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Multipole and overlap integrals over reduced Bessel functions in molecular quantum
mechanics

Danko Antolovic~ and Joseph Delhalle

(Received 7 December 1979)

The methods of calculation of overlap integrals over a reduced Bessel-function basis set have been
reviewed. Some new results were obtained, and the numerical aspects of existing formulas were investigated.
Also, analytical expressions for multipole integrals over reduced Bessel functions have been derived.

I. INTRODUCTION

One of the main obstacles in the application of
the HF-Roothaan method to the study of the elec-
tronic structure of molecules, polymers, sur-
faces, and crystals is the evaluation of integrals
occurring in the formalism. So far these inves-
tigations have been performed mainly with the
help of Gaussian-type functions (GTO's). How-
ever, these functions are not completely satisfac-
tory since they do not represent the correct be-
havior of the wave function at the nuclei and at
large distances. At the nuclear centers, the
exact wave function must fulfill the cusp condi-
tion and at large distances it should decrease
exponentially. The main reason for using GTO's
is to be found in their mathematical and computa-
tional conveniences, but to get reliable results
one has to include a sufficient number of GTO's
which leads also to computational problems. A

well-known alternative is provided by the Slater-
type orbitals (STO's) which have both the right
cusp and exponential decrease characteristics
but at the expense of an excessive amount of
computer time needed for their evaluation.

Quite recently Steinborn and coworkers'2
have pleaded in favor of the reduced Bessel func-
tions (RBF's) which exhibit the same physical
properties as STO's but in addition possess con-
venient mathematical features which yield to
easy handling and quite simple matrix elements.
Since our group is presently involved in HF-
Hoothaan calculations of the electronic structure
of extended chains (polymers, 1D crystals, . . .)
it was interesting to investigate the usefulness of
such functions in this context. Indeed the compu-
tational effort in extended systems is basically
heavier than in isolated molecules, and it is of
continuous importance to search for good com-
promises between computing time and the quality
of the results.

This paper relies strongly upon the theoretical
work done previously by Steinborn and coworkers. * '

Our first aim is to obtain feasible computer algo-
rithms for the calculation of overlap integrals
over RBF basis functions. Overlap integrals ap-
pear as the building blocks in formulas for other
molecular integrals. Therefore, it is necessary
to compute them accurately for a relatively wide
range of parameters (chiefly quantum numbers).

Again, a short account on the equivalent, older
STO basis set is needed. The computational diffi-
culties connected with it have become almost
proverbial. The evaluation of integrals over
STO's was usually reduced at the evaluation of
various auxiliary functions, a procedure that
sometimes proved to contain numerical bottle-
necks. ' The calculations also involve multiple
sums and extensive tabulations of coefficients.
At authors' opinion, multiple sums involve
numerical risks for higher quantum numbers and
are also relatively time-consuming procedures.

In a series of papers, Piela and Delhalle ' have
developed a method for calculation of long-range
interactions, based on the known multipole expan-
sion for the operator 1/r. This is a useful tool
in the theory of extended systems. Independently
of the chosen basis set, this method involves ex-
tensive calculation of one-electron multipole in-
tegrals. In the present paper analytical formulas
are derived for multipole integrals over RBF's.
The problem is essentially reduced to the calcula-
tion of overlap integrals over reduced Bessel
functions. Therefore, the problem of calculation
of convolution (overlap) integrals, treated by
Steinborn et a/, is considered from a computa-
tional point of view.

A. Some general aspect of RBF's

We shall follow the notation and definitions
given in Ref. 2. The RBF atomic function is
given as:

B~ ~((yr) =[2 ' (N+L)!] '

+(&&) & '-ii2(&+)y (~ 4')
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where k„(o,r), the "reduced Bessel function" is

k„(or) =(2/v)'/ (nr)"K„(c/~) .
Function K„(c/x) is the modified Bessel function
of the second kind. Obviously the RBF's for half-
integer order are closely related to spherical
Bessel functions and have an elementary form:

(2N -p —1)!
N i/2( ) ~ (P 1)i(N P)i

JI7

x2~ "(ar)~ '. (1 2)

It can be seen from the above formula that
RBF's constitute a basis equivalent to STO. This
fact has been expounded upon in Refs. 8 and 9 by
Steinborn and Weniger.

