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Critical conditions are obtained for bifurcation phenomena in nonequilibrium systems (chemical
instabilities) which are appropriate for transitions between homogeneous steady states as well as for
symmetry-breaking transitions to static structures. In the case of symmetry-breaking instabilities these
criteria enable the theory to be applied to systems in any number of spatial dimensions, eliminating a
restriction to one-dimensional systems encountered in other treatments. These critical conditions allow for
the derivation of time-dependent Ginzburg-Landau (TDGL)-type equations for the critical-mode amplitude
(the order parameter) that grows into the new macrostate beyond the critical point. For homogeneous
transitions the usual TDGL equation is obtained. For the case of intrinsic symmetry breaking, TDGL
equations are found for coupled order parameters corresponding to different directions in k space. In both
the intrinsic and the extrinsic cases the TDGL equations are found to have nonlinear transport terms. When
the TDGL equations are turned into Langevin equations, Ginzburg criteria (defining the region where mean-
field theory breaks down) are derived. The critical dimensionality thus determined is 4 for homogeneous
and intrinsic symmetry-breaking transitions, and 6 for the extrinsic symmetry-breaking case (under given
mild technical conditions). Expressions for the size of the nonclassical critical regions are obtained for the
different transitions in terms of characteristic parameters. For chemical instabilities these regions are in

principle accessible.

I. INTRODVCTION

In the past few years several attempts have been
made' ' to cast the dynamics of nonequilibrium of
physical and chemical systems near their transi-
tion points in a form analogous to,the time-depen-
dent Ginzburg-Landau (TDGL) equation of equilib-
rium critical phenomena. The reduction of a
given, sometimes complicated, set of kinetic equa-
tions [equations of motion (EQM)] to a simple, usu-
ally single, equation of the TDGL type is based on
the separation of time and space scales between
the mode (or modes) which become marginally
stable at the transition point and the other modes.
Near this point the dynamics are mainly deter-
mined by these critical modes, which are adia-
batically followed by the other modes. Adiabatic-
following methods, as well as multiple-time-and-
@pace-scale perturbation expansions, have been
used to achieve a reduction based on this feature.

In this paper we advance a scaling method for
the reduction of the ROM's near a critical point.
Our approach is based on the scaling method of
Mori'"" ' and related multiple-scale-limit-cycle
perturbation techniques. It is shown that the scal-
ing idea can be utilized for extracting TDGL-type
equations almost by inspection, and that it enables
us to characterize different classes of transitions
according to their characteristic scaling. Fur-
thermore, starting from generalized Langevin
equations and comparing the scaling of the random
terms to that of the terms associated with the
deterministic motion, we can extract information

on the range of validity of mean-fie1d theory for
these different classes. These generalized Ginz-
burg criteria are associated with characteristic
critical dimensionalities, d = d„above which mean-
field theory always holds. For d&d, the stochastic
motion dominates the dynamics inside the (gen-
eralized) Ginzburg regions, and our scaling pic-
ture breaks down.

We use this approach for three physically dis-
tinct cases. First, a TDGL equation and a Ginz-
burg measure are obtained for the neighborhood of
the critical point of a multiple homogeneous
steady-state system. This case is analogous to
simple equilibrium critical phenomena. Second,
the procedure is modified and applied to the case
of an intrinsic symmetry-breaking transition
where, at the bifurcation point, a structure of a
finite characteristic length scale emerges Final-.
ly, we also investigate the application of the scal-
ing approach to the extrinsic symmetry-breaking
instability where the longest-wavele, ngth modes
are the first to become unstable, and the structure
obtained is strongly dependent on the size of the
system. These different kinds of symmetry-
breaking transitions are introduced and discussed
in Ref. 8, and are reviewed in Sec. II.

This paper is organized as follows. In Sec. II
we review the common types of critical points en-
countered in far-from-equilibrium physicochemi-
cal systems and describe their mathematical pro-
perties. In Sec. III we describe the scaling method
as applied to these different transition types and
demonstrate the usefulness of this method for the
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simple homogeneous case. TDGL equations for
symmetry-breaking transitions are obtained in
Secs. IV and V for the intrinsic and the extrinsic
cases, respectively. In Sec. VI we discuss the
scaling of Langevin equations and demonstrate that
the critical dimensionality and the Ginzburg cri-
terion may be obtained by inspection from the
scaled equations. Finally, we discuss the pro-
blems associated with experimentally approaching
the critical region and speculate on the possible
extension of the scaling picture into this region.

II. BIFURCATION PHENOMENA AND CRITICAL POINTS

Our starting point is a set of nonlinear partial
differential equations having the general form

==F(C, V, t;X), (2.1)

where C(r, t) is the set of variables characterizing
the state of the system at any time, A. is a vector
of externally controlled parameters, and 5 is a
general functional of C and its spatial derivatives.
In this paper the notation 8 is used for a vector in
species space or in the external parameter space.
8 denotes a matrix in species space. The no-
tation 8 stands for a vector in coordinate space.
The variables C will be called state variables, and
in the autonomous case where 5 does not depend
explicitly on t we shall refer to the steady-state
equations F(C, V, X)= 0 as the equations of state.
We shall limit ourselves in this paper to this au-
tonomous case. In studying chemical instabilities
in reacting diffusing systems p is usually assumed
to have the form

characterized by different types of behavior. The
principal types are as follows': (i) A new sta-
tionary homogeneous state (multiple-steady-state
system). (ii) An oscillation, usually of a limit-
cycle type. (iii) A spatially structured stationary
state. We shall distinguish' between two such
types of structure: intrinsically determined and
extrinsic, system-size dependent. (iv) Traveling
structures —waves. (v) Chaotic spatiotemporal
behavior. In principle, these transitions, in anal-
ogy to the equilibrium case, can be associated
with a discontinuous jurnp in the state variables
(hard or first-order transitions), or by a continu-
ous change in these variables (soft or second-or-
der transitions). Experimentally hard-transition
points are only attainable transiently; these points
will be always smeared due to fluctuations and be
associated with hysterestis phenomena. We shaQ
focus attention on soft-transition points (also
called critical points) and the mathematical condi-
tions characterizing these points (critical condi-
tions) will also be shown to play a significant part
in the scaling procedure.

We now discuss the mathematical properties of
the critical points associated with some of these
different transition types.

a. Tmnsitions between homogeneous steady
states. A typical example of this kind is shown
in Figs. 1 and 2. Here the critical point is a cusp
catastrophe on a steady-state surface representing
one state variable, C, as a function of two external
parameters, A,, and A, With respect to one of the
external parameters, X, in H.gs. 1 and 2, the crit-
ical point (X=0) is characterized by

6:(C,V, X)= DV'C +F(C,X), (2.2) (2.6)

where F is some nonlinear function of the concen-
trations and other state variables, all included in
the vector C. The operator obtained by linearizing
F around a spatially uniform steady state Co(A. ) is
denoted 1"(X,V) or more explicitly i"( C'(X), X, V).
For the case described by (2.2), we have

I'(Z, V)=A(X)+DV' (2.3)

or, in f space,

For the case represented by ( 2.2), these condi-

r(~, u2) = a(~) -n'D, (2.4)

where

fl(X) = n(C'(Z), X) = —Co(z), X . (2.5)

+le shall be interested mainly in transitions
from a homogeneous branch of steady states (such
as the thermodynamic branch, the extension from
the equilibrium point by continuous variation of
X from its equilibrium value) to other branches

FIG. 1. Cusp catastrophe for nonequilibrium critical
point unfolded in terms of external constraints Q (temp-
erature1ike variable) and X 2 (magnetic-field-like vari-
able). C denotes a steady value of a descriptive vari-
able such as concentration.
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(X),=g (W,)'„C,C,+ ~ ~ ~, (2.13)

(a)

where X~ is the three -index tensor defined by

(2.14)@ )(
1 8 Eg(C, X)

l~

'Cg~g ) co(i)
'

Next we expand the vector C of the state variables
in the set j

~

&X&}

C= M. r, t, X aZ (2.15)
CO
I'(

Inserting into (2.12) and multiplying from the left
by(PX

~

we obtain

Dy & M +y~M~+ sM M s+ ~ ~ ~

(b)

FIG. 2. Cross section of the cusp in the plane (a) A2
= 0 and (b) X&

——0. .

where

u, =(px
~

a
~

ax),

(2.16)

(2.17)

tions have been shown' to imply the equation

((OX [g -( OX&,
(

0X&, =0,

where the vectors
~

&X& and(~X
~

(~=0, 1,2, . . . )
are the sets (assumed complete) of right- and
leit-hand eigenvectors of the matrix A(X),

(2.7)

a(x)
[

~~&=y.(~)
)

n~&, (2.8

and where ~ = 0 corresponds to a root which van-
ishes at the critical point

(2.9)

+N([C -C'(X)],C'(X),X), (2.10)

where N is a nonlinear function of quadratic or
higher order in C -Co(X). It is convenient to rede-
fine the origin of the state variables such that

