effect of electron recoil. This introduces first-
order errors in the expansion coefficients and
second-order errors in the cross section. The ap-
proximate version of Eqs. (2.18), appropriate to
an electron in a fixed momentum state Ip), is

[a,, W(p,.)] = [aI, W(p,-)] = -p,lw(~) . (2.26)

The argument p«of W is meant to represent the
set of eigenvalues (p, p„-, . . . , p„-). The commuta-
tion relations (2.26) are satisfied by the choice

W(p;) =exp p;;(a, —a, )
i=O

(2.2v)

The solution (2.27) may be verified with the aid
of the relations"

the sum running over all states of the field. (The
coefficient W, „should carry a label specifying the
conserved total momentum P, but it is omitted
here for notational simplicity. ) The unitarity prop-
erty, when expressed in terms of the expansion
coefficients, becomes

write Eq. (2.27) as
S

w(p,.) = exp
(
—Q p,.w f)i=O

S S

&& exp p;;a,- exp -2 p'i, (2.29)

w~(p;.)W(p,-) = w(p,-- p,-.). (2.so)

This follows directly from the representation
(2.29) along with the identity [deduced from Eq.
(2.28 a)]

eB A eA. Be fABJ (2.sl)

for [A, B] a c number. The analog of Eq. (2.24) is

w(p,.)In) =Q w, „(p,.) II). (2.32)

In terms of these expansion coefficients Eq. (2.30)
becomes

g w*,„,(p, )w, „(p,) =w,„(p,. p, ). (2.33)

It will be necessary in the following to evaluate
the sum Z, w,*„.(p;.)E,W, „(p;). This can be done by
writing it as the matrix element

&n'
I
w (p, ,)B,W(p,.) In) =E„&n'

I
W1 (p,-,)w(p,-) In)

+ &"
I
w~(ps) [B. W(p;)] I.) .

(2.s4)
The commutator [&z, W] may be evaluated with the
aid of Eqs. (2.26). Then, using Eqs. (2.33), we
f1nd

W,*.„, p&, E,W, „p- =E„W„,„p-—p&,
1

S

+ gkco B~.
i=O

where

B,. = p, -W„,„(p-—p-, )

—p,;&n'
I W(p; —p;.)[a, +a, ] In) .

(2.s5)

(2.36)

Had we commuted III; to the left rather than to the
right in Eq. (2.34) we would have obtained the al-
ternative form

The commutation relations (2.26) then follow by
application of Eq. (2.28b).

Several useful properties of W in the no-recoil
(dipole) approximation are recorded here. Firstly,
we have the relation

A+B A B -1/2EA, Bl

[A, e e] = [A, B]e~,
(2.2Sa)

(2.28b)

W, „, p, E,5'q p- E„,W„,„p-—p-,
l

+g RM;B;, (2.3v)
which hold when [A, B] commutes with both A and
B. Thus, using the relation (2.28a) we may re- with

i=O
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Bl = p;'; W;.(p; p-;)

—p -,(n'
~
[a, + a; ]W(p; —pN, )

~
n) .

In a similar way we may perform the sum

(2.ss)

g W,*„,(p;,)p, W, „(p;)=p„W„.„(p; —p;,)+g Sk,B, .

=p~W„,„(p;—p&,)+g hk, B', .

(2.39)

III. GAUGE TRANSFORMATION

Having studied the effect of the interaction of
soft photons with the incident and scattered elec-
tron we now examine its effect on the electron-
atom system during the collision process, and

with the atomic target in asymptotic states. As
indicated earlier there are no near degeneracies
to amplify these effects; they will be treated to
first order only. Due to some fortunate cancella-
tions the result obt:ained, embodied in Eq. (3.16)
below, is quite simple. Perhaps the most con-
venient way to exhibit these cancellations is by
means of a gauge transformation generated by the
unitary operator e', where

g= — F r (s.l)

The sum runs over all the electron coordinates.
With p,. representing the momentum operator for
the jth electron we have

pz —(e/c)A(r, )= e (pz —. (e/c)[A(r&) V&E(r,—)]'fe~. .