The constant a will be named "scaling para-
meter". It is related to the screening constant

FIG. 1. Coordinate systems used in the multipole
expansion.

of STO's. Spherical harmonics F"are defined
in Condon-Shortley phases (see Appendix A).

II. MULTIPOLE INTEGRALS

(2.1)

Utilizing (2.1), we can write

As we mentioned above, in the multipole expansion method the integrals of the type ((~r'Yp(8, Q) ~ P ) ap-
pear. The most general case is the one-electron, three-center integral. Coordinate systems used are
shown in Fig. 1. Two RBF orbitals are defined with respect to the coordinates on A and B, the operator
(regular solid spherical harmonic) is defined on the center C.

First step in evaluation of the integral will be expansion of the harmonic on C in similar functions on A.
Such expansions (translation theorems) have been described in literature. ""' We shall make use of an
expansion derived in Ref. 3:

r,'Y, (8„g,) =R' g g (-1)' '(i,/R)'Y,"(8„$,)C„"(8,Q )
X=O y. =-X

2i/'/'[(2l + 1)(l + m)! (l m)!1'/—
[(2K+ 1)(X+ )!(g —p)!(21 —2K + 1)(l +m -g —!/)!(l -m -g+ p)!]'/2

f=«~ l~cYi™(8c&c) I!'s&
="'~+ (-')' +i'"(8» &»)('~ l(~~/R)"Y:(8~ &~) l~~&

x=0 w =-X

=R'g (1/R) g (-1)' 'ei,"(8»&Q»)K„(a„x/i) "k~. i/2(nzr„)Y~„*(Q&)r„"Y„"(Q„)drsd7'
X=O

Next we use an expansion given in Ref. 1 as formula (6.1):

~(t/2! 1 —2n —t
-i/2(+) Z

~ ~

2' i-/1+ -i/2(x) '
( p/I

(2.2)

here, the brackets with index p denote pochhammer symbol (Ref. 12, formula 6.1.22). Formula (2.2) is
applied to the product

. (u'Ai Jl) kg/-i/2(oJrA) '

Also. , the product of spherical harmonics is expanded in the series of harmonics (Appendix A). This
yields

I=K/iR Q (-1)' "(y~"R "Q C, „"Q (LM )I,/, M/i )X!/, & Q 2/' ~

x2"&'"' '(N„+L„+y -P)!
Ng 0 ~ Ng

B//~, l,~ „, I, /„/, (c//, r/i)B//ss/i(c/sr/) 3d7', (2.3)
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and finally

I=(-i)'ft'I(l)tA+LA)'] ' 2"(-i)'nA" ' g ~la"(!!CA 4m)
y.=-X

AL /~Ly
"Z(sMls»M»~l»o&7J )(l-»» -«)»(st„»o»»-p)l

Here &L = -,'(LA + y —L) .
I

A. Two-center case R = 0

gI,g Afg

Ng+Lg+X-L -p, L, N ~ A &
+B&

~ & ~ (2.4)

For this case, the following simple formula holds:

1=&4
I

i' (~
tsL

=2'~&~A+ LA&'nA] '2 «~ILAMA
I
f~& 2

IL p=o
( p

X(—,
' -~A - aL) (RA + LA + l -p)!SN„,L „Lp L „(n„,n B,R') . (2.5)

Here &L= —,'(LA+ l-L) ~

Q. Two-center case R' = 0

For this case the following formula holds:

I=(-i)t[(x„+I.„)!] 'at g 2'(-i)"nA'z 'ct, "B "A-(e,A, y-,A)&L,~,
I
LA~A

I
~tmB-uA&

)!=0 '" (~L,), Ng I gNg
~

(2 @A LB)p(+A LA ~ P) NA+LA»)» LB p»LB» ttB(-A-Bs&) ' (2.6)

Here rsLB = ,'(L„+X- LB—).

C. One-center case

For this ease the following formula holds:
b I,I3

»=s'((o„+s„)!~„')'(c,»», ls„M„~)»»&. g) )(, »»„ss,)»(»»„+s„+) p).s,„.,„... » .. .(»„~„o).
(2.7)

Here ALB = ,'(L„+ / —LB). -

III. OVERLAP INTEGRALS

The centerpiece of the theory of RBF s, developed so far, is the convolution theorem. It says that the
convolution integral over two atomic RBF's can be represented as an expression closed with respect to
the RBF's themselves. The formula has two different forms, for the cases of equal and unequal scaling
parameters of orbitals, ' three formulas for some special cases also exist. The proof of the theorem has
been given in Ref. 1 by E. Filter and E.O. Steinborn.