C -Co(g) C

With this the equations of motion (EOM) (2.1}and
(2.2) can be recast in the form

(2.11}

= =DV'C+O[Co(Z), Z]C+N(C, C'(X), X), (2.12)

limyo(X) = 0 .
)L~ 0

The subscript c in (2.7) denotes the evaluation at
the critical point. It is possible to shed more light
on the number appearing on the left-hand side, of
(2.7) by expressing the rate equations in terms of
the amplitudes of the different eigenvectors. To
this end we rewrite E of (2.2) in the form

z(c, ~)= a[c'(~)~][c —c'(~)]

( 2.18)N. ~ =(P~
~

~~: (
o'~)

~

o' ~& .
An expression(a

~
N, :

~
b&

~

c& stands for the
triple sum

Z 8C C ((&
~
),(~ k&)g(~ c&)/,

,]~ 8C 8C~

where ((a ~), or (~ a&), are components of the cor-
responding vectors. For e = n ' = P = 0 the number
appearing on the right-hand side of (2.18) is seen to
be the coefficient of the term 1MO on the right-hand
side of the equation for the mode amplitude M, . This
coefficient was shown' to vanish at the critical point
defined by (2.6) for a system described by the
EOM's (2.2). A central result of the present study
is that the vanishing of this coefficient (or its
equivalent in symmetry breaking and other insta-
bilities) appears as a condition for a soft transi-
tion in more general cases.

b. Intrinsic symmetry breaking. By analogy to
(2.8) we now introduce the eigenvalues and eigen-
vectors of the matrm I'(A. ,k') given by (2.4),

~(~, k')
~

~»'&=y. (»')
~

&»'&, (2 18)

with the corresponding left -hand eigenvectors
(~Ak' ~. Consider now the case where all the pa-
rameters A, are held fixed except one (to be de-
noted X) which is varied on the approach to the
transition point. An intrinsic symmetry-breaking
transition is characterized by the vanishing of at
least one root, yo(X, k'), at the transition point
X = 0, for k = k, 4 0. This situation is shown in Fig.
3, in which yo(A. ,k') is plotted against k' for differ-
ent values of ~. Obviously this root satisfies
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terms of the amplitudes of the set of eigenvectors
( I

o'Xk')) of f' (assuming this to be a complet'e set).
A general solution to (2.12) is expanded in the
form

(2.28)

FIG. 3. %ave-vector (0) dependence of the eigenvalue
{inverse relaxation time) y OP. , k2) for various values of
X: &0 (below), = 0 (at), and &0 (above) the critical point
for an intrinsic symmetry-breaking instability.

This mode expansion is appropriate for a d'-dimen-
sional cubic system of volume V; k takes all val-
ues corresponding to periodic boundary conditions
imposed on the system. Inserting (2.28) into
(2.12), multiplying from the left-hand side by
exp(- ik r)(o'Xk'

I
and performing an integration

over all space, we obtain

dMp~
„, -y„( k'}M»„.

+ g g N, (kk'X)
+1 f2 k'

~&0 Ok
'

p
C

(2.20)
We have used

y, Mq~ Mg «~, + ~ ~ ~ . (2.29)

Defining

q =k2 -k',

f'(X, k'}= I', + qD,

i,=rP. , k.')=n -k'D

we have for small q

(2.21)

(2.22)

(2.23)

drexp i k-k' 'r =5~&,

and set

N: .,(I k'X)

-= —(~u'I N, :I~yk")
I
~P(k-I')).

(2.30)

(2.31)

yo(Xk') =yo(Xk,')+(OXk,'
I
D

I
OAk,') q+ 0(q').

Equations (2.20) and (2.24) then lead to the result

(2.24)

&ook.'ID
I

ook,')=o.
Moreover, since

[Q(0) k&D
I

Ook') 0

it follows that

(2.25)

(2.26)

( ook,' I A(0)
I

ook', ) = 0 . (2.27)

The relations (2.25) and (2.27) which characterize
the intrinsic symmetry breaking transition were
obtained using only properties of this transition
displayed in Fig. 3 and do not rely on the existence
of any critical conditions in the sense discussed
for the homogeneous case via (2.6}. However, as
in that case, we expect that a reduced description
of the system in the vicinity of the transition
point is meaningful only in the case of soft transi-
tions and we thus seek conditions under which this
is indeed the case.

In discussing spatial symmetry-breaking transi-
tions it is convenient to express the ROM's in

Note that (2.31) is equivalent to (2.18) when the
eigenvectors of I'(A. ,k') a.re replaced by those of
Q(X). Clearly

I
nx) =

I
uh. o) . (2.32)

Also the parameters N, ,depend on the relative or-
ientation of the vectors k, k' as well as on their
magnitudes.

It is shown in Appendix A using bifurcation theo-
ry (and later using scaling theory) that in order to
have a soft transition for d &1 a condition similar
to (2.7) has to be satisfied, namely,

((ook',
I
N, :

I
ook ) I

ook,')),= 0. (2.33)

The bifurcation analysis of the present model near
an intrinsic symmetry-breaking transition has been
done earlier for one-dimensional structures by
%underlin and Haken'"' and by Kuramoto. ' These
authors encountered difficulties for structures of
greater dimensionalties. In Appendix A, using bi-
furcation theory, we show that these difficulties can
be resolved and a reduction of the equations of motion
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can be carried out for all d, provided we apply dif-
ferent scaling in the expansion procedure depend-
ing on whether (2.33} is satisfied or not.

For the direct scaling approach addressed in the
present paper it turns out to be convenient to apply
a represenatation which is intermediate between
the coordinate representation- (2.12) and the "nor-
mal-mode" picture (2.29). Rewrite Eq. (2.12) in
the form

aC =D—(V + k )C+ [Q(X) k'-D]C+¹ CC+ ' ' '
et C C~

(2.34}

and expand

C(r, f;~)=PM. (r, f;X)
~

n~k2), ( 2.35) FIG. 4. Same as Fig. 3 for extrinsic symmetry break-
ing.

We have assumed that the right- and left-hand
eigenvectors of I', constitute a complete biorthog-
onal set and introduced the notation

Z~ ..(X)=(P~k.'~ X:)n~k2)
~

n'~k2) . (2.37)

N~, is seen to be somewhat different from N~

defined by (2.31). In terms of N'aneces, sary
condition for soft transition (3.22) takes the form

X'.,(0) = 0. (2.38)

where
~

nXk,') are eigenvectors of I',[see (2.23)]

r,
~

oak,') =y (Xk', )
~

n~k2) .
Inserting (2.35) into (2.34} and multiplying by
(PXk,'~, we obtain an equation for the amplitudes
M~.

' =g pu2
~

a
~

uxkm) ( v2+ k')M

+y~(Xk2)Mg+Q N~»». (X)M»M» ~ + ' ' ' .
eo'

( 2.36)

III. SCALING

As in equilibrium critical phenomena the scaling
idea is based on the observation that close to a
nonequilibrium critical point the critical mode(s)
are characterized by slow and long-range varia-
tions. The idea is to scale space, time, and the
mode amplitudes with the approach to the critical
point such that the relevant terms in the dynamic
equations remain invariant in form under this
scaling. In fact the relevant terms are identified
as those which remain invariant under this scaling
and this requirement also l.eads to useful relations
between the critical exponents.

In order to describe the essential features of the
scaling procedure we focus first on a critical point
for which a single homogeneous mode of the linear-
ized system becomes soft (corresponding eigenval-
ue vanishes). In order to focus on the'time and
length scales associated with this soft mode as
X-O, we scale the variables in-the following way:
length,

Equation (2.36) is the starting point for the scaling
treatmentadvances in Sec. IV. Ne note inpassing
that Eq. (2.18) is a special case of (2.37) for k, = 0.

c. Extrinsic symmetry &caking. The instabil-
ity in this case occurs first (at X = 0) for k = 0, but
for A, & 0 modes with k 0 take over. A typical situ-
ation of this kind is shown in Fig. 4, where y, (Ak )
is plotted against k for different values of A, . At
the transition point we again have

(000 in i
000&=0 (2.39)

which holds for the same reasons that lead to
(2.25). Also the (in this case necessary) condition
for critical (soft) behavior is identical to the k, = 0
analog of (2.33) [which is identical to the homoge-
neous condition (2.7).]

r=I r';
wave vector,

k=L 'k

time,

t =I't'
bifur cation parameters,

modes,

M. (r, f, ~) M'. (r, f, ~)-
and

M.'(r, f, ~) =I. "M.'(r', f', ~')

(3.1a)

(3.1b)

(3.1c)

(3.1d)

(3.1e)
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or

M (t-, X) -M-'„(t, A.)

Let us rewrite (2.16) showing explicitly the terms
corresponding to the eritieal mode:

and

M.' (t, X) =L "oM ', (t'-, X'). (S.lf)
o=D„V'M, +y,M, +gD, V'M +N'„M',

BC
——=D V'C +E(C, X) . (3.2)

By following the transformation described in Sec.
II, (3.2) leads to (2.16). We take yo(X) to satisfy
near A.; =0

The physical picture behind this scaling is as fol-
lows. As the critical point is approached, the time
and length scales associated with the criticalmodes
diverge. We make the scaling hypothesis that suf-
ficiently close to the critical point, the only rele-
vant length and time that characterizes the solu-
tion of interest are proportional to some power of
a scaling factor L. The factor L is chosen to be
the characteristic length for convenience. If the
scaling hypothesis is correct then the appropriate
spatial variable is clearly r' =r/L, i.e. , r scaled
by the characteristic length L. Similar comments
justify the introduction of the new variables t' and
X';. Since we do not know a Priori to what power of
L the characteristic time diverges we must, as
we shall see, determine it from the equations of
motion (and similarly for the exponents associated
with the A.;). According to the scaling hypothesis
the only relevant length and time scales near the
critical point are L and L' for a system close to
the crit. ical point at a distance of order L 't in the
parameter A.;. Thus since all the characteristic
magnitudes have been absorbed into the primed
variables the only effect a change of L can have on
the mode coordinate is to multiply it by some
function, assumed to be a power, of L. This
justifies the scaling properties in the quantities
M' given in (2.1e) and (2.1f)." Furthermore, we
may require that all the relevant terms in the
equations of motion become of order unity under
this scaling. This enables us to find relations
between the scaling exponents and to calculate
them.