(3.2)

g= — A .r, , (3.3)

with A, understood to be A, (0) in the following.
In order to determine the effect of the transfor-

mation on the free-field Hamiltonian H~ we write

e'Hze ~ =Hz+ [g,Hz], (s.4)

The transformation can be used to separate off the
soft-photon contribution A, if F can be chosen to
satisfy VF =A, . Suppose now we introduce the di-
pole approximation A, (r&) —= A, (0), thereby ignoring,
the small effect of electron recoil. This is rea-
sonable since we are calculating a first-order cor-
rection term and we do not attempt to keep track
of second-order corrections. We may then take
I" (r) =A 'r, so that

correct of first order in g. Since only the soft-
photon part of H~ contributes to the commutator,
that term is of first order in w„as well as of first
order in the interaction strength; it will be treated
as a quantity of second order and will be dropped. "
Thus H~ is unchanged by the transformation to first
order. Now the total Hamiltonian maybe expressed
as

2

p, ——A(r, ) /2 p, +H~+ V,
C

(3.5)

where V represents the (gauge-invariant) sum of
the interparticle Coulomb potentials. According
to the preceding discussion we have, to first order,

H =e~He ~, (s.6)

where H is the modified Hamiltonian in which soft-
photon interactions have been removed; i.e. , it is
obtained from Eq. (3.5) by replacing A with A -A, .
It follows that the resolvents G(E) =(E -H) and

G(E) =(E -H) are related by

G(E) =e'G(E)e '. (3.7)

Here H, is the kinetic energy operator for the
projectile electron (channel labels will frequently
be omitted to simplify notation), Hr is the Hamil-
tonian of the isolated target, and H~, is the tar-
get-soft-photon interaction. The energy F. is the
sum of the electron-field energy E„;[defined by
Eq. (2.7)] and the energy Er of the isolated target.
A target level shift, arising from the emission
and reabsorption of soft photons, contributes only
to second order in the interaction H~, and is there-
fore omitted.

Equation (3.7) allows us to extract the effect of
soft-photon interactions which occur during the
collision. We must also consider soft-photon in-
teractions with the target in asymptotic states. Let
n represent the set of observables which define
the asymptotic state ~C,). These include the pho-
ton occupation numbers, the electron momentum,
and the quantum numbers specifying the atomic
state of the isolated target. Since we are account-
ing for electron exchange (the antisymmetrized
scattering amplitude is obtained by taking the ap-
propriate linear combination of direct and exchange
amplitudes in the usual way) we include in the set
6 a channel index specifying which of the elec-
trons acts as the projectile. As discussed in Sec.
II, we include only soft-photon interactions in the
construction of the asymptotic states with the un-
derstanding that the effect of hard-photon inter-
actions is to be included byasubsequent renormal-
ization procedure. The Schrodinger equation for
~4,) then takes the form

(H, +H,', +H +H +H, ) ~4 ) =E ~c'„) . (3.6)
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Consider now the state
~

4 ) = ~y) ~S„;), where
~tt„;) is the electron-field state satisfying Eq.
(2.5), and ~y) is the state of the isolated target, a
solution of

(3.9}H. ~X& =E, (X&.

The state ~4 ) satisfies

(H~+H,'~+H~+Hr} ~4 ) =E ~4 ), (3.10)

in which the interaction H~, does not appear. It
is readily seen that in the approximation adopted
here in which H~, is treated to first order we have
the relation

~c.) =e'r ~c.), (3.11)

T„,.={4., ~(a -E) ~4.)
+(i(H -E)4 . iG(E)(H -E) iC ) . (3.13)

As noted earlier a renormalization procedure
leading to hard photon contributions to projectile
and target level shifts must still be performed.
This will remove disconnected parts (in which the
projectile and target interact with the field but not
with each other) appearing in the expression (3.13).
Equations (3.6) and (3.7) may now be used to write

T, =(e ~4 . j(H-E)~e C~)

+((H -E)e '4; ~G(E)(H E) ~e 4',) .-
(3.14)

Setting g=g, +gr and making use of Eq. (3.11) we
have

e '~4.&=e "~4.&. (3.15a)

Similarly, we may write g=g,'+g~, the primes
indicating the identification of projectile and target
appropriate to channel n ', to obtain

where g~ is given by an expression of the form
(3.3}, but with the sum running over target elec-
tron coordinates only. Equation (3.11}is verified
by using it to rewrite Eq. (3.10) as

e'r(a. +H,'. +a, +a,)e'r ~4.) =E.~C.).
(3.12)

This is of the required form (3.8), the effect of
the transformation of the Hamiltonian in paren-
theses being simply to replace H& by H&+H~, .

