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Antishielding effects of atomic core states from nonorthogonal Hartree-Fock perturbation
theory
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The quadrupole antishielding factors y„ for the ions Na+, Mg'+, and Cl have been calculated by solving
differential equations in nonorthogonal Hartree-Fock perturbation theory. The results are compared with
the values of y„obtained in other calculations. The agreement in all the cases except y„(3p ~p) of Cl is
quite satisfactory. It is believed that the discrepancy in the latter case is perhaps due to the different zero-
order wave function used in the present calculation.

I. INTRODUCTION

For a better understanding of quadrupole cou-
pling constants in crystals, a good knowledge of
the electric field gradient at the nucleus in the
system is essential. While in ionic crystals the
field gradient at a given nucleus is due to the re-
maining lattice ions, in metals it is due both to
the lattice ions and the conduction electrons. In
either type of crystal the core states, perturbed
by both the quadrupole moment of the nucleus and
the external lattice ions, enhance the field gra-
dient in most cases. The factor by which the
field gradient is enhanced is known as the anti-
.shielding factor. ' Thus, for a quantitative inter-
pretation of the field-gradient data in these cry-
stals, a knowledge of the proper antishielding
factor is very important.

There is, however, a subtle differ ence between
the antishielding factor for a metaP and that for an
ionic crystal. Since in both these crystals the
lattice consists of ions of the respective kind, it
may appear at first sight that the appropriate anti-
shielding factor will be the one calculated by using
the core wave functions of the respective ions.
While this is true for ionic crystals, it is not so
for metals because of the presence of conduction
electrons in the latter. Since the conduction elec-
trons provide some screening of the potential
experienced by the core electrons in metal, the
latter electrons are more loosely bound in metals
than in the isolated ions. Thus the core wave
functions which will perhaps be more appropriate
for obtaining y„ in metals are those of the isolated
neutral atom rather than of the free ion. For
example, the y„ for Na'in the ionic crystal NaCl
should be calculated by using the core functions
of the free Na' ion, and the y„ for Mg" in mag-
nesium metal should be obtained by using the core
functions of the neutral magnesium atom. How-
ever, in spite of this difference, in most of the
field-gradient calculations in metals, the values

of y„obtained by using the core functions of the
ions have been used. The difference in y„re-
sulting from the use' of core wave functions of
the ion on the one hand, and the core wave func-
tions of the neutral atom on the other, has been
shown" in the case of the Zn" ion to be less
than l(P/p It m. ay, however, be larger in the case
of heavier ions.

The motivation of the present paper has been,
first, to calculate the proper antishielding fac-
tors for ionic crystals and metals, and second,
to test the accuracy of the nonorthogonal Hartree-
Fock perturbation theory" (HFPT) by applying
it to calculate y„ for the negative ion Cl, which
is more polarizable than some of the positive ions
studied' before. We would like to remark here
that in the past the nonorthogonal HFPT" has
been very successful in obtaining y„ for relatively
less polarizable positive ions. '

In Sec. II, we derive the relevant perturbation
equations for the perturbed-core wave functions
and the expression for the antishielding factor in
the nonorthogonal HFPT. ' Section III discusses
the results of the present investigation. Our con-
clusions are given in Sec. IV.

II. WAVE-FUNCTION CALCULATION

Ho ——V' +V,
H, = —(

—m)' QY, /2r .03
(&)

(2)

To ascertain the angular dependence of 5g, the
change in go, „due to perturbation, we write the

The perturbed-core wave functions in first order
can be obtained by solving the appropriate per-
turbation equation. For this purpose, we denote
the zeroth-order atomic. wave function by g'„,„,
which belongs to the state characterized by the
quantum numbers n, l, and m. Let H, and II, be,
respectively, the unperturbed Hamiltonian and

the perturbation due to the nuclear quadrupole mo-
ment Q. In atomic units (a.u. ), we have
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familiar first-order perturbation expansion for
5g in the usual notation, namely,

5q —g &~n'VN) I 21/n(m& yO (3)
n't'm' E 0 —Eo

The prime over the summation sign in Eq. (3)
indicates that the summation is to be taken over
all the quantum states except the one for which
n' =n, l'=l, and m' =m. In view of the given an-
gular dependence of the perturbation H„ it follows
from Eq. (3) that the function 5() can be written a.s

The functions V, (nl-l) in Eq. (4) and V, (nl-1 +2)
in Eq. (5) are, respectively, r times the radial
parts of 5g for the radial and angular excitation
processes.