This procedure naturally brings out the fact that
on the time and length scale relevant to the critical
mode, the noncritical motion effectively comes to
a steady state consistent with the instantaneous
state of the critical mode(s) (see below). It thus
contains the essential elements of the adiabatic-
following procedures used in similar contexts. '

To demonstrate the way this method works, we
consider a system of several reacting diffusing
species characterized by the EOM's,

+2 +No M@1 + Q N' .M M ~ . (3.4)
O, AO

=D.,Vgg, + D.,&'M, + y„m. +2

+ QNoo, MoMo, +N ooMoo, n e0.
gg'Ao

(3.5)

We note that (3.1d) and (3.3) imply the scaling
property of the eigenvalues y . Assume that all
the parameters X are zero except one that we de-
note X. Then if, near X=O, y, = Vyo', we have

yp p. . V PQ. (3.6)

Qn the other hand, y for o, x0 is (by the assump-
tion of the existence of only one critical mode) of
order zero in X,. and is scale invariant

y =y', n 10.
In addition, we recall that at the critical point
N', ,(0) =0 [cf. (2.7)]. As X,.-0, Nooo(X) usually van-
ishes either as A. or as C (A.o) —C'(0) (for bilinear
nonlinearity Npp X is the usual case, while for
higher-order nonlinearities the second case be-
comes possible). To cover these various cases
we take

NP =L ~N' zv&000 00 & (3.8)

N o, = N,'; (n, p, y not all 0) . (3.9)

performing now the scaling described by (2.1)
and (3.6)-(3.9) on (3.4) and {3.5), we obtain

BM' —L««2g) q 2@I +L«-v~ 1 ~1 +I«-t0-xpgtpg p2

00 0 yp 0 00 0

+2 QL' "oN' M'M' +L""o ' L "oD V"M'
Oa 0 e8 Cg

QA

L «+x L-"o " NP g'~'+ 0 0, O.' fX e'
e o'A)

(3.10)

BM'0 —LxfM xp 2g) p &2@&+Lxof 2 L gg /~2~l
BE Ot0 0 e13 8

Stp

+y' m' +Lx~-2xpN~ m~
Q Of 00 0

- o+L-"sNooMoM s
/go

where ~ can be calculated from (S.ld) and the
known dependence of N, (Xo)oon X for a, given model.
Other components of N are taken to be scale in-
variant

y,(X, ,fx»,. =0))-q . (3.3)
I «xg «xgjNQf ~f~I

as~ (3.11)
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Equation (3.10) suggests that the following rela-
tions should be satisfied by the scaling exponents
in order that the full slow spatial and temporal
evolution be maintained:

2=z =g=x (nw0) ~w+x, . (3.12)

The two last terms of (3.10) are irrelevant; i.e. ,
they do not contribute to the long-scale solution
since they have a persistent inverse factor of L
after the scaling. The M, ' term is relevant only
provided z =I) +x„and is irrelevant if the inequal--
ity in (3.12) holds. In (3.11) all terms but the
y' M' and the M" terms are irrelevant i.e. , as
L -~ (3.11) reduces to

y'M' = —N'~M'2
00 0

provided

x 2xp 0

(3.13)

(3.14)

Etiuation (3.13) states that on the long scale the
fast modes come to steady state consistent with the
value of the slow mode, the so-called adiabatic
following. Combining these results we obtain a
single equation of motion for the critical mode:

N N' =D V'M +y,M, —2 g ' "M' (+N;Pf')

(3.15)

where the primes denoting scaled variables have
been omitted. The last bracketed term appears
only if zv =x0 =1 and does not appear if se&1. This
sealing result does not hold for sv ~ l.

It is interesting to note that result (3.15) was ob-
tained without specifying the direction of approach
to the critical point [i.e. , the choice of X in (3.3),
etc.]. To understand the significance of this re-
sult, consider the case represented by Fig. 1,
where the critical point is a cusp on the steady-

state surface plotted in a space of one state vari-
able and two external parameters X, and k. The
approach to the critical point along the A., and the
X, directions is shown in Fig. 2. We see that in
the first case M, - X', ' while in the second case
M, —X,'t3. Recalling the analogy to magnetic crit-
ical phenomena, it is appropriate to call. A., a tem-
peraturelike variable, and A.„amagnetic-field-
like variable. We note in passing that any other
direction of approach, defined as a linear combi-
nation A, =A X, +BR, corresponds to the magnetic
field type since M, - X'~' as X-0. Now, (3.12) and
(3.14) imply x, =1, so that from (3.ld) we obtain

&2 =3. (3.16)
If, as is often the case, N,'0 is proportional to X,
[i.e. , ut = y,. in (3.8) j the M,' term in (3.15) will be
absent. Note that the absence of a constant term
in the equation is due to the fact that M, measures
the deviation of the state variables from the (X-de-
pendent) steady state and not from their values at
the critical point. In this respect the development
here differs from that of Ref. 3.

IV. SCALING FOR SYMMETRY-BREAKING TRANSITIONS
WITH INTRINSIC LENGTHS

We are interested in the case where there is a
critical mode of a wave vector of length k, with a
lifetime that diverges as a parameter X attains a
critical value zero as seen in Fig. 3. Clearly in
these systems fluctuations with a wave vector on
or near the critical shell, ~k~ =k, are of greatest
amplitude. We shall refer to these as fluctuations
on the critical scale (CS).

To apply the scaling procedure in the vicinity of
a symmetry-breaking transition it is convenient to
start from (2.36). We write it separately for the
critical mode and for the other modes.

' =(OXk'~D~OXk')(V'+k')M +Q(OAk', ~D~ nba)(V'+k')M

+y, (Ak2)M, +N~o, (A)M,'+2+NOO(X)M,M + Q No i(X)M M ~ . (4.la)

=(nVP ~D
~

OA. )k(V'+k')M + g (nxk2 ~D
~

n'Ak')(V'+k')M,
I'80

+y (hH~)M +Ng~(A, )M o+2 +NO, (A)M /VI, + Q N. ~, (A)M,M, n 4.0.
N 40

(4.1b)

For simplicity we consider specifically the quad-
ratic nonlinear ity. Higher -order nonlinear ities
present no special difficulties. Also we focus at-
tention on the soft-transition case characterized by
(2.38). We assume that the terms (OXkg D

~

OAP', ),
y, (y, k', ) and N,', (A) are all of order L

Since we are interested in the long-time CS evo-

I

lution of the system, we expect the relevant solu-
tion to be a linear combination of terms of the
form W(r, t)e&'"~'" with W(r, t) weakly dependent
on r and t, and with different terms corresponding
to k, vectors having different directions. It should
be kept in mind that such terms are always coupled
to higher harmonies. The most general expansion



A. NITZAN AND P. ORTOLEVA 21

I =M~+m&se e e

where M~ includes all those terms for which

(4.3)

k~) =k
C C

l=l
(critical-scale terms) while M"s includes all other
terms.

The scaling defined by Eq. (3.1) has to be modi-
fied for the present case in two ways

(a) The scaling implied by Eq. (3.1) holds now

only for the slowly varying (in space) parts W of
the functions M. Consider a general term

f(r, t, »&.) = W(r, t, X)exp(ik r)

(belonging to M 8 for
l kl =k, and to M" other-

wise). As only the r and t dependence of W(r, t)
have scaling behavior, it is convenient to introduce
two length variables

of the function M (r, t, »&) may be represented in the
form

OO

M.(r, t, »&) =gg w&"s»» (r, t, &)exp igk,'& r l,
n=j. (I)„ r=j. j

(4.2a)

where M„represents a group of n directions
(I„I,. ..I ) characterizing the vectors k,'(lk,'l=k, ).
Near the bifurcation point we expect the CS con-
tribution to be dominant, i.e.,

lim M (rt»&) =g W~(r, t, »&)exp(iki ~ r) . (4.2b)
X-0

Indeed, combination terms in Eq. (4.2a) are re
lated to products of fundamental terms (obtamed
because of the nonlinearity of the problem). They
therefore scale like higher powers of the distance
from the critical point and disappear more rapidly
than the fundamentals.

