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Some matrix elements for Morse oscillators*
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In this paper general working equations for the Morse (r-r, ) matrix elements are given. These equations
can be used to calculate the diagonal (m = n) matrix elements and, for the off-diagonal (mQn) elements,
are simpler to use than the ones currently available in the literature. Also, in this paper a new approach is
given which allows one to obtain simple formulas, in closed form, for the oA'-diagonal matrix elements.
Explicit expressions are given for I = 1, 2, and 3.

I. INTRODUCTION

I

Fifty years ago Morse' proposed the potential

y(r) De-2a&r-re & 2De a&r re &-
as a model to describe the electronic levels of di-
atomic molecules. Since then this potential, known
as the Morse potential, has been used in the study
of diatomic molecules. Because it describes the
two-atomic molecular vibrations excellently, ' it
has been extensively used to calculate vibrational
transition probabilities, to predict band intensi-
ties, oscillator strengths, and related para-
meters. ' Recently, this same potential has been
found to be useful in the study of molecular dis-
sociation under intense electromagnetic fields'
and, more generally, in the study of the interac-
tion of coherent radiation with molecules. ' In all
these applications of the Morse potential the eval-.
uation of several matrix elements is needed. In
the majority, these matrix elements are of the
general type

l(r-r. )&ln) f=» l 2» ~ ~ ~ ~ (2)

For vibrational transitions involving two differ-
ent electronic states, with each state represented
by a potential given by E&l, (1), the calculation of
the matrix elements is usually done by direct nu-
merical integration or by an approximate method
known as the a-average method. "' Recently, an
analytical expression has been derived" which en-
ables one to easily evaluate such matrix elements
without any approximation. These general ex-
pressions also include the effects of vibration-
rotation interaction.

For transitions within the same electronic state,
i.e., within the same Morse state, one can find
in the literature' expressions for the / =1 and
f =2 matrix elements of E&l. (2) when m 4n. Some
calculations have also included the effects of ro-
tation. ", In particular, Herman and Rubin" have
given general expressions for the matrix elements
of a rotating Morse oscillator for any desired l
value in E&l. (2). However, as noted by Cashion, "

II. RESULTS AND DISCUSSION

Strictly speaking, the Schrodinger equation for
the Morse potential cannot be exactly solved. "
However, to a very good approximation one can
consider this equation as being solvable for dia-
tomic molecules. '" In this case the following
orthonormalized eigenkets are obtained":

where

(4)

z =k exp[-a(r —r, )j,
b =k —2n —1,

(6)

(6)

and where, for a diatomic molecule of reduced
mass p. and spectroscopic constants" u„~,x, ,
and B„

0 =(o,/(o, x, ,

these expressions are sufficiently complex to de-
ter one from using them. Also, since all of the
previous work. was in the calculation of the vibra-
tional transition probabilities for diatomic mole-
cules, the expressions available in the litera-
ture"'" are given for the off-diagonal (m cn) ma-
trix elements.

In the present paper we derive general working
equations to calculate the matrix elements of Eq.
(2), for transitions within a given Morse state, for
all ~ and n, and, in principle, for all / values,
too. The diagonal matrix elements (m =n), which
are very important in the theoretical investigation
of the interaction of coherent radiation with mole-
cules as recently reported by Nieto and Simmons, '
as far as the author knows, have not been reported
before for vibration@1 states other than the ground
state. Also, in this paper a new way to calculate
the off-diagonal matrix elements, which allows one
to derive simpler working equations for these ele-
ments, is given.
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r, =1/[0. 243 559(pB,)'"],

a =0.243 559(1(.2(),x,)"2,

D =2()2/(42(), x,).

