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Theory of excess-electron mobility in compressed argon
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The purpose of this paper is to calculate the mobility of excess electrons in compressed argon {20-100
atm) both in single-scattering and multiple-scattering approximations. Calculations in the single-scattering

approximation are carried out with the aid of the Cohen-Lekner theory. A new formula for the mobility of
excess electrons'in the multiple-scattering approximation is derived from the Kubo-Greenwood relation for
electric conductivity. Numerical results inferred from this formula and from the Cohen-Lekner theory are
compared with the experimental data reported in the literature. The results obtained in this paper indicate
that the Cohen-Lekner theory is applicable only at very low densities of gaseous argon and that inclusion of
the long-range part of the electron-atom potential gives a significant improvement in the theoretical results.
The multiple-scattering corrections have been estimated to be about {10—25)Vo of the value of mobility

calculated in the single-scattering approximation.

I. INTRODUCTION

The problem of the excess electrons (EE) j,n

liquid rare gases and other nonpolar fluids ha, s
been considered by many authors both experimen-
tally' ~ and theoretically. ' ' The experimental
data lead to the conclusion that the EE in rare
gases (Ar, Kr, and Xe) and some hydrocarbons
are in extended (tluasifree) states. The single-
scattering theory of the mobility of EE has been
elaborated by Cohen and Lekner' (CL). This the-
ory is based on the Boltzmann equation for the
momentum distribution function f(p) of electrons
moving in the set of muffin-tin potentials. Taking
into account the correlation between scattering
centers Cohen and Lekner solved the appropriate
Boltzmann equation for this case by the expansion
of fg) in a series of Legendre polynomials (Pid-
duck's method). Lekner' was the first, who ap-
plied this theory to the case of EE in liquid argon
at the density near the triple point and found that
theoretical value of mobility of EE agrees well
with the experimental data. However, Jahnke, et
al. ' have pointed out large discrepancies between
the theory and experiment for densities of argon
lomer than the density at the triple point. Also,
for EE in liquid krypton at the density at the triple
point, the theoretical result for the electron mo-
bility is at least five times lower than the exper-
imental value. ' A very good agreement between
the theory and experiment for liquid argon at the
density of the triple point is, in fact, rather sur-
prising. One should rather expect a good agree-
ment between the theory and experiment for low
densities of the fluid. This conclusion is due to
fact that the CL theory neglects the multiple scat-
tering and in the limit of low densities of fluid
proceeds smoothly into the theory of electron mo-
bility in dilute gases." Therefore, it would be

interesting to test the CL theory in the low-density
region of fluid. The existing experimental data"
concerning the velocity of EE in low electric fields
make it possible for compressed argon for pres-
sures ranging from 20 to 100 atm at T=29'7'K.
This problem will be considered in Sec. II, where
me also give an outline of the CL theory and dis-
cuss the details of the electron-argon atom inter-
action potential.

One of the most serious shortcomings of the CL
theory, considered by Lekner' as well as by Jahnke
et al. ' is the fact that it neglects the multiple-scat-
tering contributions to the mobility of EE. Lekner'
proposed a simple estimation of these contribu-
tions, based on the Wigner-Seitz model. These
corrections, however, do not change substantially
the theoretical result of the CL theory for densities
lower than the density of the argon triple point, so
a. qualitative disagreement still exists betmeen
the CL theory and the experimental data. . In this
paper we propose to approach the multiple-scat-
tering problem with the aid of the Kubo-Green-
mood relation for electric conductivity. This will
be a starting point for the derivation of a formula
for the mobility of EE within the multiple-scatter-
ing approximation (Sec. III). The formula obtained
in the lowest order of the scattering potential is
formally identical with the zero-electric-field lim-
it of the CL theory. Next, we use this formula to
calculate the mobility of EE in the compressed
argon in the range from 20 to 100 atm and esti-
mate the contribution due to multiple scattering.
Finally in Sec. IV we summarize and discuss the
results obtained in this paper.

