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Bulk viscosity via nonequilibrium and equilibrium molecular dynamics
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Two new nonequilibrium methods for determining the bulk viscosity via molecular dynamics are
described. These methods are applied to a soft-sphere dense fluid. Viscosities obtained from the equilibrium
Green-Kubo-correlation-function method agree with the nonequilibrium results. The viscosities found are
considerably smaller than those predicted by the Enskog theory of dense fluids.

I. INTRODUCTION

Two distinct coefficients of viscosity are needed
to describe the flow of simple isotropic fluids.
Of these coefficients, the shear viscosity q is the
more familiar. It describes the resistance of the
fluid to changes of shape. The bulk viscosity q„
describes the irreversible resistance, over and
above the reversible resistance given by the isen-
tropic bulk modulus, to changes of volume. The
effects of bulk viscosity can be ignored for dilute
monatomic gases and for incompressible fluids.
Accordingly, q„ is often omitted in hydrodynamic
problems. In dense fluids undergoing strong com-
pression, the bulk viscosity plays an important
role in determining shock-wave structure. '

The phenomenological stress tensor (minus the
pressure tensor) for a Newtonian" fluid is

o = [o + xv ~ u]I+ g[vu+ vu'].

The equilibrium stress, as well as the viscosities
g and g„=X+-', g, is calculated as a function of the
local density and energy in a frame moving with
the fluid. I is the unit tensor and u is the local
stream velocity. On physical grounds, the stress
tensor W is known to be symmetric —divergent
angular accelerations would result otherwise —so
that the symmetric combination of Vu with its
transpose Tu' is required.

Experimentally, the bulk viscosity is more
difficult to measure than the shear viscosity. So
far a laboratory technique providing homogeneous
isotropic compression has not been developed.
Even with such a hypothetical experiment, a
steady-state measurement, possible in the case
of shear, is impossibl. e. At best the bulk viscosity
can be measured by a cyclic compression and
expansion. Bulk viscosity is usually inferred
from sound-attenuation experiments. 2 It is as-
sumed to provide the residual attenuation once

the effects of heat conduction and shear viscosity
have been taken into account.

From the microscopic viewpoint the structure
of a fluid can be described by the pair-distribution
function. This function changes during isentropic
compression and that change requires a charac-
teristic relaxation time. During nonequilibrium
compressions which are rapid on the scale of
that relaxation time the effective modulus of the
fluid is increased. The first structural theories
of bulk viscosity were based on this idea. ' The
more fundamental work of M. S. Green and Kubo
led to an exact connection between the bulk vis-
cosity and the averaged decay of pressure fluctua-
tions:

(2)

where V is the volume, k is Boltzmann's con-
stant, T is the temperature, and t is time. This
expression for the bulk viscosity has been applied
both to the Lennard-Jones fluid at its triple point
and to the hard-sphere fluid." These results
are mixed. The triple-point viscosity lies well
below the Enskog prediction while the hard-sphere
results agree well with the theory over a wide
range of density.

The capacity and speed of modern computers
make it quite feasible to simulate nonequil. ibrium
problems involving a few thousand particles.
These simulations often reveal details inacces-
sible to ordinary laboratory experiments. Re-
cently, strong shockwaves in dense fluids have
been successfully simulated in computer experi-
ments. ' In order to understand the microscopic
structure found in these simulations' both the
equilibrium equation of state and the transport'
coefficients must be known for all the thermo-
dynamic states found within the shockwave.

Of the transport coefficients, the bulk vis-
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cosity is the least understood. To reduce this
uncertainty we have developed two computer
methods for measuring that coefficient. These
methods simulate a cyclic process in which a
small periodic system is periodically compressed
and expanded. In Sec. II we describe both non-
equilibrium methods for simulating this flow. We
then apply both methods to the inverse 12th power
soft-sphere potential, for which the equation of
state and other transport coefficients are well
known. " In the final section, we compare the
calculated viscosities with the predictions of the
Enskog theory. ' We also include a comparison
with the Green-Kubo fluctuation calculation in
order to show that the substantial disagreement
between our results and the Enskog theory, and
its elaborations' is not an artifact of our compu-
tational model.