For the following discussion it is convenient to
separate the sum (4.2a) in the form

Under scaling &, =L
4, =I -'~,'. However, 40 yields zero when opera-
ting on M~ terms so that up to the leading order
in L-' we have

when operating on M~

+0 when operating on I" (4.8)

(b) The scaling of the coefficients W&"» in Eq.
(4.2a) will depend on n; i.e. ,

W&"&'(r„t, ») =L " "W&"»'(r'„t',
»&.'). (4.9)

As in Sec. III we expect (and justify in retrospect
via self -consistency)

xo& =1, x, =2 (n eo) . (4.10)

With these modifications the scaling procedure
is essentially as in Sec. III. We find that the
choices

Z =g =2y Xpg p XQ2 Xe$ Xe2 (4.11)

lead to a consistent set of scaled equations. Equa-
tion (4.1a) yields in order L

QD ntMtNs —0 (4.12a)

where

D.;={&ok:ID-Ie ok,), (4.12b)

while terms which scale like L-' are related by
the equation

em'~
=y x'm'~+ a0 0 Oe e

However for n&1 the coefficients S'"' are related
to products of coefficients of lower order. We
therefore expect

x „~n (~ =0, 1, . . . ; n&1).

f(r„r„t,A.) =W(r„t, X)exp(ik r,) .
Equation (3.1) is now replaced by

(4.4)
+2+FR, (0)(M',~M')~, (4.13)

and

&g
r~ =Lr~

p

t=r t'

(4.5a)

(4.5b)

(4.5c)

(4.5d)

where yp is the coefficient of X in the leading term
of the»&. expansion of y, (»&., k',).

Turning now to (4.1b) we find that the leading
terms are O(L ') and to this order

0 =D 0&'Mo+QD, r&.'M' +y (O, k~~)M'
e40

W(r„ t, X) -W'(r„ t, »») =L "W'(r'„ t', 9) . (4.5e) +N;, (0)M;'(+~0). (4.14)

Accordingly we write

+E +6

where

(4.6)

(4.7)

The following comments should clarify the nature
of Eqs. (4.12-14)

(a) The operator E' appearing in these equations
is defined differently when it operates on CS or on
NS functions
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(n Mcs)(

(MNs) ~n ~Ns )
(b) Equation (4.14) contains both CS and NS terms

and can be separated into two equations. The CS
equation is

0 =D OA', M'0~+y (O, ks)M'~+No (0)(M's)( (ago),

(4.15a)

while the NS terms satisfy

o =pa...n,~
+y (O, k', )M'" +¹,(0}(M,")" (a to). (4.15b}

Both Eqs. (4.15a) and (4.15b) are obtained in order
L-'. The separation is achieved because each
equation involves different Four ier components.

Equations (4.15) are the adiabatic-following
equations which provide relations between M
(a co) and M, s near the critical point. Next we
invert these equations in order to explicitly obtain
these relations. The primes indicating scaled
variables will be omitted henceforth.

Equation (4.15a) yields

Mcs — [D 06(Msm +Neo(MO)cs] (a g 0)
1

(4.16)

In order to invert (4.15b) we first note that (4.12)
and (4.15b) may be combined to yield

QD,&PI"P

+y (0 k')M" +¹(0)(M')"s =0 (all a), (4.17)

where the summation on o.' includes a' =Q. For
a =0 (4.17) and the identities yo(0, k',), 1P~(0) =0
lead back to (4.12), while for a e 0 (4.17) is identi-
cal to (4.15b). To invert (4.17) we use the identi-
ties

=y xM —&Ook'ID(Q, —Dn, ) 'D(ook', &(4 )'M

-&ook', Ia(Q, -ak'. ) '(v, &~,(M,')

—2M, &00ns(N: (OOk', &( v,&~,M,

—2M, &oon', IN, : (oon', &( v,"&M;,

where all the M, 's are Cs functions and where

oon', &,

I v, & =(Q, -an', )-'a
I
ook', &,

I v,")-=(Q, +DV') 'N: (Ook')
I
Ook', & .

(4.19)

(4.20a).

(4.20b)

(4.20c)

Note that the derivative operator in
( v,"& operates

on the M, functions appearing on its right. Also
note that indeed the operators (Q, -Dk', )-' and

(~Q DV', )
' op-erate only on vectors orthogonal to

I
Ook', ), which is the null vector of the matrix

~Q -Dk', . This is seen from Eqs. (2.25) and (2.38),
and hence all terms are well defined.

Equation (4.19) constitutes the final formal re-
sult of the scaling procedure. This is an equation
of motion for the critical mode amplitude M, which
plays the role of a Ginzburg-Landau equation. A

more explicit form is obtained by expanding Mp in
the form

M = W~r, expikr r
gf

and using (4.7). This leads to a Ginzburg Landau
equation for the amplitudes W,

aonsla(a Oks&6, +y (O, k', )5
= &aOnll a~. +Q. —Dn'I a'on')

=&aon;
I
Q, +av'I a'ok,'&,

and obtain

M"s = —g (aok'((Q, +DV') '(a'Ok'&N~(M')"s.
n'A)

(4.18)
This equation holds for all a, however only the
a oo information is needed. Inserting Eqs. (4.16)
and (4.18) into (4.13) we obtain after some algebra

=y, Aw~+4&ook', ID(Q -Dn', ) 'D(ook', )[(k, v, )'w ] —2i&ook', (D(Q, Dk', )-'(v, &Qk, —v, (wiwI( ))

—42&00k IN: ( ook:&
I
v &g wi(~&k& v, w, —2 g 6(k', +k", +k',",k.')&oon: INs: I

oon & I v" &w.w'ws- (4»)

where I(J}is a direction defined such that
I+1(J)=J, where I, 1(J), and Z are unit vectors in
the corresponding directions; 6(((,n) is the Kronck-
er delta; and

( v,), ( v,), and
(

vsl'& are defined in
Eqs. (A37)-(A39). The result (4.21) agrees with y, = &ook',

(
Q, (ook;& (4.22)

the corresponding result (A31)-(A39), obtained in
Appendix A using a standard bifurcation analysis,
provided that the identity
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V. EXTRINSIC SYMMETRY-BREAKING INSTABILITIES

The scaling approach here may be viewed as a
special case of the intrinsic instability when k, = 0.
The fact that y0(k, k'= 0) is always zero (see Fig.
4) leads to the special features of this case.
Starting from (2.16), we obtain (3.4) and (3.5),
only the term y,M, of (3.4) now vanishes. Near
the transition point D„ is of order X [cf. (2.39)].
We assume that N000(a) vanishes for X-0 as in the
homogeneous case [see discussion preceding Eq.
(3.8)]. We thus have for the scaling (2.1)

D I, 020D010, N00=1 N» (w, y& 0) . (5.1)

After scaling, the equation for the critical-mode
amplitude takes the form

holds, where 0, is defined by (A3). (X' is identical
to X2 defined in Appendix A. ) Indeed (4.22) is just
the perturbation theoretic expression for the 0(X)
term in y0(X, k', ).

Equation (4.21) yields the special case of dimen-
sionality 1 by noting that the two terms containing

(J) cannot appear for this dimen siona 1ity.
Equation (4.21) then becomes identical to (All).

We end this section with the following comments.
(a) The derivation did not involve any assump-

tions about the dimensionality of the system or
about the emerging structure. We did assume how-

ever that for a given d-dimensional structure all
the d spatial directions are equivalent. Our pro-
cedure has to be modified somewhat in cases
where alternate scaling has to be applied in dif-
ferent spatial directions (as for the horizontal and
the vertical directions in the roll formation of the
convective instability). In particular we shall show
that this must be done in the presence of electric
fields in reacting systems with ionic species. "

(b) A striking difference between the present re-
sults, Eqs. (4.19) and (4.21), and the homogeneous
case is the appearance here of transport terms
which are nonlinear (quadratic) in the order pa-
rameter. Such terms do not appear for d =1. This
can be realized by noting that in one dimension,
terms quadratic in M, will correspond to either
k -0 or k-2k, .structures and will therefore be
irrelevant under the scaling. The one-dimensional
symmetry-breaking case is studied in detail in

Appendix A and in Refs. 1 and 2.
(c) Another important difference between the re

suits obtained here [Eq. (4.21)] and the homoge'-
neous case lies in the appearance of coupled order
parameters corresponding to different directions
on the critical shell. Similar situations have been
noted in the Bernard instability' and in particular
eases of equilibrium critical phenomena. "

8M'
= L» "~D' &'2M'+ L' ~ "ON 'M'

at 00 0 00 0

+2 L' eN0 M'
e PO

L eD ~"M'
Oe e

e~0

+L 0 L e eN MM'ee' e e' &

e2e PO

(5.2)

while the equation. s for the noncritical amplitudes
are identical to Eq. (3.11). Equation (5.2) sug-
gests the following scaling relations:

x =y+2=2+x —xo ~'~+xo ~ (5.3)

As in (3.10), the M', term is relevant only if a=w
+x, and will be irrelevant if the inequality holds.
The last term of (5.2) is irrelevant. Equation
(3.11) again suggests that x = 2x„and we obtain

xo=g =2, x =8= 4, Q 40.
Equation (3.11) then leads to

(5.4)

(5.5)

Oe 00 VI2(M2) ( N0I Mi2)
e/0 le

(5.6)

The bracketed Mo" term appears only if zv =2. For
this scaling to be correct we must have m ~ 2.
Hence N~»(X) must vanish at least as fast as X as
x- 0.