A. Casen=P

The overlap integral being given by

s~v((~sR) »»js «s4",(~»)s.",,'„(()(=» —R)),

the formula for it is (formula 4.3 in Ref. 2) for n =P
»

NIL', B',(»n R& =4« '(-i)"Z &L2M2
I
LiMi

I
fttt& Z (-i) '~

t

(3.i)

(3.2)
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This formula has been cast into a slightly different form for coding purposes:

1 L2+N1. 2 1/2 b, g

SN2,:,2N2(~, ~,R) = 2,'N1 2',''"2 ei™'Z «~
)
L2M2

I
L1 /-Vfl&l 6 i (cose)(~ft)l] 2 (-1)

~

(kN1, N2, L,,L21,,1/2(eR)
t

x2'[(N, +N, +L, +L, -t+1)l] '.
(3.3)

Considering the fact that the value of k„(x) increases very quickly as N increases, and having in mind the
computational considerations in Sec. GI C., we compute a somewhat modified function

/tN 1/2(x) = kN 1/2(x)/N-

using the relations

K 1/ 2(x) = e */x
~

K1/2(x) = e

x NN 1/ 2 (x) = (N + 2) (N + 1)NN, 2/2(x) —(2N + 1)(N + 1) /AN, 1/2(x),

(3.4)

which follow directly from the known properties of Bessel functions. For the details concerning Gaunt
coefficients and functions apl (cos8), see Appendix A.

B. Case 0. & P
For this case formulas (4.6) and (4.7) in Ref, 2 hold. We have unified these two expressions into the

following working formula:

S„'L',„,(n,p,R) =(-1) 2'"'2(211)'/ e'"~ Q «121
~
L2M2~ L1,-JVf1)1pl"(cos&)

l

(clIt)l( 1)Nl +Lie/L2P2N2+L2 1(P2 ~2)-N2 L2 1

t

+(prt)l( 1)N2+L2pL1 2N1+L1-1( 2 p2)-N1-L1-1

Here &L1 ———,'(L2 + l —L1) n L2 —(L12+ l - L2),
P„'"'"'(x) are Jacobi polynomials as defined in
Ref. 13.

We shall devote some more consideration to an
efficient procedure for evaluation of Jacobi poly-
nomials, as a relatively heavy use of this function
is made in the above formula. Let us consider
the set of polynomials P„' "2 2""' ~2'(x). Both
sets of functions needed in the calculation are
obtained from this set by obvious substitutions.
We introduce the notation

p, =-V2- &A~+ t,
V= V(+ +Ay ~-

N = V2+ X2 —t.
(3.6)

With p, , v, N considered as coordinates in an af-
fine space (e.g. Euclidean, to simphfy the matters),
the above equations represent a surface para-
metrized by variables l, t. Recalling the meaning

of the symbol ~,

(3.7)

two formulas follow immediately:

&A., + &A.2= l,
~X~ —&X2 = A.2

—X~ .
(3.6)

(/l, + v+N)/(v, + X,) = 1. (3.9)

This is the equation of a plane which cuts on the
axes three equal segments of length py+ Xy As
l, t will be identified with the summation indices
in (3.5), we shall consider the part of the plane
determined by the conditions

Elimination of f and t from (3.6) above yields the
equation of the surface:
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'The second of these conditions is the triangular
relation for Gaunt coefficients. Using (3.6), we
obtain

v2+ X2, t =0
¹

0, t= v, +&, .
This represents two planes parallel to the p. , v

plane. Introducing l =X, +X, into (3.6), we obtain
the equations of a straight line:

g (u ~ v)(~) (3.10)

From the explicit expression for Jacobi poly-
nomials (Ref. 13, Sec. 5.2.2, p. 211), follows the
expression

always attain integer values. 'The whole situation
is represented graphically on Fig. 2 and in what
follows we shall make references to this picture.

Along the edge t = v, + A,, values of the functions
are equal to unity, due to the formula

p. +N=O,

v = v~+ A~.
~( N, v)'( -) ( + (3.11)

For the lower boundary of l two cases exist:

(i) For X,~ X, the equations of the borderline are

p. +N = X2,

v= v~+ X~ —X2.

(ii) For X, & X, the equations are

p. +¹v2 V~+A. ~ ~

v= vi.