Having defined the asymptotic states we can,
following the standard procedure of time-indepen-
dent scattering theory, ' write down an expression
for the transition operator T ~ . The final state
~4,) corresponds to the target system in a dis-
crete state, possibly different from its initial
state; the final photon state may involve a change
in the number of hard as well as soft photons. We
have, with E, =E -=F. ,

e ~4 .)=e ~4 .).
Equation (3.14) then reduces to

(3.15b)

IV. LOW-FREQUENCY APPROXIMATION

The soft-photon component of the interaction
appears in the amplitude (3.16) only through its
effect on the projectile in asymptotic states. Fur-
ther analysis enables us to evaluate this effect ex-
plicitly, the result being expressed in terms of
the scattering amplitude obtained by omitting soft-
photon interactions entirely. In carrying out this
analysis we specialize to the case in which there
are no hard photons in initial and final states; it
should be clear from the discussion how to proceed
in the more general case. Emission and reabsorp-
tion of hard photons in intermediate states of the
scattering process lead to corrections of second
order and are omitted here.

To begin with we simplify Eq. (3.16) by noting
that

(a E)e-. ~C.&=V.e-"~C.&, (4.1)

where V is the electron-target interaction in
channel &. We then have

T, =(e "g„.;, ~t ~ (E -Hz) ~e 'g "), (4.2)

with

t...(E -H~)

V +V, F. -Hz — P, 2p, -V V
j

(4.3)

The physical significance of the operator t, . can
be understood by looking at the matrix represen-
tation, in the basis of unperturbed electron-field
states,

(t'; q' ~t. .(E -H ) (f; q&
= 6 t. .(E Ei; q' q}. -

(4.4)

Here t, (e;q', q) represents the off-shell elec-
tron-atom scattering amplitude in the absence of
the radiation field; the physical amplitude is ob-
tained by going on the energy shell according to
the conditions

e =q'/2p, +Er=q'/2p, +Er. (4 5)

Returning now to Eq. (4.2) we write (with second-
order terms ignored)

T, =(e '~4. , ~(H-E) fe 'eC )

+((H -E)e "4,~G(E)(H -E) ~e g'4, ) .
(3.'16}

Note that the effect of the target-soft-photon in-
teraction H~, has disappeared in this expression.
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e "=1 —»(e/hc)A, ' r . (4.6)
Treating the projectile coordinate r as an operator
in momentum space we have

The T matrix then becomes
(2)~ 0,' 0» ~e'e + ~e'0; y

where the leading term is

(4.8a)

' '
Ie~& = Ie"-&+'( I' I/kc)A, '(-trav;

(4.7a)
and similarly

e 'I»t;, ;,&
= I»1)„,;,&+(Ie (/c)A, v; l»t" ) ~

(4.7b)

T ',»'~ =((/!„~.
I
t(E —H~)

I
(t -) . (4.8b)

(To simplify notation the channel indices on the t
amplitude are omitted here and in the following. )
The first-order correction term takes the form

m@e2 '"
T'-"- =2 . ~» t& &'e"-It(-E -B~)(a»+a»') Ie -&+ ~.- &&'" l(a»+a»)t(E -B~) I&"&3.

q -p COBOL
(4.8c)

(4.9)

(4.10)

According to Eqs. (2.6), (2.24), and (4.4) the leading term may be written as

T& ~ = gt(E E» P -p» P - p»)W»* W»

It will be convenient to express the amplitude t(e;q', q) as t(v, 7, $', $) with the new scalar variables de-
fined as'

v = 2(q'/2»» +q'/2»») 7 =(q' -q)'