The function 5(t) is obtained by solving the fol-
lowing differential equation derived in the non-
orthogonal HFPT discussed previously in the li-
terature. " '

(ff, —E'„,)5)I) = —If, (t)'„,„+&g'„,„I
ff,

I
g'„,„&)I)'„,„

5g =(—', v)' '&lmI 20Ilm&QV, (nl-l)/rY, „, (4) fAn

for the angular excitation (l-l +2) process. The
factor &lm

I
20

I
lm& is the angular integral and is

given by

(lm( 20(lm) = J Y",„Y„Y,„do. (6)

for the radial excitation (l-l) process and as

5g =(—', m)' '&l +2m I20I 1m&QV, (nl 1 2+)/rY;„, (5)

n'
n

(7)

The respective differential equations for the radial
functions V, (nl —l) and V,(nl-l +2) are obtained
from Eq. (l) by substituting the form of 5g suc-
cessively from Eq. (4) for the radial excitation
and from Eq. (5) for the angular excitation. These
equations are

(
d2

, +, + Y, —B„,)Y(m(-)) =[1/Y' —(O,'(n))~1/Y'( ll'(n)))]V,'(m))

n'
n'An

+ g &Uo'(n'1)
I
V, (nl-l)&(Eo„,, —Eo„,)Uo'(n'1),

n'
n'gn

(8)

( + )(1+8)
V Eo IV (gl l /2)

d~2 ~2 0 nl)

, U,'(nl), (9)

where U, '(nl) is r times the radial part of the ato-
mic zeroth-order function )1)o„, , and the quantity
&Uo'(nl)

I
1/r'I Uo'(n'l)& is given by the integral

m CO

&Uo(nl) I
—,

I
Uo(n'l)& = ~ Uo(nl) —,Uo(n'l)dr. (10)

Comparing Eqs. (8) and (9) with the corresponding
equations of Sternheimer, ' we note that, as far
as the radial excitation process is concerned, the
equation in the nonorthogonal HFpT' differs from
the equation of Sternheimer' by having two ad-
ditional terms, namely, the second and the third
on the right-hand side of Eq. (8). For the angular
excitation process, there is no difference between
Eq. (9) and the corresponding one of Sternheimer. '
The reason why Eq. (9) does not have terms simi-
lar to the second and third terms on the right-
hand side of Eq. (8), even though both Eqs. (8) and

(9) are derived from Eq. ('l), is that the angular
part of 5g for the angular excitation process is
orthogonal to the zeroth-order wave function go„,„.

The total antishielding factor y„ is the sum of
the contributions from radial excitation and an-
gular excitation processes. First, we consider
the contribution from the radial excitation process.
The solution 5g obtained from Eqs. (8) and (4) is
not-orthogonal to other occupied core states of
the same l and m value as that of Po„,„under per-
turbation. The necessary orthogonalization is
accomplished by the Schmidt procedure, ' and the
resulting solution 5g' is given by

n'
n'fn

where the summation is taken over all the other
occupied core states of the same l and m value
as that of (I)o,„. Having obtained the properly or-
thogonalized solutions, we may then calculate
the induced quadrupole moment due to radial ex-
citation. The antishielding factor 'y„(nl-l) for
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—g (IJ,'(n'I)
I V, (nl -I))U,'(n'I), (14)

C(~", =P))' Q((lmI 20ILm))' (15)

For a filled P core, C,",'=48/25 and for a filled
d core, C(2, ) =16/'7. In a similar way, by using
E(ls. (5), (9), and (12), the angular contribution
to the antishielding factor is obtained as

( yI n)2) =C+") f ()'(n)) V(n)-) sd)y'dy,
0

where

C&',),= ~ m Q (&I + 2m
I
20

I
~m&)'.

Since the value of y„ from angular excitation, '
y„', is usually much smaller than that from the
radial excitation, we have obtained the former
not from E(I. (16) but from a relatively simpler
but less accurate model of charge distribution

the radial excitation process is then obtained by
taking the ratio of the induced quadrupole moment
to Q and is given by

y„(nl-l) = —g f d"„, sVy'(d sos'd —l)d'y,
yd

(12)

where, out of the factor 4, a factor of 2 is due to
the electron spin degeneracy and the remaining
factor of 2 is due to the expression of induced
charge. The function 6$' obtained from E(ls. (4),
(8), and (11) is substituted into E(I. (12) to give

y (nl-l) =C(, ' f (C)n)(Vn( ) dyd , y
0

where

V,'(nl l) = V, (nl I)

namely, the Thomas- Fermi model. " The latter
model has been used in the past" for a number
of systems.