As in the intrinsic symmetry-breaking case, we
again encoun. ter a nonlinear transport term. Re-
defining coefficients in an. obvious way we rewrite
(5.6) for the case w&2 as

anl
~t

= (e+ k222)V2m+ c~Vm ~' —am'.

As the system is driven to instability e drops be-
low zero and the diffusion term tends to amplify
pattern. Eventually this may be balanced off by
the b and c terms (according to their signs) and by
the cubic term (which must, for globally stable
systems, imply a &0).

VI. FLUCTUATIONS AND THE GINZBURG CRITERION

In this section we extend the scaling procedure
to include fluctuations within the Langevin formal-
ism. As was pointed out in previous work, " the
application of the Langevin equation near a critical
point should be carried out with caution. Its sim-
ple-minded use is justified only under conditions
which ensure small fluctuations (i.e., far enough

and insertion into the relevant part of (5.2) yields

8M'
+2 Oe OOM 3

00 0 0
e WO ~e
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from the critical point). Even if it is assumed that
the Langevin representation is a good starting
point, its utilization in the close vicinity of the
critical point requires a major modification of the
scaling procedure described in the present paper.
However as we shall see, the present scaling pro-
cedure (which may be termed mean-field-type
scaling) is capable of predicting its own limit of
validity and therefore to yield in a straightforward
way generalized Ginzburg criteria which estimate,
for every case considered, the size of the critical
region within which mean-field theory and mean-
field-type sealing are expected to fail. This appli-
cation of the scaling procedure has already been
demonstrated by one of us for the homogeneous
case.'

In Appendix B we demonstr'ate the application of
mean-field scaling for the derivation of the Ginz-
burg criterion for the standard time-dependent
Ginzburg-Landau model. In what follows we con-
sider first homogeneous transitions of the kind
considered in Sec. III and then symmetry-breaking
transitions as discussed in Sec. IV.

A. Homogeneous transitions

Starting with (2.12), we assume that fluctuations
from the mean behavior can be incorporated by
introducing Langevin noise sources into the kinetic
equations. In principle one should distinguish be-
tween two types of noise terms, i.e., those corre-
sponding to conservative processes and those
arising from nonconservative processes. Terms
of the first kind are described by adding fluctuating
terms to the currents of the state variables, while
those of the second kind by adding fluctuating terms
as in homogeneous contributions to the time deriva-
tives SC/St. With this procedure (2.12) becomes

8C =Dv2C+Q(z)C—+Ã~: CC+. . . +f(r, t), (6.1)

state is homogeneous; S and Q are matrices de-
pending on the mean properties of the system. In
the typical case where the dynamics of the system
is governed by chemical reactions and diffusion
processes, the matrices S and Q near a steady
state have been shown'" to take the forms

S,= (2D,M,.CO/X, )O,.„
~jWjf 0 0

R 0

(6.5)

(6.6)

0 =Do,v'Mo+ypfo+Noopf'+2 QEO Mpf

D0 V2M + N, M
a40 a, a'0

+(o~if, &+(o~ if„&, (6.7)

e DeoV2MO+ DeSV2MS+ yuMu

N~P~, M ~, +Ã0
$80 P, P'0 0

+ ( a~ Ifn &+ (o:&
If„). (6.8)

where C& are the steady-state concentrations of
the different components, D& are their diffusion
coefficients (the diffusion matrix is assumed to be
diagonal), 3II& are their molecular weights, v&z are
the corresponding stochiometric coefficients in
the reaction R, x&~ and x~ are the forward and
backward steady-state rates of the reaction R,
and, finally, &0 is the Avogadro number.

In what follows we shall assume that (6.1) has
been made dimensionless" by defining all quanti-
ties in terms of their typical values. Examples of
such a procedure are described in Appendix-B and
in Ref. 3. Proceeding as in Sec. III, Eqs. (3.4) and

(3.5) are now replaced by

with

f(r, t) fn (r, t)+fs(r, t), (6.2)

The scaling procedure is now repeated exactly as
in Sec. III. We note that, with the choice of scal-
ing exponents as was made in Sec. III, we have

where fn stands for the conservative and fs for
the nonconservative random noises. In the sim-
plest model involving Gaussian, &-correlated
noise sources these terms satisfy'4

O(r —r, )O (t -t,) =f 'O(r'-r, ')5(t' -t,'),
V =L V' ~ V'.

a tf

If we further assume

(6.8)

(fnf s& = (fu &
= (fs &

= O (6.3)

y (r t)f (r, t)=V V, O( rr)O(t t )S

(6.4a)

(fs(r, t)fs(r, , t,)&= O(r —r, )O(t —t,)Q. (6.4b)

The form (6.4) assumes that the reference (mean)

S—I 2+DSI Q I, ~+RQ'- (6.10)

[the usual choice is yD=ys=O; see Ref. 7(b) for a
different case], we obtain

fD (r, t) = I " "' "DfD(r ', t'),

f (r t) = I- ""'i' "&f'(r' t') .
Equations (6.7) and (6.8) then yield after scaling
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y~'+X;PS,"+L '" '-~( 0~f,')
,+ L-(d-2tl2-ws &&0 If

1 ) 0 (~ g0) (6.13)

The bracketed term in (6.12) has the same status
as discussed in Sec. III [c.f. (3.15)]. Assuming
that p~= y„=0, we see thai the fluctuating term
in (6.13) vanishes for d & 2 as I. —~. Equation
(6.13) therefore yields for d&2

M' = (Ng-y )M02 (c.40), (6.14)

which is identical to (3.13). Similarly the f~ term
in (6.12) is much smaller than the fs term near the
critical point and may be disregarded (a detailed
discussion of this point is provided in Ref. 3).
Equations (6.12) and {6.14) then lead to the equation

8MO

Bt
0 =DOOV2MO+y fifo

8MIO
,0 =D~v'3M0+ypI0+2 QN00J'f~' (+&OjlPJ,

00

+L ' "~' "~ (00~f~&+L " '" "~ (00~f„'&,

(6.12)

dition. To obtain this criterisn in a more physical
form, we have to go to the dimensional representa-
tion which depends on the particular problem
studied. Thus for example, rewriting Eq. (6.19) in

the form

&oolq ~00&~ ~"-&'~',

taking X to correspond to the feeding rate of some
chemical component, and recalling that Q arises
from chemical fluctuations, we obtain'

&0Oi qi Oo& =Z
61x-A-.
y

Here 9R is a typical molecular weight; &0, the
Avogadro number; ~ the feedi. ng rate expressed in
units of mass/(time x volume} (A actually express-
es the deviation of the feeding rate from its criti-
cal value); and 5, 8, and p are, respectively,
characteristic diffusion coefficient, time, and con-
centration. The dimensioned form of the Ginzburg
criterion then takes the form

$70 p TER

( ~;ping f„(,t),
koxo yo

(4~) f2
a,e2(5y)«2

(6.20)

where

f (r f)=L-""'"(00~f',&,

(6.15)

(6.i6)

&foo(r, f)f~(r„ t,)& = 45 (r -r,}5(t —t,), (6.17)

is of order less than or equal to that of the other
terms in (6.15). Since we work in dimensionless
units all these scaled terms are O(1), and hence
noise will not dominat;e the equations, e.g. change
the. scaling, if 4 s i. From (6.4) and (6.16), we

have

L-(dw)& 00
~
q ~

00) —L-(4-4)@

Thus the condition for the validity of (6.15) be-
comes

(6.i6)

{6.i9)

As is demonstrated in Appendix 8, this is just the.
scaled dimensionless form of the Ginzburg criterion
for the distance (determined by X-L ') from the
critical point below which mean-field theory fails.
The present scaling procedure (as well as other
perturbaiive derivations of TDGL equations for
bifurcation phenomena) fails under the same con-

and where we have omitted the primes denoting
scaled variables [except in (6.16}for special em-
phasis]. The result (6.15) is valid only provided
the strength 4'~' of the random-noise term defined
by

This relation was investigated in Ref. 3 with the
conclusion that breakdown of mean-field theory is
in principle possible for chemically reacting a»d
diffusing systems.

Two more comments should be made at this
point. First, note that for d&4 the condition (6.19)
is always satisfied whereas for d &4 the condition
becomes increasingly restrictive, e.g. , the Ginz-
burg region wherein nonclassical (non-mean-field)
behavior is found becomes increasingly wide.
This suggests that nonclassical behavior may be
more readily found in say two-dimensional react-
ing media (such as thin layers) than in three-di-
mensional reaction volumes. The critical dimen-
sionality for homogeneous steady-state bifurcations
(dimensionality above which mean-field theory is .

valid arbitrarily close to the bifurcation point) is
seen to be four. We shall find other values of the
critical dimensionality for different types of tran-
sitions.

Second, we have seen that conservative fluctua-
tions do not affect the Ginzburg criterion for the
case of homogeneous transitions. Different be-
havior wiQ be found for intrinsic symmetry-break-
ing transitions.