&=e-q /2(L» -Z~, $'=e -q' /2»» -Z'r.2 I (»2

The on-shell condition is now simply $ = $' =0. Suppose we expand the t matrix in Eq. (4.9) about the val-
ues

2(P /2p +f /2»») ) 7 (p p)
Then, to first order in &d„

~(&-~i p -v, p-v)=&+2 —, (»''(i. -L)+i& (v. -k))+—&.-&, — " ' +&-)I)

- .(p. -p»)
3& 2»» t»

r —p

(4.11)

(4.12)

The amplitude t and its derivatives are here un-
derstood to be evaluated at the values of the scalar
variables given in Eq. (4.11). The first term on
the right-hand side of Eq. (4.12) is independent of
l; its contribution to T;) is t(Z»W,*„,W»„). Since
this term is of zeroth order in ~, the addition
formula (2.33), derived in a no-recoil approxima-
tion, is inapplicable here. [Nor can Eq. (2.25) be
applied since the total momentum of the electron-

I

field system is changed by the collision. ] Now the
remaining three terms in Eq. (4.12) are of first
order in ~„ their contribution to the sum in Eq.
(4.9) may therefore be evaluated very easily using
the approximate set of W coefficients, along with
the addition formulas which they satisfy, obtained
in Sec. II with neglect of electron recoil. A brief
calculation gives the result

(4.13)
I

term the electron-field states reduce tothe quantities appearing in large parentheses have
been defined in Sec. II.

In evaluating the correction term (4.8c) the mo-
mentum derivatives are expressed in terms of the
scalar variables as

Ic„g= Ip&w(p, ) I.&.

We make use of the relations

&n' IWt(py )(a, +a,.) W'(py) In&

(4.15)

p st p st st
. 2»» Bv p sg sr' = -2P»yW. .(Py —py )+ &n'

I W(py —py. )(a, +a,') In)

2P;y W . (Py P-y )+&n'I(a—»+a»)W(Py Py )In&, —

(4.14)
p' Bt p' 9t Bt

& .t= —— + 2(p' —p) —.—
2»», sv p s( sr

z'",', =t Q W* W»+»2 —
I
-p' ~ Q Sk, B» —f ~ 8'kB»+ »—&yW„, „(py —py, ) — i»»yB»

I
=0 f=o

Bt s
+- ~y W ~ (Py —Py ) — 'U»y B

I )s]g Fl tI y j
k o

With recoil effects neglected in this first-order (4.16)
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along with the definitions (2.22), (2.36), and (2.38)
in the evaluation of (4.8c). The result, to first
order, is

counted for, the sums over field states can never-
theless be performed with the aid of the unitarity
relations

(4.21)

+ 4;-'))'.'.(44-44 )- +4,4a;)

(4.17)

Combining this with Eq. (4. 13) we find that

—g )fit, (B,+ 44( )) .
k=o

(4. 18)

(4.19)

Here E= E as before and we have written E,
=E'+E~, with E'=P"/2p+ b&,, +E4r. A useful
sum rule could be obtained for the case where the
initial state ln) represents a strong external ra-
diation f ield. The derivation would be very simi-
lar to that given previously for the case of poten-
tial scattering. " (The external field problem is
discussed further below. ) Here ln) is taken to be
the vacuum state. If we ignore E„, in the argu-
ment of the energy conserving 5 function and keep
only the first term in Eq. (4.18) we obtain the
z eroth-orde r approx imatio n

4i) -=f4 (4(E - z) ~4)
'*

4 p(g W, .„. W;..)(pW;„.i4, .).(4.»)

While we have not provided an explicit represen-
tation of the W coefficients with recoil effects ac-

pote that the off-shell derivatives have canceled
so that only physical values of the field-free elec-
tron-atom scattering amplitude appear here. As
is easily verif ied, Eq. (4.18) contains as a special
case the result derived earlier for potential scat-
tering in the dipole approximation. '

The quantity of physical significance is the cross
section summed over all final states containing
soft photons. Since the initial state ln) is as-
sumed to contain no hard photons and since the
expansion coefficient W„.„vanishes if ln') con-
tains one or more hard photons, no error is made
when the cross section sum is extended over all
final states of the field. The cross section of in-
terest then is (2m)'(i(, 8/p)dQ with