III. RESULTS AND DISCUSSION

The functions V, (nl -l) are solved for Na.', Mg",
and Cl ions from E(I. (8) by a noniterative pro-
cedure. " For this purpose the zeroth-order wave
functions used for all three systems are the ana-
lytic Hartree-Fock (HF) functions of Clementi. '
The solutions of the differential equations were
carried out on the IBM 370 computer at the Indian
Inst. of Technology, Madras. The individual shell
contributions to y (nl -I) and the y((" for these
three systems are summarized in Table I. This
table also lists the results for y„ from other cal-
culations for comparison.

We first discuss the antishielding factor for
magnesium. Although results for y„, obtained
by using ionic core functions, are available in the
literature" for the Mg" ion, the result for y„
by using the core functions of the neutral magne-
sium atom is not available. Since it is the latter
y„which is more appropriate for the quantitative
interpretation of the field-gradient data in mag-
nesium metal, we have calculated it by using the
core functions of the neutral Mg atom. For the
part y~' we have estimated the value from the
Thomas-Fermi model following exactly the same
procedure as has been adopted in our earlier
work. '

In order to see how much the present result dif-
fers from the y„, obtained by using the core func-
tions of the Mg" ion, we have compared our re-
sults with those of others. " From Table I, it is
clear that the y„ in this work is slightly larger in
magnitude than those previously reported. " This
is expected, since the core wave functions, par-
ticularly for the 2P state, used in this work are
more loosely bound and hence more polarizable
than the core functions used in other calcula-

TABLE I. Values of y„ for Na+, Mg +, and Cl from different calculations.

Mg+ Cl
This

Ref. 9 Ref. 10 Ref. 9' work Ref. 8
This This

Ref. 7 work' Ref. 12 work

2p -p -4.7
3p ~p
Angular 0.60
Total -4.1

0.69
-4.54

0.60
-4.58

0.60
-4.78 -3.20

-5.23 -5.18 -5.38

+0.36
3.35 -3.52

-1.51
-57.0

1.40
-57.11

-1.10
-66.20

1.40
-65.90

The zero-order wave functions used are the same as in Ref. 10.
These results are obtained for the Mg2+ ion by using the core functions of the free ion

Mg2+.' The core functions used were those of the neutral Mg atom.
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FIG. 1. Perturbed function V&(2p —p) and 2p function
U~o(2p) for Mg.

tions." A similar difference in the values of y„
was previously" noted in the case of the Zn"
ion. The radial part of the zeroth-order 2p func-
tion, U,'(2P), as well as the radial part of the per-
turbed 2p function, V,'(2p-p), are plotted against
x in Fig. 1. The latter function shows the expected
behavior with regard to the number of nodes.

In the case of the Na' ion, the value of y„ob-
tained in the present work is compared with that
of Sternheimer and Foley (SF)' and with those of
Das and Bersohn. ' While the method of calcula-
tion used by the former author' is perturbation,
that of the latter" is variational. By using a HF
function" for the zeroth-order core function Stern-
heimer and Foley obtained a value —4.71 for y„
(2p-p), which is smaller than the value —5.28
obtained by Das et al." The difference in the two
values was attributed by SF' to the different
zeroth-order wave functions used in the calcu-
lations. In fact, by repeating his calculation with
the wave function of Das et al." SF' did obtain
a value —5.18 for y„(2p-p) which is very close to
the value of Das et al."

On comparing the y„(2p-p) for Na' in this work
with those of SF' and of Das et al."we find that
the present result is larger than theirs'" by
about 4%. We ascribe this difference to the dif-
ferent zeroth-order wave functions' used in the
present calculation. For the y~', we have used
the SF value, ' which is better than the value es-
timated from the Thomas-Fermi model. Both the
functions U,'(2p) and V,'(2p-p) are plotted in Fig.
2. As in the case of Mg", the function V, '(2p-p)
shows the expected variation with distance.