II. CYCLIC-COMPRESSION METHODS

The homogeneous periodic compression and
expansion of an infinite system can be imitated
in a small periodic system by changing the size
of the small system as time passes:

L/L, =1+ $ sin~t. (3)

The strain is homogeneous throughout the system,
corresponding to the long-wavelength limit. As
the strain amplitude t and frequency v describing
the linearized strain rate (we use q and o in this
paper to indicate the strength and range of the in-
teraction potential and we also use these same
symbols, sometimes with dots to indicate time
derivatives, to represent strain and stress)

c = $(d cos(dt (4)
approach zero, we expect that the average pres-
sure within the system will deviate from the
equilibrium pressure by -3$ &uq„cosset The fa. ctor
3 arises from the additive contributions of the x,
y, and g strain rates to V' ~ u.

If the deformation (3) takes place through the
mechanism of external work, then hydrodynamics
implies that the "lost" work, or irreversible
heating, will be equal to the integrated irrever-
sible part of E=-3PV&, corresponding to an en-
ergy increase per cycle (the cycle time is 2v/v)
of (2wlu&)9PuPq„V/2. Thus the bulk viscosity
could be obtained either by analyzing the pressure
tensor components proportional to cos~t or al-
ternatively by measuring the system's energy
gain due to irreversible heating in the cyclic
process (3).

To simulate the cyclic process we modify Ham-
ilton's equations of motion. First we add an extra
term to q to describe the homogeneous straining
of the coordinates:

q =(p/m)+eq . (5)

p= F- &p. (6)

If the time derivative of the internal energy E(p, q)
=4 +p ~ p/(2m), where 4 is the potential energy,
is then calculated from (5) and (6) the result,

e 0 0

E =-q ~ F+p p/m=-3PVe, (7)

obtained by using the instantaneous mi. croscopic
representation of the mean pressure,

3PV=-p p/m+q F, (8)

agrees with macroscopic hydrodynamics. An
alternative derivation of (5) and (6) can be based
on the application of Hamilton's equations of mo-
tion~

q=sH/sp; p=-sa/sq (9)

to the Hamiltonian 4+ (p.p/2m)+ qp:V u. This
same Hamiltonian can be used to derive (2) from
perturbation theory or linear-response theory.

A particular method for solving Eqs. (5) and (6)
is given in the next section. An alternative method
can be derived by combining these equations to
eliminate p and p. The coupled set of Newtonian
second-order equations

j=(F/m)+iq, (10)
results when a term of order 2 is dropped. %e
have used the first-order equations (5) and (6)
in most of our calculations but have also used
(10) to verify that the results of the two methods
agree within the statistical uncertainties of the
calculated viscosities. Note that if the particle
kinetic energies are defined relative to the local
velocity eq, then once again the linearized change
of the thermodynamic internal energy E with time
is given by (7).

III. RESULTS

Because we use periodic boundaries, we hope
that the number dependence of our results is
small. In addition to this number dependence,
our results must also depend on the strain ampli-
tude $ and frequency ~. Exploratory calculations
indicated that strairis of order a few percent, and

Here, and in the following equations, we use the
roman q, p, and F to indicate sets of coordinates
q, momenta p, and forces 'F.

Hamilton's equations for p must also be modified.
In quasistatic compression, the added term in (5)
does external work against the potential energy C.
In addition to this potential-energy work, quasi-
static compression must also do work against the
kinetic pressure, p ~ p/3 mV. If this kinetic-en-
ergy work is expended in rescaling the momentum
distribution, the result is an effective force vary-
ing with the strain rate:
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frequencies of order the Einstein frequency, are
necessary in order to obtain statistically useful
results. The first-order equations were solved
in two steps:

(1) Solve q = (p/m) and p = F between t and t
+dt .

(2) Change q, p, and L at time f+dt, doing
external work.