(8)

(9)

(10)

The Laguerre polynomials in Eq. (3) are either
given by"

4O
e nZ-b 2+b' 2 Lb'(Z)Lb(Z)dr

a a

(13)

where b' =k —2m —1. From Eq. (5) one easily
finds dr = —dz/(az). With this, Eq. (13) can also
be written as

care
M(I) m fl

e-grab/2+

5 /2-1

0

or by the formula
ink lingx ——L„' (z)Lb(z)dz .a a (14)

dtl
Lb(Z) — (e-NZn+b)

nte 'z~ dz"

To calculate the linear (m
~

r —r,
~
n) matrix we

have to solve the integral

(12) Following ter Haar, "we replace ke'"' by infinity
in Eq. (14) since the error introduced is negligi-
ble. Noting that the eigenkets are orthonormal-
ized, we obtain

M (1) 6 + m e nZb/-2+b'/2 1 -Lb'(Z)Lb(Z)dZ
mN g mt~ g 0

n

Next we use the definition of the Laguerre polynomials Eq. (11) twice in Eq. (15) to find
m n )~, , m+b' n+b

(1) l~ +m+n V ~ ( )
~~

n b/2+b'/2+ (+A ( '
U + e z lnzdr .

g ~ g'
g p ) g sfjt m —s n-j.,

The integral appearing in this expression is evaluated [Eq. (4.352—1) of Hef. 16] and finally the linear
matrix elements are given by

l)/„X„~~ (-1)"/"
„+ 2

"ZZ . . . . I'(k+i+j —n —m —1)((k+i+j —n —m —1),a '" a' t=e &*& ifjt m —i n-j

(15)

(16)

(17)

where ((x) = (d/dx)[lnI'(x)] is the digamma func-
tion (Ref. 16, p. 943). From this result the ex-
pectation value (x)o in Eq. (5.15) of Hef. 7 can be
trivially obtained by setting m =n =0.

For m 4n, a new approach can be used to cal-
culate the linear matrix elements. 'This new ap-
proach consists of replacing one of the Iaguerre
polynomials in Eq. (15) by Eq. (11) a.nd the other
one by Eq. (12) and then performing several inte-
grations by parts. Since M "„'=M„'"we assume
n&ril for convenience. After substitution of the
Laguerre polynomials, Eq. (15) becomes

N N !Q( )„( !)'"

I
integral

dI, = lnzzb
d

(e-'z"') dz, n&p .
0

(20)

d"-t'
I, = (-1)bP! lnz „b(e 'zm")dz .

0
(21)

Now, due to the vanishing of e-'z"' at the limits of
integration, it is easy to evaluate Eq. (20) by
means of n integrations by parts. 'This can be
done in two steps: First, in order to remove the
z~ term in the integral, we integrate p times by
parts; then the integral is reduced to a known one
by performing the remaining n-p integrations. Af-
ter p integrations by parts, the nonvanishing con-
tribution is given by

d"x lnzzb (e 'z~ )dz,
dz

where the power t) of z is given by

P =2 b+-,'b' —b+i -1=n+i-m -1 .

(18)

(19)

Integrating by parts (n-i)) times one obtains

!,= (-1)0!(-(m —!)!f e 'z ' " " 'dz)
0

With these substitutions the problem of calcu-
lating (mar —r, ~n) reduces to the evaluation of the

I

=(-1) "'())!(m —i)!I'(k+ i —n —m —1) .
With this result Eq. (18) then becomes

(22)

&Wn I'(k-m) I „„„'(b™(n+i —m —1)!I"(k+i —n —m —1)
(23)
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This equation can be further simplified if we note
that for n&rn

m! I'(k —m) g (n+i —m —1)!I'(k+i —n —m —1)
n! r(k-n), , i!I'(k+i —2m)

(24)
1

(n —m) (k —n —m —1)

Substitution of this result in Eq. (23) gives

I( ) bb
( 1)"-"' n! r(k-n)

a(n —m)(k —n —m —1) m! I'(k —m)

n) m, (25)

which is a relatively simple expression for the
off-diagonal linear matrix elements. This expres-
sion can be easily generalized to include rotation-
al effects, since Pekeris" has shown that these
effects only introduce a slight J (rotational quan-
tum number) dependence in k.'"

In studying the harmonic band of hydrogen chlor-
ide, Dunham" calculated the matrix element
(0 ~r-r, )2):

tion can be written as

(x)M 02'=— y —5 '~' 1

(k —2) k —3 (29)

With this simple result, which can be directly ob-
tained from Eq. (25), the intensity of the harmonic
band for any molecule can be calculated with a
pocket calculator.