B. Intrinsic symmetry-breaking transitions

We start again with the dimensionless kinetic
equation written now in the form (summation over
repeated indices is implied)
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eC
=Dv2C +Q(A)C +N:CC + +spl+f„;et

(6.21)

because of reasons made clear below we have
written the conservative fluctuating term f~ as a
divergence of a current term s. We denote

s =-(s', s2, . . . , s'),
where s~ is the jth spatial component of the cur-
rent vector and it is a vector in the component
space (s ' is the jth spatial component of the cur-
rent of species ct) Aga. in f~ satisfied (4.4a) while
for s~ we have

(6.28)(f,(r, t)f,(r., t.)) = 6(r —r.)6 (t —t.)k2P .
Combining now (6.28), (6.23), and (6.4b), we ob-
tain (6.21) in the form

BC= =D& C+O(A.)C+~N2:CC+' ' '+f(r, t), (6.29)

where the random term satisfies

(f(r-, t)) =0,
6.30)

(f(r, t)f(r„t,)) =6(r -r, )6(t —t, )(Q +k', S) . '

In the representation based on the eigenvectors
~

nkvd', ) of the matrix I', (A) =Q(A) k', D—, (6.29) takes
the form [equivalent to (2.36)].

and

(& (r, t)s2(r, , t,)) = &(r —r, )6(t —t, )~l2S (6.22)

,
' =QQIVP, ~D

~

n&;)(v'+k', )M. +y, (~, k'.)I,

f~(r t) = — Qe'"~ 0 g(r~ t) ~

N g

N z

(6.24)

(6.25)

where N is the number of directions J contributing
to those sums and where the index J denote the di-
rection of the vector k~ (cf. Appendix A. Note that
y z=y~~, o ~=0~~, and k,~ = —k~). In order to be
consistent with former assumptions we take

s, s' =f~. (6.23)

Equations (6.22, 23) are easily seen to imply
(6.4a).

We are interested in fluctuations around a refer-
ence state with a spatial structure corresponding
to wave vectors of magnitude 0,. For this purpose
we write f~ and sl in the form

f(r t) = +exp(ik~ r)f~(r, t),
vN z

with

(6.32)

+g~.'.,(~)u„m., + ~ ~ ~ +pm, ~f(r-, t)),
o e'

(6.31)

where all the notations are as defined in Sec. II.
Making the reasonable assumption that
(00k/ f(r, t)) 2f: 0, the scaling procedure can be re-
peated along lines identical to Sec. IV. The follow-
ing points should be noted with regard to this scal-
ing procedure.

(a) The random term (PAkg f(r, t)) scales like
(POkg f(r, t)) as L-~. Corrections to this scaling
involve terms which are higher order in X(-L ').

(b) Equations (6.24) and (6.25) imply that f of
(6.30) may be written in the form

(y (r, t)y, (r„t,)) =5(r —r,)5(t —t,)6,Q,

(6.26) and

(f~) =0

[which, using (6.24) gives (6.4b)] and

(o', (r, t)o'~(r. , t,)) =6(r -r.)6(t —t.)6, „6,„S,
(6.27)

[which, with (6.25) yields (6.22)]. We further note
that [cf. (6.23) and (6.25)]

&f,(-., t)f,.(-., t.)&

=6(r -r, )5(t —t,)5~ ~, (Q+k2, S). (6.33)

In Eq. (6.32), the fz(r, t) play the role of noise
sources for fluctuations around the structure deter-
mined by the wave vector s k ~. In the spirit of
Sec. 1V we rewrite Eq. (6.32) in the form

(6.27a)
f(r, t) ==+exp(ik~ r, )f~(r„t). (6.34a)

(6.27b) The scaling ansatz of Sec. Vf

The approximation (6.27b) is made with the antici-
pation that the & containing term in (6.27a) will
scale with one L-' factor more than the other term
and can be disregarded close to the critical point.
Eq, (6.27b) then yields [using (6.27)] f(r t) L-(2+2) l2fl (rt gl ) (6.35a)

f~(r„t) =f~(Lr'„L2t'), (6.34b)

implies that [ taking y~ =ps =0 in (6.10)] the
scaling of f is solely determined by the r and t de-
pendence of the 5 functions of (6.30). Thus
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where

f'(r', f') = +exp(ik~ r,')fz(r', t'). (6.35b)

(c) As in (6.13) the random terms in the equa-
tions for the noncritical modes are scaled out for
d&2.

The scaling procedure now yields for the time
evolution of the order parameter M, an equation
identical to (4.19) with an additional random term
in the right-hand side of the form

f„(r,t) —= L-&"~' '(opk,
I f(r, f)), (6.36)

which is essentially equivalent to the (6.16) of the
homogeneous case. Also (6.17) remains valid with
4 now given by

e =I. «"}(0-0I I(q+u's)
I
oou &

=-I.- '"'c {6.37)

With this new definition of 4 the generalized Ginz-
burg criterion remains of the form

@ g y(d-4)/2 (6.38)

It should be noted that unlike the homogeneous
case, here the conservative fluctuations do not
scale away and make a contribution to the magni-
tude of C.

f -(c~}/2-eg (PPP
I ft&) +I -(d-6}/a-y& (00P

(6.39)

U'sing the same arguments as in Sec. VI.A we find
that the diffusion (conserved) fluctuations do not
contribute in the critical regime in the same order
as the reactive fluctuations and are scaled out.
Furthermore the Ginzburg criterion analogous to
(6.20) becomes

C SI." '
Hence the critical dimensionality is six for the
extrinsic case. This presents the interesting pos-
sibility that the nonclassical domain may be more
easily accessible for these systems.

To end this section we summarize the assump-
tions made and the significance of the results ob-

C. Extrinsic symmetry-breaking transitions

The analysis of this case proceeds essentially as
that for either the homogeneous case or the intrin-
sic case in the proper limit as k', -0. One finds
that in the presence of fluctuations using the scal-
ing described in Sec. V [see (5.4)] the EON (5.2)
must be augmented by two terms analogous to the
last two terms in (6.12), namely,

tained here. The following assumptions under line
the present treatment.

(i) A Langevin equation is used as a. model for
fluctuations in the nonlinear system. Far enough
from the critical point this description is essen-
tially equivalent to the more general master-equa-
tion model. The question concerning the validity
of the Langevin equation in the vicinity of the crit-
ical point is not addressed here as the sealing pro-
cedure itself ceases to be valid in the nonclassical
cr itical region.

(ii) The sca, ling of all the parameters appearing
in the kinetic equations was chosen as in Secs. III
and IV. The scaling of the random forces was as-
sumed to be determined by its r and t dependence
as appear in equations like (6.4) and (6.30). Phase
factors corresponding to structure like in (6.32)
behave as discussed in Sec. 1V.

(iii) The scaling procedure is valid near the
critical point where we may distinguish between
terms by their different order in L '. However,
we have seen that, in the presence of fluctuations,
the particular scaling applied here fails too close
to the critical point, when (6.38) ceases to hold.
Thus our procedure is limited to a region near the
critical point but not quite at it, and there is an
underlying assumption that such a mean-field scal-
ing region exists. Estimates made for chemical
and hydrodynamical systems indicate that the true
critical region [in the sense of (6.38)] is in most
cases extremely. small so thai mean-field scaling
as applied in the present work is a relevant pro-
cedure.

(iv) Finally, we stress again the importance of
the critical conditions [(2.7), (2.33), (2.38), etc. ]
in fixing the location of the critical point and in
determining the details of the scaling procedure.

With these assumptions the scaling procedure
was shown to yieM first, a generalized time-de-
pendent Ginzburg-Landau-Langevin equation for
the order parameter M, characterizing the transi-
tion, and second, a generalized Ginzburg criterion
which estimates both the validity of mean-field
theory (or the Gaussian approximation) and the
validity of the sealing procedure itself. The criti-
cal dimensionality obtained for both the homoge-
neous and the symmetry-breaking case is 4 for
d &4 mean-field theory and mean-field scaling are
valid for any distance from the critical point. For
d &4 breakdown of mean-field theory and "non
classical" behavior is in principle possible. A crit-
ical dimensionality 4 is seen to be a typical fea-
ture as in equilibrium phenomena. Other cases
analogous to multicritical equilibrium behavior
with a different critical dimensionality can of
course be devised. Interestingly, critical dimen-
sionalities other than 4 can also exist in cases
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such as the extrinsic symmetry-breaking instabil-
ity.

VII. CONCLUSIONS

In this paper we have advanced a scaling method
for the reduction of a system of nonlinear rate
equations near its critical point to a generalized
TDQL equation for the order parameter, identified
as the amplitude of the critical mode. Utilization
of critical conditions turned out to be essential for
a proper reduction.

For homogeneous transitions in multiple-state
systems, we obtained a TDGL equation of the com-
mon type. For intrinsic symmetry-breaking tran-
sitions (where a finite-wavelength structure ap-
pears at the transition point}, we obtained coupled
EDGL equations for order parameters correspond-
ing to critical waves in different directions. For
both the intrinsic and the extrinsic symmetry-
breaking transitions the generalized TDGL equa-
tions contain also nonlinear diffusion terms.

The scaling procedure applied in the present
paper is essentiaQy a mean-field-type approach,
and the exponents obtained are mean-field expo-
nents. By comparing the behavior under scaling
of the stochastic and the deterministic terms in the
kinetic equations we were also able to obtain gen-
eralized Qinzburg criteria for the size of the non-
classical critical region. The behavior of the sys-
tem inside the nonclassical region is beyond the
scope of the present work. It is interesting to
note that the many coupled order parameters case
have been conjectured'" to have a first-order
transition inside the nonclassical region. However
the equations studied in that case did not contain
nonlinear diffusion terms. "

Another question of interest is the applicability
of the Langevin equation near the critical point.
It would be useful to develop a scaling procedure
or a full renormalization equation which is a more
fundamental starting point than the Langevin ap-
proach.