RI I -=Q ~«p(t —& T)' (4.23)

can be interpreted classically as the bremsstrah-
lung radiation emitted by an electron which has
undergone an instantaneous collis ion changing its
momentum from p to p'. The t-matrix element in
(4.22) represents the on-shell electron-atom
scattering amplitude corresponding to the squared
momentum transfer r= (P' —P)' and energy

p =p'/2 p. + 65 —RI . (4.24)

The incremen' Rs=—
I nfl can be thought of classi-

cally as the energy radiated by an electron with
momentum p when brought suddenly to rest. Thus
the effective en ergy v, which the electron can de-
liver to the target, is less than the kinetic energy
P'/2 p. + && by the radiation energy P&.

The result (4.22) generalizes that obtained by
Bloch and Nordsieck in a potential scattering
model' by allowing for a target with internal
structure. It also demonstrates that a knowledge
of the physical field-free scattering cross section
is sufficient to enable one to include first-order
corrections arising from soft-photon interactions.
While the calculation of hard-photon interaction
effects will be more difficult in general, it is
possible to improve the treatment of the leading
term (4.20) by including the effect of damping on
the sum over photon states. This can be done very
simply using the dipole approximation. for the

The expression (4.20) then reduces to the cross
section for electron-atom scattering in the ab-
sence of the radiation. field.

In calculating the contribution from the first-
order correction terms the W coefficients may be
replaced by those obtained in Sec. II in the no-
recoil approximation since this introduces only
second-order errors. The sum is then easily
performed using the addition formulas of Sec. II.
Since the calculation at this stage is essentially
identical to that carried out previously for the
case of potential scattering in the no-recoil ap-
proximation', we merely quote the final result:

4() = f4') '4(4'- E+ 444 4)l 4(~, (P'- »'l l'.
(4.22)
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hard-photon interactions"; then Eq. (2.6) for the
asymptotic state is replaced by

~$„5)= W„(p5)Wjn; p), (4.25)

(e.(W)=ex@ g e e(e;-et)I.
kns+1

(4.2 6)

This modification has the effect, in the sum over
states in Eq. (4.20), of introducing the replace-
ment ( 1)m

m) (m+ v) l
(4.31) .

(2.33) derived earlier in the no-recoil approxima-
tion. If the field is sufficiently s.trong so that
photon depletion effects are negligible the expan-
sion coefficients take the form of products of
Bessel functions, a result obtained earlier" using
quite different methods. It may be derived direct-
ly from Eq. (4.30) by expanding the exponential,
with the commutator [a, , a~] taken to be zero, and
with the identif ication

where

TV*,„,W„-e " " 8"*,„,TV, „,

p y
—

pygmy

(4.27a)

(4.2 7b)

If one further specializes to the single-mode case,
with recoil effects ignored, the low-frequency ap-
proximation derived recently by Mittleman'- is re-
gained.
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dQ = d'P'6(E' —E)e D ~t('. (4.28)
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As shown in Sec. II the SchrMinger equation is
equivalent to the relation
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APPENDIX

S

W = 1+ p (e'"&'~a —e '" '(~a~), (4.29) [H„W]~n;p)= ( H;, + ~,)W~n; p). (A2)

which is correct to first order in the interaction
strength.

The approximation (4.18) is also applicable to
the problem of electron-atom scattering in a
multimode low-frequency laser field. The prob-
lem simplifi. es if spontaneous omission is ignored
and all modes of the external field have the same
propagation direction; the operator W can then be
constructed explicitly, with recoil included. The
result in that case is

W= exp Qe, (e' ' e,. —e ' &'e',)),
f sP

(4.30)

where now &, represents a low-frequency cutoff
in the spectrum of the external field. The com-
mutation relations (2.18) may be verified for the
above choice of 8'by following an argument simi-
lar to that given below Eq. (2.27). The identities
(2.28) are applicable by virtue of the transversal-
ity condition k&

~ A~=0 for all modes i and j, which
implies that e' ~' commutes with p,. for all i and

j. The expansion coefficients, which are easily
obtained from the representation (4.30), can be
shown to satisfy an addition formula of the type