For the higher-order matrix elements, the cal-
culations are similar. Noting that

x[(k —4)ij (k —3)-2(k —3)g(k —2)+(k —2)g(k —1)],

(27)

which is the result given in Eq. (17). This matrix
element can be further simplified if one notes that

[(k - 4)g (k —3) —2(k - 3 )g(k —2) + (k —2)ij'(k —1)

= 1/(k —3) . (28)

Finally,

Mba~2'=PbA+2kb 2[k2db, —2k(k —3)gb 2

+(k —3)(k —4)d, 1,
(ink lnz)' (30)

where all the symbols in the right-hand side are
defined in the original paper. " After some sim-
plifications and algebraic manipulation, this equa-

according to Eq. (5), the second-order (I =2) ma-
trix element, for any integer value of m and n, is
given by

@fan

gg(- "' kzl kI . . . ,i,. ink I

g &-bi-2 i j m i) n a a (31)

Now, by changing variable of integration from z to y = z/k and using the results from the Appendix, we find
n~ (-I)'+' m+5'& n+I . r (k+ i+j - n - m - I)a';=2;=() i!j! m -i ) j-

x$[g(k+i+j -n —m —1) —ink]'+ g' (k+i+j —n —m —1)]. (32)

(33)

For m=n=0 this result reduces to Eq. (5.17) of Ref. 7. The second-order off-diagonal matrix elements
can also be evaluated in a simple way by using a suitable representation for the Laguerre polynomials in

the following equation:

kft1) + tn n -z b/2+ b /2-l
L b'( )Lzb( ) dz

Q

Substitution of Eq. (11) and Eq. (12) into Eq. (33) gives
m

~ 00

M'" = M'"+ " "— (lnz)'z'- — (e 'z"")dz n& m
2 ink N iV 1 (-1)' m+5' d"

a m" a n- . zt ~ —1 4z"

where p is given by Eq. (19). To ca,lculate this matrix element we need to evaluate the integral

(34)

(lnz)'z' „(e 'z"")dz, n& p.p 4
Qz

(35)

This integral can be easily evaluated in the same way as I, was in Eq. (20). After p integrations by parts,
one gets
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I,= (-1)'p! I, (lnz) „~(e 'z"'")dz+ 2[)(p+1)+y] lnz „&(e z" )dz ~,
0 0

(36)

(37)

where y =0.5577215 ' ' ' is the Euler constant. Performing the remaining n -P+1 integrations in the first
integral of Eq. (36) we find

n-p
(lnz)' „~(e 'z"")dz = 2(m i—)!r(k+i-n —m —l)[y(m. -i+1) —y(k+i —n —m+1}+y].

0

Then substituting Eq. (22) and these results back into Eq. (34) the second-order matrix element becomes

!!f'"+—(-1)"- -' —'
mn a mn a2 ~I r(k I)

r(k+t-n-m-I) (~+i-m-I)!
I (k+i -2m) 2!

&& [P(m —i+1) —P(n+i —m) —P(k+i —n —m-1)] for g& m. (38)

For the off-diagonal matrix elements this last expression is simpler to evaluate then the one given by Eq.
(32) since it involves only one summation and two special functions to be evaluated.

For I=3, according to Eq. (A5) of the Appendix, we find

.".= ™," m, , I . r(q)a' . .. , t!j! m-t& n-j

x [[g(q) —ink] ' + 3[q(q) —ink]tt" (q) + q
"

(q)] , (39)

where q = &+i+j —n —m —&. For n& m,
m

(,) ink&~' (n 31nk (,) E„N„ I Q (-I)"'(m+6"l(
a a n!;, i! (m-i&~" (40)

where
~00

I,= (ln )'z' "„(e-'z"")dz,3 pdn -z n+b

0
(41)

and p is given by Eq. (19}. Integrating Eq. (41) by parts p times the nonvanishing contribution is given by

gn-p
I~= (-1)p! (Inz) „&(e 'z"' )dz+ 3[~((p+ 1)+y] (lnz) „~(e z"' )dz

0 0

where

1
[p(p+1) -pQ+1-j)] for p~ 2 and So ——S& ——0.

j=p P
(43)