It should be interesting to look for critical ex-
ponents and the breakdown of mean-field theory
for a system exhibiting chemical instabilities.
Estimates of the critical region indicate that it is
in principle accessibly for such systems. How-
ever, currently known systems seem to be not
very suitable. Small diffusion coefficients, fast
reactions, and a good control of the external pa-
rameters are the necessary requirements.

Estimates of the Ginzburg region for chemical
phenomena of various other types (oscillations,
wave, chaotic evolution) are in progress. Such a
program of investigation is necessary in planning
for experiments in fluctuation spectroscopy aimed
at determining nonclassical critical exponents.
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APPENDIX A: BIFURCATiON OF STATIC STRUCTURES

Here we outline the bifurcation analysis for in-
trinsic and extrinsic symmetry-breaking transi-
tions. %e limit ourselves to the static case and
set all time derivatives to zero.

A. Intrinsic case for d= 1

Consider the equation

For simplicity we assume that the nonlinear term
N(C, X} is quadratic in the deviations C from the
steady state [so that (2.13) is exact without the
missing termsj. This is the case in most practi-
cal examples and including higher order terms can
be done without any additional difficulty. Letting
e be a parameter measuring the amplitude of the
nascent structure, we introduce a multiple scale
expansion

In the case of a transition between homogeneous
steady states, the matrix Q(x) is usually a non-
analytic function of X near the transition point

(b)

FIG. 5. Bifurcation diagrams for a second-order (cri-
tical) transition (a) and a first-order (hard) transition
(b).
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x = 0 [even when x is chosen so that yo(X) is analyt-
ic in X for X-0]. This results from the fact that
.A'(X) =A(C'(X), X) and that the steady-state vector
C'(X) is usually not analytic in X for X-0.3 In the
intrinsic symmetry-breaking case this is no longer
so, because 0 depends on the homogeneous steady
state, while it is the amplitude of the nonhomoge-
neous structure which is expected to be nonanalyt-
ic in Z. We. therefore assume that A(X) is analytic
in X and write

D- 2+up c, =o, (A4)

so that

C ( ——[W(x(, x2, .. . )e

+ W*(x„x„.. .}e '""0][OOk',) . (A5)

where QO=Q(0). The nonlinear part of (Al) is
given by (2.13) and (2.14). We now insert the ex-
pansions (A2) into (Al) and consider the resulting
equations Order by order. To O(e) we get

A(x) = A, + Q,X+ Q,z'+ (AS} To order g, we obtain

(
d' l d'

D z +Qolc2= 2D C& —X(A(C, -g, :C,C,= dxo = j = = dxodx( ——

2'k
l

'"" — e '"" [D [ook')
'kd&~ d&~

-X (We'"*0+W*e '"~o)Q, [ook',) -(We'"*o+ W~e '" o)'AT: [opk,) [Opk ) .

Denoting the right hand side of (AS} by la(xp x, &, , )), the integrability condition for this equation is (l.
being the normalization length of our system, I, » 2vk, ')

X/2
dxoe""*0(ook, [a(xo, xi, .. .)) =0.I g(2

(AV)

dW, „„dW*
C = —2jk e&&c&0 e-& c~o (Q Dk2)aD I ook2) (W2e2Ac&0+ W42e&&~c*o)(Q 4Dk2) 1~ . Ipok2) ~ PPk2)0 C 2'I C I C

U»ng (2.25), it is easily seen that, in order to satisfy this condition, we must take y, =p. The solution
of (A6) then becomes

-2 [W[ Qo N2. [Opk,) [Ook,) . (AS)

Turning now to order &3, we obtain

(
d 67

D --2- + Ap C3 ——-2D C2 -y2Q(C)

d2
+2N2 .'C)C2 -D 2 C), (A 9}

where we have used the expansion (AS) in the form
Q(Z) =Qo+ e X2Q& + ~ ~ . Eqs. (A5) and (2.25) imply
that the last term on the right hand side of (A9}
does not contribute to the integrability conditions
which, for this equation, take the form

d&p 8+ 00' 2& &-
— C, + Z2n, C,

.+ 2N2 '. C)C2 ——0, A10

fixing the value of X2. Because of the remaining
freedom in the choice of g we may choose X2 ——1 for
convenience. Using (A5) and (AS), (A10) yields
after some algebra

I

where

a& ——4k,(opk, [D(QO -Dk2) 'D [opkm), (Al, 2)

a, =~,(ook', [A, [ook',), (A1S)

as= —2(ook, IÃ2 ' [ook,) [g), (A14}

and where in the last equation v is defined by

[t) =[(A, -4Dk', )"+2AP]N, : [pok,) [ook',) . (A15)

Equation (All} yields a single uniform solution
8'=0 below the transition and a pair of uniform
solutions W, = +(-a2/as)~~2 above it. Hence, from
the form of C& [see (A5)] and our multiscale ex-
pansion (A2), it is clear that the structures bifur-
cate smoothly as x passes through zero. Typically
this corresponds to a soft transition when the new
branches are stable as shown in Fig. 5a. For d & 1
the bifurcation may lead to a hard transition as in
Fig. 5b. In fact, as we shall now show, for struc-
tures with d & 1 soft transitions take place only un-
der very special "critical" conditions.

d Wa, ~ +a2W+a3W[W[ =0,
d+i

(A11) S. Intnnsic case f'or d&1
In repeating the expansion procedure described
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l. Equation (A16) is not satisfied

As before, we expand

C=gCg,
n~i

V= gVg",
n-0

I

1.= QX„e
n=i

(A1Va)

(A17b)

(A17c)

I

above for d & 1, one finds that the second-order
integrability condition is no longer automatically
satisfied. The reason is that the last term of the
equation equivalent to (A6) is not necessarily or
thogonal to the solution of the lower-order equation
[equivalent to (A5}] for d & 1. The integrability is
insured if the condition

(ook, i~Ã2 . (Ook,&[00k,& =0, (A16)

is satisfied. If this is not so we get a quadratic
equation for the amplitude of the bifurcating struc-
ture from the nontrivial integrability condition at
this order. This in turn implies a different scaling
of the bifurcating structure: in this case it is ex-
pected to be O(A} rather than O(v», }. Therefore it
is necessary to apply different expansion proce-
dures depending on whether or not (A16) is satis-
fied. We now consider these two cases.

Again we may choose X& =1 to make the definition
of e more precise, under the assumption that, as
we shall show presently, we can find nontrivial
solutions of (A21).

Equation (A21) may be put in a convenient "uni-
versal" form as follows. First we introduce the
notation

5 =(ook, ~N, : [ook',
& ~

ook',
&

x((ook, ig, i
ook,&)

Next, one introduces U& such that

(A23)

(A24)

With this we obtain the parameter-free equation

UI + Q U~U~ (r &
= o ~ (A25)

The quadratic equations (A25) constitute the
equations mixing the amplitudes of the bifurcating
structures for this case, d & 1. Several possible
geometries may be considered. Besides the one-
dimensional patterns (which arise with a different
scaling), one may construct hexagonal patterns by
choosing the unit vectors I, I(Z), and J to lie on an
equilateral triangle. Letting x, y, and z denote
U~, U, «&, and U~, we may find solutions of (A25)
satisfying

x+yg =0, y +xg =0, g+xy =0. (A26)

fl(Z) =n, +n, Z+ .
~

In the lowest order [O(e}],we get

(A1Vd} One finds six solutions as permutations of the two
cases

(L&v', +n, }c,=o,
with the general solution

c, =~~ pw, exp(iP, r~&) ~DDh, &.

(A18)

(A19)

(DVO+Ap)C2 ——-[2DVp ' V)Ct+gggiCg +N2 '. CiCi] .
(A20)

The integrability condition implies [using (2,25)]

A.t(ook, il& i
ook,)Wg

+ (ook& ~N2: (ook+& [ook+& gWgWg &I &
0

& (A21}

where J(I) is the unit vector such that

Here I denotes a particular direction in the d-di-
mensional space such that )k,

'
~

=k„k,' = —k,',
and 8', =8'I*. The directions which contribute to
the sum in (A19}depend on the dimensionality of
the system and on the geometry of the bifurcating
structure.

To the next order [O(e2)], we obtain, using (A19),

(x,y, z) =(1,1, -1), (-1,-1,1). (A27)

2. Equation (A16) is satisfied

When (A16) is satisfied, we see from (A21) that
X& must be zero for nontrivial results (C&c 0). The
approprite expansion is thus similar to that in the
one-dimensional case:

) =Aqua
+' '',

and

C =pe"C„,
n~i

~0

V= V„6
n=

Note that, since these solutions bifurcate linearly
in X, the new branch exists on both sides of ~ =0,
and the bifurcation diagram must be qualitatively
as in Fig. 5b and thus corrrsponds to a hard trans-
ition for d & 1 except, as we shall now show, under
the "critical condition" wherein (A16}and other
technical conditions are satisfied.