Thus, the set of functions PN("'"&(x) can be repre-
sented by a parallelogram lying in the plane para-
metrized by l, t. Of course, only the points re-
presenting integer l, t are interesting for us. 'The

additional constraint X, +X, +l = even is also taken
into account, so that the three coordinates p, , v, N

or the recursion

Z( N l, v)(X)
+ ( Z( Nv)(&-) (3.12)

Starting from the point N = 0, p. = 0, v = v, + ~„ the
computation propagates to the left along the edge
l Xy + &2 using the above recursion.

Let us now consider a known contiguous relation
for Jacobi polynomials (Ref. 13, Sec. 5.2.2, p.
213):

~(u, v-l)( )
~(u-l, v&(&)+~(u, v&( ) (3.13)

Obviously, the points connected by this relation
always lie in a plane parallel to the one mentioned
above. We see immediately that this relation can
be used to generate the row of functions belonging

FIG. 2. Graphical representation of the procedure for evaluating Jacobi polynomials.
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TABLE I. Values of Jacobi polynomials obtained ac-
cording to relation (3.13).

TABLE II. &m~ values beyond which expression (3.5)
is no longer reliable for numerical computation. 0«- ~m~' ~=45" &=45

Ng-—4 I g= 2
N2=3 L2 -—2
X= 5.000000 x10-

Rhp 10

Q(p g v) (~)

-5
-2

~2

0
-1
~2

1
0

-1
2
1
0

-0.123 046 875
0.369 140 625

-0.451 171875
0.546 875 00p x 10-&

-0.492 187 500
0.820 312 500
0.437 500 000
0.437 500 000
0.131250 000 x 10

-0.750 000 000
0.000 000 000
0.175 000 000 x 10
0.250 000 000

-0.750 000 000
-0.175 000 000 x 10&

0.100 000 000 x 10'
0.100 000 000 x 10
0 100000000 x 10

to 1 —1 if the functions belonging to l are known.
That means that the whole parallelogram can be
cal.culated.

We have used this procedure systematical. ly for
both double summations over P functions. Ac-
cording to our experience, it is numerically
stable and economical. Propagation along the
rows has been done simultaneously with the sum-
mations and no more than one row of the parallel-
ogram should be kept in the machine memory.

A set of values of Jacobi polynomials obtained
by this algorithm is shown in Tabl. e I. It has been

0.6
0.65
0.65

1
1.4
1.5

8
8.5
8.5

stated by Filter and Steinborn' that the formula
(3.5) breaks down for o. = P and that instabilities
occur for very close values of n and P. For these
cases alternative formulas are given. Our obser-
vation is that (3.5), convenient as it is from analyt-
ical aspects, contains a serious numerical bottle-
neck. Namely, the two terms containing sums
over t are in certain cases close in value and
opposite in sign. 'This leads to the cancellation of
decimal places during addit'ion of these two terms.
Generally speaking, matters become worse for
higher quantum numbers and closer values of a.
and P.

We have checked a relatively wide range of
parameters for the numerical reliability of (3.5).
9/

y
has been varied from 1 to 15, X, f rom 1 to 6,

I., and L, from zero to 5. Working with such high
indices, we had in mind subsequent calculation of
multipole integrals (see Sec. II). Check has been
performed for several values of R, and Table II
shows the results. For each P the" c/ is given for
which the procedure is still safe. For a nearer
to P, a heavy loss of significant figures is en-
countered for Ã„N, greater or equal to 6. As 8,
Q, M„and M, do not influence the phenomenon,
they have been held constant (8, Q = 45', M„M,
=0). A somewhat less exorbitant example of this
numerical difficulty is given in 'Table III.

C. Case n=P

In order to obtain a stable numerical procedure for the case of nearly equal scaling parameters, Stein-
born and Filter have derived a formula (4.9 in Ref. 2) which expresses the overlap integral with different
scaling parameters as an infinite series of integrals with equal parameters:

2 2 2(~ P It) (+/P)2//&el &- g /P+ + ) [1 (+/P)2]Pg//2&2&2 (P P It) P ~ & (3.14)

For the purposes of computation we have used the following working formula, obtained by combining (3.3)
and (3.14):