Comparing the y„ for Mg" with that for Na', we
find from Table I that the latter is larger in mag-
nitude than the former. This is understandable
because the P electrons in the Na' ion, in view
of its smaller nuclear charge, are more external
than the P electrons in the neutral Mg atom. This
fact is further confirmed by noting from Figs. 1
and 2 that the function V,'(2p-p) of Na' spreads
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FIG. 2. Perturbed function V&(2p —p) and 2p function
Uo(2p) for the Na' ion.

4.0

out to a longer distance than V,'(2p-p) of Mg.
The third system for which we have calculated

y„ is the Cl ion. Before discussing its results,
we would like to say why, out of the four halogen
ions, we have chosen Cl for the present investi-
gation. The F ion, having only one closed P shell,
would have been the simplest of the halogen ions
to study. But since the nonorthogonal HFPT'
shows features distinct from conventional per-
turbation theory' only for systems having more
than one closed shell of nonzero l, the Cl will be
the simplest halogen ion to investigate by the pre-
sent method. The ion F, having only one closed
P shell, leads to the same differential equation
for V, (2P-P) in nonorthogonal HFPT' as in the
conventional perturbation theory' and is thus un-
suitable to show the distinctive features of the
former theory.

The antishielding factor of C 1 has been calcu-
lated by several authors. Sternheimer and
Foley'" have calculated both the first- and se-
cond- order effects of the perturbation by the nu-
clear quadrupole moment on the atomic core
states. Beri et al" have ca,lculated the higher-
order correction arising out of the consistency
effect. Watson and Freeman" (WF) have calcu-
lated y„by the unrestricted Hartree-Fock method.
Sj.nce our motivation is to test the nonorthogonal
HFPT approach for obtaining y„ for negative halo-
gen ions, as a first step in this direction we have
calculated to first order the y„ for the Cl ion. It
will be pertinent therefore to compare our result
with the first-order result of SF.' However, we
also estimate somewhat empirically in the present
investigation the contribution to y„up to second-
order perturbation by using Sternheimer's data. "
The exact calculations to include a second-order
effect on antishielding in C 1 as well as the cal-
culations for the total antishielding factors for
other halogen ions are in progress; the results
will be reported as soon as they are available.

In order to compare the individual shell contri-
butions y„(nl-l) obtained to first order in this
work with that of SF,' we must first account for
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the exclusion-principle-violating (EPV) cor-
rection to y„, as has been done in Ref. 3. The
latter correction arises owing to the fact that the
SF' results for y„(2P-P) and y„(3P-P) include
the contributions y„(2P-3P) and y„(3P-2P), re-
spectively. , The latter two contributions, in view
of the closed 2P and 3P cores in the Cl ion, are

referred to as the Epg corrections. ' The values
of y„(«-I) in this work do not include such EPV
contributions because of the orthogonalization of
6g to other occupied states of same I and m as
that of g„',„under perturbation T. he EPV cor-
rections for 2P and 3P states were calculated by
using the formula'

y («-O'I) =&,",&(U,'(«)
~

~'~ U,'(~'I))(U,'(~'I)
~

1/~'~ &,'(«))/(&'„$ -E„',) . (18)

From Eq. (18), y„(2p-3p) is found to be —0.38
and y„(3P-2P), being equal and opposite to y„
(2P 3P), is 0.38. Adding these corrections to
y„(2P-P) and y„(3P-P), respectively, in the pre-
sent work, we have found that the resulting y„
(2P P) = —1.48 and y„(3P-P) = —65.82. Since
p'„" is very small, we have used the value
of y~' of SF.' Now comparing the individual shell
contributions with SF,' we find that the y„(2P -P)
compares well with the value" of —1.51. But the
value of y„(3P-P) is quite different from Stern-
heimer's value" of —57.0. We believe that the
discrepancy in the values of y„(3P-P) is perhaps '

due to the different zeroth-order wave functions
used in the present calculation. While SF' have
used the numerical HF functions, "we have used
the analytical HF functions. '

A similar discrepancy in the values of y (3p-p)
due to the use of different zeroth-order HF wave
functions, was previously" noted by Sternheimer
between his result for the Cl ion and that of WF."
The latter authors had used an analytical HF func-
tion in their calculation of y„ for the Cl ion. On
repeating his calculations of y„(3p-p) by using
the analytic HF functions of WF, ' Sternheimer'2
had obtained a value of —68.4. The latter value
is closer to our result of —65.82. Sternheimer"
concluded that the analytic HF functions of WF"
were more external than the numerical HF func-
tions" used in his calculations. In view of the
difference between the analytical and numerical
HF functions, we also conclude that the analytical
HF functions used in this work, similar to analy-
tic HF functions of WF,"are perhaps more ex-
ternal than the numerical HF functions" used in
Sternheimer's calculation. " Of course the best
way of confirming this conclusion would have been
to repeat our calculation by using the zeroth-order
wave functions" of Sternheimer. " However, since
the latter wave function" is not available to us at
present, we could not carry this out.