Since the effective interaction is the ratio of the
interaction energy to the photon energy we may
expect that the additionalA, ' term in the inter-
action, nominally of second order, actually in-
troduces first- order corrections and cannot be
discarded at the outset. Nevertheless, the sum
rule (4.22) for the cross section is unchanged
since it is based on general properties of the
operator W which are preserved, to the required
order, with the inclusion of the A', term. Specif-
ically, the zeroth-order contribution to the cross
section Eq. (4.20), can be evaluated as before
since the unitarity property (4.21) is preserved.
Taking into account the first-order correction
term we may determine the 8' coefficients to
lowest order, ignoring both recoil effects and the
A', contribution. - The derivation of the sum rule
then proceeds in a manner identical to that de-
scribed in Sec. Pf.

To verify these expectations concerning the
properties of the operator TV we look for the ap-
propriate modification of the commutation rela-
tions (2. 18) in the form

[a&, W]= -C, )(., ~ [)8p, —y(e/2c)Age ' ' W, (A3a)



1948 LEONARD ROSENBERG 2l

( 2ge2jg )&~2
7j g I[ 2~ I 3)l
.C = (A4)

and with [3 and y to be determined. These assumed
commutation relations are inserted into the right-
hand side of Eq. (2.17). The first term is

kp S

gg,.ai[a„W]= —gg, C, ](..
I ~p, —y—A, Ia,'.e '"&'~W

f 0 5 & )

[aJ, W]= -C&]]. ~ [Pp —y(e/2c)AJe'"&'W (A3b)

with

(Al 1)dQ- U. X V.X =-, 4' U V

valid for arbitrary fixed vectors V and U. The
result is of the form

eX=
I

—g p']7, s p', s+ pyy —p, ~ A

p, replaced by its eigenvalue on the state lp} since
recoil corrections will contribute to second order.
The sum over soft-photon modes in Eq. (A10) may
then be carried out using Eq. (A6) and the identity

e' l It'2p~2)

,L'i (A5)
2

2p,c (A12)

According to the rule

A 'Q —(ky) Jd'k,
k

(A6)

S

A, = X,g,-C,. a, e'"~'~+ a,'e '""~ .|R3

(A8)

Equation (A7) then becomes

S

[H, W]=—g] Pp, A, —y —A',)W+X, (AP)
~~ ~=o k

with the additional term

P2
X= — (6pp —y —AH I

~ ][( ]yl(C( W,
C

(Al 0)

arising from the commutator. As discussed in
connection with Eq. (2.21) this term, which is of
first order, may be evaluated with the operatbr

the second term on the right-hand side of Eq.
(A5) is proportional to (d2 so that its contribution
to the level shift may be ignored. %e then have

[H, W]= —P(kp, —y —A,) k&H,.C,.
)=0

x (ate '['~W+e'"k""Wa, ). (A7)

We now move a, to the left of W using Eq. (A3a)
and make the identif ication

The first-order parameters y and z are readily
evaluated but the explicit values mill not be re-
quired here. When Eqs. (A9) and (A12) are com-
bined we see that (A2) will be satisfied with p .Ad

y determined by

0+ Pyy =1,
y+ z=1,

(A13)

(A14)

Since P differs from unity by a quantity of first
order, P' may be replaced by unity in the first
term on the right-hand side of Eq. (A12). Then
&& is again determined as in Eq. (2.22).

It follows from Eqs. (A3) that W~W commutes
with 'each of the a, and a~. The expected unitarity
property of W is an immediate consequence, the
argument being identical to that given in Sec. II.

It was mentioned above that in calculating the
first-order correction to the sum rule for the
cross section it is sufficient to evaluate the TV co-
efficients to lowest order. This implies, in.

particular, that in the commutation relations
(A3) the parameters P and y are to be replaced
by unity and the recoil effect generated by the
momentum translation operators e" t" ~ is to be
ignored. Furthermore, since (e/2c)A, is of first
order relative to p the term involving A, is
dropped. This of course leads us back to Eqs.
(2.26) and the solution (2.27), and from there to
the completion of the derivation of Eq. (4.22).
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