J+J(I}=I. (A22} n=a, +n,~,.'+ ~ ~ ~ .
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To order O(e}, we obtain (A18), and C, takes the
form (A19).

In the next order, O(e ), we get

(DVO + Qo)C2 = 2DV0 ' V(C( N2 ', C(C( (A28)

The integrability condition for this equation is now

satisfied as an identity [as implied by (A16) and

(2.25)] and in fact implies X&
——0. Equation (A28)

yields

C2 ——2ig (k', V, W, )exp(ik', ro)(QO-Dk, } ~D ~00%2& -g WzWl. exp[i(k~+k, ~ )ro]
I II'

&&[Qo -D(k, +k, ) ] N2 .
)
00k,) ~

00k,&
. (A29)

Note that both the directions I and -I appear in
these sums. This insures that C2 is real. The
O(e ) equation is

(DVO+Qo}Cs=-2D 0' 2 i-D

-2DV, V,C, -2N, :C,C, . (A30)

The integrability condition in this order yields the
desired equation for the amplitudes 8'I. The first
two terms on the right-hand side of (A30) do not
contribute, and the remaining terms yield

AW~ + B(k, ' V() W~ +C( Qk, '
V((W~W~(~))

I

+C2 WJ(~)k~
' V)WI

I

Ir I"&&I~s'& r" =

to cases where the W~ are independent of x&, then
we may obtain a universal form at least for certain
geometries. First we note that for 4 =2 the vec-
tors I,I', I", and J must lie on an equilateral quad-
rangle and for /=3 the additional possibility arises
that they may lie on the edges of an equilateral
tetrahedron (see Fig. 6). For the equilateral tet-
rahedron any choices of I and I' are such that
[I+I'

(
=1 and hence the numerical factor in

D,', ," denoted 4 henceforth, is independent of I,
I'. For the equilateral quadrangle there are two,
possible values ~I+I

~

= v 3, 0 and hence there are
two values 40 and 4& for the factor in DII.I. .. Al-
though a full analysis of these cases is beyond the
scope of the present study we consider briefly the
case d = 3 for equilateral-tetrahedral geometry.
For constant Wl solutions, we let

where

A =12(00k, [Qi i
00k,&,

B=4(00k, ]D [v2&,

C& ——-2i(00k, [D(QO -Dk, ) )v&&,

C2 ——- 4i(00k, [N2
'.

[
00k,& [ v2&,

D~i.i"=25(k', +k', ik, )

X(ooa', [N, : )00&',
& tv3'&,

5(a, b) being a Kronecker delta, and where

(A32}

(A33}

(A34)

(A35}

I
v i&

=N2 .
i
00k,) i

00k,&, (A37)

iv2& =(Qo-Dkm)+8
i
00k,&, (A38}

ivy ) =[QO-D(k, +k, ) ] ivy& . (A39)

The resulting reduced equation (A31) is in general
complex and can be easily recast as two equations
involving the real and imaginary parts of the com-
plex amplitudes.

%e have not been able to show that sufficient
relations exist among the coefficients A, J3, .. . in
(A31) so that it may be put in a universal form in
analogy to (A25). However, if we limit ourselves

FIG. 6. Wave-vector directions of critical modes that
can couple in two dimensions Icase (a) J and in three or
greater dimensions [case (a) or (b) J as discussed in Ap-
pendix A below Eq. (A39) for the formation of spatial
patterns.
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w, =(A/~)'"U, ,

and obtain the universal equations

(A40)

U~ + Q UIUI. U~ I ~. = 0. (A41)

There are two pathways in the equilateral tetra-
hedron to fix I, I', I" to get J. Let u, v, m, x, y,
z denote the U~ values for the six edges of the tet-

. rahedron. With this we obtain the coupled equa-
tions

x+yuso+ vugg =0, y +xzou+ vrouw =0,
g +uvx+yvzo =0, u+zxv+yvzU =0,
v+ygzp+xgu=0, sU+uyx+vyz =0 ~

(A42)

A particular case of these equations may be found
when two of the amplitudes are zero. Taking
w=0 implies y =0 and we have

x+ vugg =0, g +uvx=0,

u+ gxv =0 ) v+xgu=0 s

(A43)

This set of equations has (at least} eight s'olutions
derivable as permutations of the cases

(x, g, m, v) =(1,1, 1, -1), (-1,-1, -1,1) . (A44)

Thus nontrivial solutions to (A31) can clearly be
found and in the present case correspond to a
three-dimensional equilateral-tetrahedral array.

Note that we have demonstrated that when the
condition (A16) is attained the system may have a
soft transition. However from Fig. 7 we see that
the transition may be hard in certain cases when
the structure emerges as an inverted bifurcation,
e.g. for ~ & 0 when the null state C =0 is stable.
Thus (A16) is a necessary but not sufficient con-
dition. One more condition, as an inequality is
necessary to ensure that the bifurcation will not
be inverted. This condition is that guaranteeing

A/ch & 0. (A45)

Since A. is. proportional to X2 we may thus fix the
sign of x2, taking x2 ——+1 for convenience for the
two possible cases. Ordinary eigenvalue pertur-
bation theory shows that the coefficient of ~2 in A
[see (A32}] is just the derivative of the critical-
mode eigenvalue at g =0, and hence, if we assume
that instability is for X & 0, then the condition for
a normal (e.g. not inverted) bifurcation becomes

a&0. (A46)

This result has been derived for the tetrahedral
patterns and is not a general result. Clearly
whether a soft transition takes place at X = 0 re-
quires a more detailed consideration of all possible
bifurcating patterns and will not be presented here.

APPENDIX B: DERIVATION OF THE GINZBURG
CRITERION FROM SCALING ARGUMENTS

Consider a Langevin equation of the form

w=D~'w+ I (W—)+f(r, t), (81)

with f being a Gaussian random variable satisfying

&f(r, &)) =0,

Q(r, f)y(r', f')) =C6(r —r')&(t- f').
(82)

Equations (81) and (82) correspond to the follow-
ing steady-state probability distribution

p(w(r}) =—exp(- —f d{{U[w(r){+ B~ v(('(r) ~'{};—,

(83)

that we may choose A2 positive. (Note by assump-
tion e is real so that, if we can choose X2 & 0, then
e will be real for X & 0, e.g. not an inverted bi-
furcation. } We note that the solutions found in
(A44) are independent of I and hence, since W,

%~* because C is real, we must have real W', for
these solutions. Thus a further condition is, noting
(A40)

where Z is a normalization factor and U is related
to Eby

( )
8U(W)
88'

For U given by

U(w) = ~w'+ ,' vw4, —

(84}

(85)

FIG. 7. Inverted bifurcation showing that the critical
condition (A16) is necessary but not sufficient to guaran-
tee a soft transition.

the Ginzburg criterion for the validity of mean-
field theory or of the Gaussian approximation
(which neglects in U terms higher than quadratic
in the fluctuation from the mean) is given by"
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(86)

where d is the dimensionality of the system, K„ is
the surface area of a d-dimensional unit sphere,
and where

C = [8/~'(De)"']e. (814)

In terms of the dimensionless quantities 4, v, and
R, the Ginzburg criterion (86) takes the form

[4@K~vN/(2w) ](I/2X)' ~'~ &I, (815)

x~'
N= dh-1+x' '

with d' being the noninteger part of d.
Return now to (81) written as

(8'7)
and assuming

/

4K~vN/(2v)~2'~ ~'-O(1),

(815) yields

@ ~ j (4&)/g

(816)

(817)
—W =DV W+ XW+ —,

' vW'+f(r, t) .
et (BS) Consider now the scaling procedure carried out on

(810). We put
It is convenient to convert (88) into dimensionless
form by expressing all quantities in terms of
some characteristic values. To this end we intro-
duce the characteristic time 8 (e.g. , inverse rate
of some typical process), the characteristic values
of W to be denoted u& (e.g. , the mean value of a
typical state variable of the system at the critical
point) and the characteristic length (DG)"'. De-
noting

W = W/~, f =f/8, r = rl(D8)"' V = (De)"'V

f(&, f) = (8/~)[e(D8)"'] "'f(z, f ) . (89)

Equation (88) leads to

X=I X' )=I I," t W =L-'W
(818)

r =Lr', v= v', 4 = C '

to get

=W' = V"W'+ X'W'+ —'v'W" + L" ~'~'f(r' t') .8)f 2

(819)

(820)

A condition for the validity of this description is
that the fluctuating term will remain lower or at
most equal in order to the other terms in (819),
(these terms are all or order 1 after the scaling).
This requires that

4 &L"
=W = V W+XW+ ~ vW'+f(r, t),

where

v =. g e(d v y

and where

Q'(r, t)f(~', f')) = C 6(r r') 6(f i')—, —

with

(810)

(811)

(812)

(813)

In this relation the scaling parameter L is a mea-
sure of the distance from the critical point through
the relation X'=L'R=O(1). Putting I. =X "', we
obtain again the inequality (Bl'7). The condition
for the validity of the scaling procedure in the
presence of random fluctuations is thus seen to be
equivalent to the Ginzburg condition for the validity
of mean-field theory. In turn this observation
makes it possible to derive similar condition@ for
cases involving generalized Langevin equations
more complicated than (Bl).
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