Assuming that the analytic HF functions used in
the present work are more external than the nu-
merical HF functions, "one would have then ex-
pected, as in the case of y„(3P-P), a significant
difference in the values of y„(2P-P) obtained in
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FIG. 3. Perturbed function V~(2p -p) and 2p function
Uo(2p) for the Cl" ion.

I

both the calculations. Qn the contrary, the agree-
ment in the latter, as shown before, is quite satis-
factory. The reason why the agreement in y„
(2P-P) is so good, in spite of the use of the dif-
ferent zeroth-order wave functions, is perhaps
due to the greater localization of the 2P electron
compared to the 3P electron. The antishielding
factor is heavily weighted in regions of large
r ( r') -Sinc.e the 2P function is localized in a
smaller -r region, the contribution to y„(2p -P) is
much smaller than y„(3P-P). For the same rea-
son, even if the analytic 2P function is more ex-
ternal than the numerical 2P function, the region
in x over which the spreading out of the former
occurs, being small, the difference in contribu-
tions to y„(2p-p) is not significant. Adding the
radial and angular contributions to y„, we have
obtained for the total y„a value equal to -65.90.
Compared to the latter value, the result of Stern-
heimer": j.s -57.]1.

In a later calculation" Sternheimer has included
the effect of the second-order perturbation by the
nuclear Q. He has observed that the latter effect
is to reduce the magnitude of y„obtained in first
order to 8(F/o of the latter value. Including the
second-order effect, the total y„ in Sternheimer's
calculation is -50.45. We would like to remark
here that in a subsequent paper" Sternheimer
and co-workers report a value of y„quoted for
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FIG. 4. Perturbed function V&(3p -p) and 3p function U0 (3p) for Cl ion.
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Cl of -55.1. By looking at the suggested" re-
ference from which the latter value is quoted, we
found the listed" value of -57.11. We are unable
to resolve this difference. Now supposing that the
factor of reduction, namely 0.8, remains the same
in our case, the value of y„ including contributions
up to second order, is estimated to be -53.20.
The latter value is closer to Sternheimer's value"
-50.45. Of course in our case the exact factor of
reduction may be different from 0.8 and can be
determined accurately only after calculating the
second-order effect in our procedure. Such cal-
culations, as indicated above, are in progress.

For the Cl ion, we have plotted the functions

U,'(2P) and V,'(2P-P) in Fig. 3, and U,'(SP) and

V,'(Sp-p) in Fig. 4. Both figures are quite in-
structive and show why y„(Sp-p) is much larger
than y„(2p-p). In case of the 2p electron, the
function U,'(2p) extends to a distance of about 2

a.u. , while V,'(2P-P) extends to roughly 5 a.u. But
in the case of the 3p electron, the function U,'(3p)
extends to 10 a.u. , and V,'(Sp-p) extends to nearly
20 a.u. (It is shown only to 15 a.u. in Fig. 4.) In
addition, both the functions V,'(2p-p) and V,'(3p-p)
have the expected behavior with regard to the num-
ber of nodes.

IV. CONCLUSION

We have calculated the antishielding factors y„
in first order for the ions Na', Mg", and CI in
the nonorthogonal HFPT. ' ' While the y„obtained
by using the core functions of the neutral Mg atom
is more appropriate in the calculation of the elec-
tric field gradient in magnesium metal the values
of y„ for Na' and Cl are appropriate for ionic
crystals such as NBCl. The values of y„ for Na'
and Mg" obtained in this work are in good agree-
ment with the corresponding results obtained in
other calculations. ""However, a discrepancy
is noted between y„(SP-P) obtained in this work
and that in Sternheimer's calculation. " It is be-
lieved that the latter discrepancy is perhaps due
to the different zeroth-order wave functions' used
in the present calculation. The calculations, in-
cluding the second-order effect of the nuclear Q
on the core states of the CI ion, as well as the
calculations of the total y„ for other halogen ions,
are in progress and will be reported when available.
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