In Eq. (42) the only unknown integral is the first one involving the term (lnz)3 in the integrand. As before,
integrating by parts (n-P) times and then using Eq. (A4) from the Appendix, we find

n-p
(lnz}' „,(e 'z"")dz = -3(m -i)!r(t)(p(t)[tt (t) —(1-6, ,)(2- Z, )]+Y, +g&'& (t)),

0
(44)

where t = @+i —n —m —1 and

Z~ = y(-,
'
p) + p(-,

' p+ p ) + 2y+ 2 ln2 —2,

for p ~ 3, Z, = Z, = 0, (45)

Y, = Z, + (1 —6„)[-,' +X,(1 —6„)]
for p ~ 3, Y, = Y,= 0, l(46)

and where Xp = 0 for p& 5 and
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TABLE I. Numerators of the rationa1 coefficients S&,
Zp, Fp, and Xp.

pt p tSp 1)&Z& fp —1) t Y& y —1)tX

1 1 0
2 2 1
3 6 6
4 24 35
5 120 225
6 720 1 624
7 5 040 13132
8 40 320 118124
9 362 880 1 172 700

10 3628800 12753576

0
0
2

10
52

308
2 088

16056
138528

1 327392

0
0
2

12
70

450
3 248

26 264
236 248

2 345 400

0
0
0
0

10
102
920

8 528
84 280

897 048

1
j=p P

(47}

It is interesting to note that since S~, Z~, Y~ and

~~ do not depend on the Morse parameters, they
need be evaluated just once and then may be used
in calculations for any set of Morse parameters,
i.e., for any molecule. The first ten values of S~,
Z~, Y~, and X~ are given in Table I.

In principle, for any / va.lue, the above proce-
dures can be repeated to give the corresponding
M„'~ matrix elements, but as f increases, the
complexity of the Q'~ also increases. However,
the approach presented here gives results for the
diagonal matrix elements as well as for the off-
diagonal elements. The expressions obtained for
the off-diagonal matrix elements are simpler to
evaluate then the others found in the literature,
e.g. , the ones given by Hermann and Hubin. "
Hopefully, one may find relations like Eq. (24),

which enable the expressions for the higher-order
matrix elements to be further simplified.

It is worth mentioning that even though the pre-
sent derivation does not include the effects of vi-
bration-rotation interaction, this can be easily
done in view of the results of Pekeris".

III. CONCLUSIONS

We have derived expressions for the matrix ele-
ments of (r-r, )' for /=1, 2, and 3 between Morse
eigenstates. As far as the author knows, this is
the first time that general expressions have been
given for the diagonal matrix elements, which are
important in the study of the interaction of coher-
ent radiation with molecules, as mentioned in
Befs. 4 and 5. For the off-diagonal matrix ele-
ments a new method of calculation is presented.
This method, which makes use of a special repre-
sentation of Laguerre polynomials and of se-
quences of integra. tions by parts, gives simpler
equations for the off-diagonal matrix elements
than the ones currently available in the literature.
These off-diagonal matrix elements are important
in the calculation of the intensity distribution in the
vibration-rotation spectrum of diatomic mole-
cuges' ""as well as in the theoretical investiga-
tion of the dipole moment function of diatomics. "
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APPENDIX

The integrals 4.358-2 and 4.358-3 in the table of Gradshteyn and Byzhik' are incorrect. With the nota-
tion of these authors they should read

x" 'e «"(lnx}'dx= „([g(v)—lnp]'+ g(2, v)}, Rep, &0, Rev&01 (v)

0
(A1)

x' 'e "*(lnx)'dx = „[[g(v)—in']'+ 3[)(v) —lnV, ]g(2, v) —2g(3, v)j, Re p&0, Rev & 0. ,

r(v)
0

(A2)

Using the result

p'"' (v) = (-1)""~!C(~+ 1~ v}, (A3)

which can be obtained from Eq. 9.521-1 of Ref. (16) and Eq. 6.4.10 of Ref. (20), these integrals can be
more conveniently written as
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and

x' 'e ""(lnx)'dx= „f[p(v) —lng]'+g('(v)], Rep, &0, Rev&0J 1 (v)

0

x e ""(lnx)'dx=, ([p(v) —lnp]'+3[/(v)-In']p''(v)+g (v)j, Rep&0, Rev&0.l r(v)
0
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