The first step was carried out by finding approxi-
mate coordinates and forces at time f+ (dt/2),
using these to obtain q and p at time t+dt, and
finally rescaling the momenta at time t+dt in
such a way as to conserve exactly the energy in
that time interval. We took this precaution in
order to ensure that external work caused all en-
ergy change in the cyclic compression process.
At the end of a cycle of time length 2n/~ we
accumulated the energy change for the cycle and
rescaled the momenta so that the next cycle would
begin with the proper energy for the desired
thermodynamic state.

The second-order differential equations pro-
vide an alternative method for simulating the
cyclic compression. If these differential equa-
tions are replaced by equivalent centered differ-
ence equations, we have

n9(t+ (dt/2)}= ng(t —(dt/2)}

+ (dt)'(F/m+ eq). (11)

In solving this set of equations it is necessary to
recompute the old displacement, nq(t —(df/2)},
for any particle traversing a periodic boundary,
in order to account for the velocity component
difference, EI. across the periodic box. With
either scheme, a time step of order 0.00lo(m/e)'I'
(c/kT)7~" was sufficiently small so that the vis-
cosity obtained by accumulating -3PVE dt was
Staiistically indistinguishable from thai obtained
directly from the energy change per cycle.

Either scheme appears to be capable of deter-
mining bulk viscosities with an uncertainty of a
few percent. The efficiency of the calculations is
not great. About 100 000 time steps were re-
quired for each of our 32-particle calculations.
The results are illustrated in Fig. 1. The para-
meters used are listed in Table I along with the
predictions of the Enskog theory. That theory
gives for the bulk viscosity

IV. DISCUSSION

The failure of the Enskog theory to predict cor-
rectly the soft-sphere bulk viscosities was un-
expected. This failure led us first to solve both
the first- and second-order differential equations
as a check of our calculation. When these methods
agreed, we decided to work out some Green-Kubo
viscosities as a further check. These calculationq
carried out for 32 and 108 particles at (No /HV)
(E/kT)" =0.5, produced results not very different
from the nonequilibrium calculations. The Green-
Kubo correlation function is subject to an ad-
ditional check in that the pressure fluctuation is
simply related to the temperature fluctuation:

,', (V/N)'(—5P')= k'(5T'). (14)

A further relation between the temperature fluc-
tuation and the specific heat has been derived by
Lebowitz et al." The version of this last relation
quoted in a recent book is in error by a factor
of -', ." The Green-Kubo bulk viscosity is relatively
sensitive to the sample trajectories used to de-
termine the correlation function (see Fig. 2).
We base our Green-Kubo estimate on a section
selected to reproduce properly the zero-time
value af the correlation function.

The Green-Kubo calculation is also consistent
with the frequency dependence of our calculated
viscosities. If the correlation function were an
exponential -exp(-t/r) then the frequency-depen-
dent bulk viscosity, calculated from (2) but with
cos(dt included in the integrand, would have the
form

n„(&) = n„(0)/(1+ &'r') ~ (15)

This same frequency dependence (15) follows also
from the generalized linear constitutive relation

o+ r(o —Bi)=BE+g„e, (16)

which implies a frequency-dependent bulk mod-
ulus:

q = 0.171(m~)"'(kT/~)"'/o'

(We have used here the soft-sphere equation of
state suggested by Cape and Woodcock. ") "Im-
provements" of the Enskog theory predict much the
same result as Eq. (12).'

rl„(Enskog) = 1 002b py go.
For soft spheres interacting with the potential
Q(r) = s(o/r)'2 we have

bp = 2.V222x, x = (No'/QV)(c/kT)"',

y = 2.722@ + 3.791x + 2.495x —1.131x',

(12)

(13)

B(ur) =B(0)+[qruP/(1+ ver')].

Both the nonequilibrium data in Table I and the
Green-Kubo-equilibrium-correlation function
shown in Fig. 2 suggest a stress-relaxation time
r of about 0.04o(m/&)' '(c/kT)' ".This time is
very short compared to the Einstein period at
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FIG. 1. Soft-sphere bulk viscosities. 32-particle re-
sults are indicated by filled circles (the arrows show the
increase in viscosity as the reduced frequency decreases
from 10 to 5). 108-particle results are indicated by open
symbols. The square is the result of a Green-Kubo auto-
correlation function calculation. The horizontal arrow
indicates the low-density shear-viscosity coefficient for
soft spheres.