$2 2 2(~ P R) (////P)2N)+/)-1( I)Lq+M)(2~)1/2(P32N]+N2+Ly+z2)-1
1 1 1

x e~ ~ p ~ ~ ~ g(lm~L M ~f „-M&S', (cose)
po

~ ~ jl 2

x (pR) (-1)
(

)k„,/,„//2, r ~,1. i,.i/2(pR)
&fj

x 2~[(N, +p+N2+ I, + L2 —f+ 1)!] '. (3.15)
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Instead of $, the v function from (3.1) is used in actual computation.
Steinborn and Filter assert that the convergence of the above series is very good and that it could be

used for computational purposes even for larger differences between scaling parameters. During our
work on this subject, we have found that the series converges rather slowly and that its applicability is
severely limited. In 'Table IV a number of examples is presented, which, in our opinion, illustrate the
behavior of this series.

A way has been sought to circumvent this numerical difficulty. %e have found that the use of a continued
fraction instead of series can be advantageous. For all the underlying theory we refer to the monograph
by %all," chiefly Chap. 11, Sec. 51. The details of the algorithm used are as follows:

(i) Consider the series P =g", o c,/z", with the known coefficients c,.
(ii) Consider also the fraction

ao

a~
b, +z-

+ z ~ 0 ~ ~

2

The partial numerators and denominators (and therefrom the approximants) of. this fraction are deter-
mined by the recursion scheme:

&00=1 co&0() = a(), caboo bo& bz = cz/co I

1 bj

1 b,.

1 b,

0

0

1 b,.

jo

(c,& c,) ' = aa, a,.„=A, ag„——gr/g, .

jo

(c„., ~ c,.„) = b „b;„=b;,/g, , —h, /g, . (3.16)

Knowing the quantities a,.„,b,„and using the fundamental recurrences of continued fractions

A, =1, a, =o,
A =b, 8=1,

j+1 j+j. j j+1 j-j- t ~ 0 1 2 3

(3.17)

we can generate the numerators and denominators A, B of the fraction J. As we can see, the computation
of the (i 1)+taspproximantA, „/B,„involves 2i+.1 ter. ms of the series It is sho.wn in Ref. 14 that the ex-
pansion of the ith approximant in the inverse power series of z coincides with the series P up to at least
the term 2i.

Let us now cast the formula (3.15) in a different form. We introduce the notation:
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TABLE III. Illustration of the cancellation of figures upon adding the two terms in expres-
sion (3.5).

N( ——6
N2= 6
Q=1
A=1

First term

Lg ——5
L~= 5

P =1.5

m, =4
M2 ——4

Q= 45'

Second term

10
8
6
4
2
0

-0.297 581 213 339 524 565 x 10&4

-0.333 195493 127 629 280 x 10
-0.608 855 622 486 082 444 x 10

0.213 190 058 388 730 140 x 10
-0.192 906 694455 188 834 x 10
-0.822 627 070 788 225 667 x 10~

0.297 581 213 339524 645 x 10&4

0.333 195493 127 629 326 x 10~2

0.608 855 622 486 082 562 x 10&0

0.213 190 058 388 730 178 x 10
0.192 906 694455188 883 x 10
0.822 627 070 788 215411 x 10

Ng=4
N2

——5
&=2
R=2

First term

Lg= 3
L2= 3
P=3
0= 45

Mg= 1
M2 —-2

Q= 45'

Second term

p.341 633 755 217 602 620 x 10+
0 33P 460 192 977 763 193 x 10

-0.569737713155768661x10 &

0.341 633 755 222 990 786' x 10
p 330460192721257681 x10
0.569 737 719425 615 567 x 10

((y/P)2K~+i ~-1( 1)L2+Nye&mt (2v)1/2(P32 g+ 2+ y+I )-2

x 2'[(N, + P+ N, + L, + L, —t+ 1) l ]-', (3.18)

and now (3.15) can be written as

(3.19)

Identifying c,. with d,.„, we can apply the above algorithm to the series in (3.19).
It turns out that, for a certain range of parameters, the ith approximant of the fraction represents much

more than just 2i terms of the series. 'The iteration by the sequence of approximants has been checked
for numerical applicability in the same range of parameters as formula (3.5). Generally, this procedure
becomes unreliable for greater differences between n and P, and also for high quantum numbers. Again,
'Table V shows the range of n and P for which the algorithm is applicable. %e should emphasize that the
term "applicability" in this context means the meeting of rather strong requests (particularly for quantum
numbers) and that for common use this procedure might work perfectly for much broader range of o. and

p. Also, the upper limit to the computation lies in the request that the upper index of binomial coefficients
in (3.15) be smaller or equal 40. In Table VI, some sequences of approximants are given.

D. The limiting caseR = 0

'The explicit expression for one-center overlap with equal scaling parameters is given by formula 4.5 in
Ref. 2:

x2g2s,
( )

(2L, + 1)!!(2N, + 2N2+ 2L, —1)!!
N1LaMz ' ' &s(2N + 2N +4L + 2) t t L&L2 MQM2

'S ' ' ' o. o. 0 = (3.20)

This elementary expression is quite convenient for all computational purposes. %e shall pay some more
attention to the case of unequal scaling parameters, given by formula (4.10) in Ref. 2. This formula
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TABLE IV. Partial sums over P in expression (3.15}.

Partial sums

N(=3
N2 —-4
+=1
R=1

Lg= 2
L2= 2

P =1.05
g 45o

value of the integral:
0.228 894 558 906 585 311 x 10

M2=1

/=45'

2
3
4
5
6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

-0.198426 304 516 741 952
-0.280 008 447 445 203 520
-0.300 056 999440 924 850
-0.303 889 604 508 465450
-0.304 518 972 153 943 537
-0.304 612 286 247 106997
-0.304 625 144 036 055 534
-0.304 626 820 952 265 585
-0.304 627 030 527 574477
-0.304 627 055 845 686 341
-0.304 627 058 821 089 563
-0.304 627 059 162 879 076
-0.304 627 059 201 397321
-0.304 627 059 205 668 238
-0.304 627 059 206 135246
-0.304 627 059 206 185699
-0.304 627 059 206 191090
-0.304 627 059 206 191659
-0.304 627 059 206 191722
-0.304 627 059 206 191729
-0.304 627 059 206 191729

Ng—- 6
Ng= 5

o. = 1.05
R=1

L(= 5
L2- 4
P=1
&= 45'

M( -—3
M2=2

/=45'

value of the integral:
0 143 397 217 931 694 917 x 10

2
3
4
5
6
7
8

10
11
12
13
14
15
16
17
18
19
20
21
22

0.660 066 700 148 410880
0.109412 994 119820 335
0.125 390 906 472 157497
0.129736 837 316164 733
0.130711220 084 705 013
0.130901923 535 564 828
0.130935 651 813 754 067
0.130941 166 394 105218
0.130942 013 220 200 631
0.130 942 136 769 832 760
0.130942 154 044 539 644
0.130942 156 374 760 355
0.130942 156 679 605 625
0.130942 156 718 446 018
0.130942 156 723 282 108
0.130 942 156 723 872 219
0.130 942 156 723 942 951
0.130942 156 723 951 295
0.130 942 156 723 952 266
0.130942 156 723 952377
0.130 942 156 723 952 391

x10 ~

establishes an interesting connection between overlap integrals and the Gauss hypergeometric function.

$+2~2+2 (n P 0) = (n/P)2/1+L 1+2 $N2~2+2 (n n 0)NyL y!Vj N11'1+1

&& Q (N +L + 1,N +N +L, + ';N +N + 2L— + 2; 1 —(n /P ) ), P - n .
If we recall the one-center S'70 overlap formula

$ = (2S P~""(2~ P""2(N, +N ) t [(2N ) t (» ) t] "2(r + r ) "~ ~2 '~

(3.21)

and consider the fact that STO and RBF can be
represented as each others' linear combinations
(see Sec. 1.1), it becomes obvious that the hyper
geometric function in (3.21) represents a special
case, expressible in a more elementary form.

I

However, let us first consider the numerical as
aspects of (3.21). Let us use the notation.=1-( /V)',

a =N, +L, +I,
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TABLE V. 0' 1, values on this side of which expres-
sion (3.19) is no longer safe for numerical purposes.
u~ (u(p; 0=45", /=45'.

10

1

10

0.9
0.92
0.93

1.8
1.85
1.9

4.6
4.7
4.75

6.4
6.7
6.75

9.2
9.5

b =N, +N2+L, +»
c =N1+N2+2L, +2.

The following inequalities are easily verified

0&x&1,

2&a&b&c,

a, c being integers; b, half integer. We restrict
the domain of indices by c ~ 30 and seek for a
procedure to evaluate the function

F(a, bc; )z.