FIG. 2. Pressure correlation function for 108 soft
spheres atareduceddensityof (fVo~/WV)(e/kT)i =p.5p.
The two curves shown correspond to different sections,
each 5000 time. steps long from a solution of Newton's
equilibrium equations of motion. If the correlation func-
tion is chosen to coincide with the known intercept (indi-
cated by an arrow) then the bulk viscosity integral is
0.15 in reduced units, agreeing with our nonequilibrium
calculations. If the integrand is multiplied by cos((dt)
the frequency shift observed between reduced frequencies
of 5 and 10 is reproduced.

TABLE I. Bulk viscosities for the soft-sphere potential from nonequilibrium molecular
dynamics. The reduced viscosity is tabulated in units of (~z)~/t(PT/e)t/3/o t. The unit of time
in terms of which the reduced frequency and time step are expressed is (e/kT) o(~/e)

N (N& /V 2 U)(E/kT) 2~/dt cycles g„(Enskog)

32

108
108

0.30

0.40

0.50

0.60

0.70

0.60
0.70

2
5

10
5

10
5

10
10

5
10
10
10

5
10

5
10

0.03 4000
0.02 4000'
0.02 4000
0.02 4000
0.02 4000
0.02 4000
0.02 4000
0.02 4000
0.03 1000
0.01 1000
0.03 3000
0.03 6000
0.02 4000
0.02 4000
0.02 2000
0.02 5000

400
200
400
400
400
400
400
480
200
400
500
400
400
800
200
500

0.04 + 0.01
0.07 + 0.01
0.06 + 0.01
0.10+ 0.01
0.10+ 0.01
0.17+ 0.01
0.15+ 0.01
0.15 0.01
0.18+ 0.03
0.21+0.01
0.18+ 0.01
0.17~ 0.01
0.24 ~ 0.03
0.22 + 0,02
0.20 + 0.01
0.22 + 0.01

0.17

0.34

0.60

0.97

1.45

0.97
1.45

Calculated using the Newtonian second-order equations of motion. The other calculations
use the first-order Hamilton equations.

The time step used in these calculations is probably large enough to cause systematic er-
rors in the results.
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the same density, 1/vs = 1.37o(m/e)"z(e/kT)"".
This consistency of the nonequilibrium and equi-
librium calculations of the bulk viscosity is grati-
fying in view of the considerable discrepancy with
the Enskog-theory predictions.

Why does the Enskog theory overestimate the
soft-sphere dense-fluid bulk viscosity'? A semi-
quantitative explanation can be based on thermo-
dynamic estimates of pressure-tensor fluctua-
tions." In the dense hard-sphere fluid, upon
which the Enskog theory is based, the variances
of P„„and (P„„+P„+P„)/3are approximately
equal, leading, through the Green-Kubo relations, '
to nearly equal values of g and q„. A correspond-
ing near equality does not hold for soft-sphere
systems. In these systems the shear fluctuations
not only exceed the bulk fluctuations but also de-
cay more slowly. Both effects increase g relative
to q„. The trend of ply„with density predicted
from fluctuation theory is consistent with our
results from molecular dynamics, and also pre-
dicts much larger values of the viscosity ratio
for the softer inverse-power potentials.

In view of the demonstrated shortcomings of

the Enskog theory for the bulk viscosity, direct
measurements of g„are essential to the reliable
interpretation of results from computer experi-
ments involving rapid compression. We are in
the process of carrying out dense-fluid determina-
tions of the Lennard-Jones bulk viscosity in order
to interpret a recent calculation: Holian et al."
have simulated the shock compression of liquid
argon from the triple point to a temperature of
nearly 12 000 K. This shock-wave calculation
provides valuable data for the testing of nonequi-
librium theories of dense fluids.
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