We shall mention, without boring the reader with

formulas and tables, that a number of methods has
been tested numerically. They are as follows:

(i) Gauss series (directly or turned into a con-
tinued fraction);

(ii) recursion schemes (Ref. 12, formulas
15.2.10-15.2.27);

(iii) Chebyshev polynomial expansion and rational
approximation. "
According to our experience, the most reliable
method consists of numerical evaluation of the
known integral representation for F (see, e.g. ,
Ref. 12 or Ref. 16):

F(a, b;c;z) =
( ) ( )

t' '(1 —t)' ' 'I'(c)

x(1-tz) dt

(3.22)

As c —a —b &0, the hypergeometric function will
have a singularity at z =1. In the close vicinity of
z =1, we use the formula (for the proof and com-
ments see Appendix B):

SN2L2hf2 ( P 0) = ( 1)NL Q2N]+Lg 1 P2N2+3Ly (P2 (22)-Ng N2 2Lg-
R2 2~2 R (q2 2o2

p (N1-1/ 22 -N1-N2-2L1-1 ) p(-N &+1/ 22-N1-N2-2L1-1 )
N2+L1 p2 N1+L1 p2 (3.23)

Here P„""'(z)are Jacobi polynomials, discussed in the Sec. III B. For the evaluation of individual
Jacobi polynomials, the recurrence in N given in Ref. 13 (p. 213) is entirely satisfactory.

Formula (3.23) has the same disadvantages as (3.5): a. cancellation occurs for z considerably smaller
than unity, but in the neighborhood of z =1, it is a very valuable numerical tool. Finally, the algorithm
for one-center overlap is as follows:

0 & z & 0.8, Gauss-Legendre quadrature, 50 points

TABLE VI. Examples of sequences of successive approximants obtained in the continued
fraction approach (3.19).

Successive approximants

N( ——3
N~

——4
0!=1
R=1

Li= 2
I.p= 2

P =1.05
0=45'

Value of the integral:
0.228 894 558 906 584777 x 10

/=45'

0.793 874 463 212 941 756 x 10-
0.793 874 405 821 512 557 x 10-
0.793 874405 847102 648 x 10
0.793 874 405 847 099 888 x 10-
0.793874405847099867 x 10 i

0.793 874 405 847 099 867 x 10-

N(=6
N~—- 5
~ =1.05
R=].

P=l
8=45

Value of the integral:
0.143 397 217931694 914 x 10

Mg= 3
Mg= 2

/=45'

0.649 355 577 366 388 984 x 10-1
0.649 354 866 155016884 x 10 ~

0.649354 867 091729 605 x 10-
0.649354 867 091112841x 10-
0.649 354 867 091113029 x 10-
0.649 344 867 091 113029 x 10-
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0.8 ~ z & 0.9, Gauss-Legendre quadrature, 2 && 50 points

0.9 ~ z &0.95, Gauss-Legendre quadrature, 4 && 50 points

0.95 ~ z & 1, formula (3.23).

E. Comments

Concluding this chapter, we would like to dis-
cuss generally the calculations performed. The
reduced Bessel functions prove to be much more
advantageous than STO's, at least with respect
to. the overlap integrals. Compactness of the con-
volution formulas renders the whole matter ac-
cessible for a numerical investigation. This is
certainly not the case with STO's. Furthermore,
special functions appearing in these formulas are
well investigated, which makes improvements of
the formulas possible and also simplifies the
computation.

However, it should be pointed out that numerical
difficulties mentioned above (Sec. III B and III C)
restrict the use of convolution theorem quite
seriously. As it can be seen from Tables II, III,
IV, and VI ranges of parameters exist for which
the given formulas do not provide a satisfactory
numerical path. Since the overlap integrals ap-
pear as the building blocks in Coulomb as well
as in multipole integrals, some further procedures
for their evaluation must be sought.

Here (p, (x) are the associated I egendre functions. '
The above choice of phase is known as the Condon-
Shortley phase. The functions (p, (x), appearing
in the formulas in this paper are calculated by a
recursion relation derived from the Bonnet recur-
sion for the associated Legendre functions:

( )
2I+3

'*' ()-m + ()()+ m + )))

x (2l + I)'~'x (P, (x)

(I —m)(l+m) ' '(p", , (x) . (A2)
2l —1

The starting values are

(p I) (x) 0

2m+1!! )'~'

& 2(2m)!! &

(p ()=( 1)"
~ I (1 x')"" (A3)

The Gaunt coefficients are defined:
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(A4)

%'e shall mention a relation closely connected with
Gaunt coefficients; this relation is used in the
chapter on multipole integrals:

APPENDIX A

(e p) = (2v) (p))'(cose) e

( ) ( )„(!(2)+) )() -m)!)'i'
2(1+m)!

x P((cos8). (Al)

Surface spherical harmonics used in this paper
are defined as:

Y,,~(Q) Y", 2(Q) = P(LM ~l,m, ~l, mg Y~(Q). (A5)

A good account on the subject of Gaunt coefficients
and spherical harmonics can be found in F. E.
Harris's book. ' We shall only mention that the
individual coefficients have been calculated by
the Racah formula, a procedure that proved to be
sufficiently reliable for our purposes.

APPENDIX 8

This appendix deals in some more detail with the hypergeometric function encountered in Sec. IIID.
First, a proof of formula (3.23) will be given. Consider the identity which holds for hypergeometric func-
tions (Ref. 12, formula 15.3.6)

E(a, b; c;z) = F(a, b; a+b —c+1; 1 —z)
I'(c)I"(c —a —b)
I'c —al" c —5

+(I-z) '-'
p E(c-a, c —b; c-a —b+1; i-z).I'( )c 1(a +b-c)
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To each function on the right-hand side of (Bl) the following transformation is applied (Ref. ]2, ]5.3.3).

F(a, b; c;z) = (1 —z)' ' 'F (c —a, c —b; c;z) .
This yields

F(a, b;c; z)= z' 'F(b —c+I, a —c+1; a+b —c+1; 1 —z)
I'(c)I'(c —a —b)
I'c —a I'c —b

+(1 —z}' ' ' z' 'F(-b+1, —(1+I; c —(1 —b+1; 1 —z... r(c)I (a+b —c) (B3)

It should be noticed that both functions in (B3) represent polynomials, since a —c+1 and -a+1 always
attain negative integer values. Let us now use the formula for Jacobi polynomials (Ref. 12, 15.4.6):

n~
F(-~, n+I+P+n; &+I; x)=, P„'""(1-2z).

o'+ 1&n

Combination of (B3) and (B4) yields, after some elementary substitutions and rearrangements:

(c —1) I I'(c —a —b)r (a+ b —c + 1)
r(c b)r (b) zc-1

x [P"' " '+"(2z —1) —(1 —z)e a P '~a ' c+"(2z —I)].

(B4)

(B5)

The parameter b will attain half-integer values only. Substituting now (B5) into (3.21) and performing
some straightforward rearrangements, we obtain the formula (3.23).

By systematic investigation of various forms of 24 Kummer's solutions and by the use of linear relations
between them, fifteen more formulas of type (85) can be obtained. We shall give the list without derivation.
It follows similar lines as above, and for further details we refer to Ref. 16:

(c —1)!r (a+ b —c+ 1)I'(c —a —b)
I'(c —b)r(b)z' '

x(c "' * "''(2z —1) —g' '(1 —p)' '' 'p'* ' '' "
( )c-a-1 a-1 z

(B5)

(c —1)!I (a+b —c+1)r(c —a —b)
r(c b)r (b)z'-'

Zea 1p(a+-b -c, a b)
~

--(1 Z)c a bp(c a -b ~ c+1) (2-Z -1)&2-z
c-a-1 z a 1

(c —1)!I (a+b —c+1}r(c —a —b}
r(c —b)r(b)z '

c-a-1 (a+b-c, a-b ) a-1 c-a-b (c-a-b, 5-a)&2-z Z a

zc- a-1 a-1 z

(c I)!r(a b i i)r(b - a)
r(c b)r(b)z ' —1'

(BV)

X c-a-1 (a-b a+b-c) (z —2 c a-1 c-a-b (b-a, c-a- b) z —2
z

z
z z ~] z

(c —1)!r (a —b + 1)I'(b —a)
r(c b)r(b)z'—

(B9)

( 1)aZc a 1P(a b, a+b e)----+ ( 1)c(1 Z)e b 1P(b a, c+-1&---
c-a-1 z a-1 z —1

. )
(BIO)

(c —1)!r(a —b+ 1)I'(b —a)
r(b) ''

X P(a b, c+1& -( -1)a Za-1 P(ba, c a b)---.r(-b) -'' z-1 r(c-b) (B11)
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