After this paper was completed the work of
Braglia and Dallacasa" came to our attention.
These authors deal with the problem of theory of
the density dependence of electron drift velocity
in gases (including argon). They do not consider
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explicitly the electron-atom potentials and they
claim that the multiple-scattering corrections
are disregarded in their approach. The final for-
mula in the paper of Braglia and Dallacasa" [Eq.
(4) ] clearly goes beyond the standard mobility
formula obtained from the Boltzmann equation.
This observation shows that the final formula of
these authors seems to be inconsistent with the
simplified Kubo-Greenwood formula used as a
starting point of their theory. The simplified Ku-
bo-Greenwood formula [Eq. (2)] is wrong if one
is to deal with terms of higher-order density than
one. The paper of Braglia and Dallacasa ' contains
a number of unjustified assumptions and approxi-
mations among which the assumption that the elec-
tron momentum cross section is equal to the total
cross section seems to be the most important.
We hope to deal with the paper of Braglia and Dal-
lacasa" in a separate Comment.

II. SINGLE-SCATTERING APPROXIMATION

A. Cohen-Lekner theory (Ref. 5)

Now, for the sake of completeness we summarize
the main points of the CL theory. First we define
the single-scattering approximation, which in
terms of scattering amplitude can be stated as
foQows: total scattering amplitude for transition
of EE from state k into state k', E(k-k') is the
coherent sum of the amplitudes singly scattered
on each scattering center, i.e.,

E(k k -) = 'g F,exp[- i(k' —k)R, ] , (2.1)

where F, is the singly scattered amplitude and 5,
is the space coordinate of the jth center. The col-
lision integral of the Boltzmann equation wiO con-
tain the square of modulus of F(k k )-c'on, figura-
tionally averaged over coordinates R, of the sys-
tem. For randomly distributed 8& this average
will be proportional to the number density n of the
scattering centers, but for liquids, where the cor-
relations between atoms or molecules are very
important, the factor of proportionality will be, in
general nS(k —k', &o), instead of n. Here S(k, &u) is
the dynamical structure factor of liquid, K and co

being the change of momentum and energy of scattered
electron, respectively. The occurrence of the
energy-independent structure factor S(K) in the CL
theory leads to the substantial change of the nu-
merical results of the mobility of EE for liquids
as compared with the random systems.

Taking into account Eq. (2.1) and assuming that
the Boltzmann equation is valid for the case of
EE, Cohen and Lekner' have established a set of
differential equations for the coefficients of ex-
pansion of f(p) into series of Legendre polyno-
mials.

Their result for the mobility of EE takes in the
limit of small electric fields the following form:

5D = —', (2/1r eke T)'~' [ez/41ra'S (0)n], (2.2)

where vD is the drift velocity, m and e are electron
mass and charge, respectively, E is the electric
field, k~ is the Boltzmann constant, T is the abso-
lute temperature, and a is the scattering length.
The structure factor S(K} is evaluated at the zeroth
electron wave vector. In order to calculate the
scattering length a, the detailed form of scattering
potential UMT(x) is required. According to Lekner'
this potential can be defined as follows:

U,„(r)= v (v) + ((Z u(r —R,.)))

U,„(r)—U, for r&R„
UMT& =

0 for x&R

(2.3)

(2.4)

where v(r) is the electron-atom interaction poten-
tial and quantities R and U, are defined by the
equation:

=O; U, =U,„(R„).
y=B

The symbol (()) denotes the configurational av-
erage, i.e., for any site dependent quantity
A.(R„.. . ,R, ) we have:

(2.5)

((A)) = fP, (R„.. . , BJA{B.„.. . , R,)dR, . ..dR, ,

(2.6)

where P,(R„.. . , R,) is the sth order distribution
function of liquid.

The Lekner's definition of the scattering poten-
tial UMT(r), Eqs. (2.3)-(2.5), is to some extent
quite arbitrary, i.e., the form of the UMT(r) (ex-
cept of its range} is not connected in any way with
the formalism leading to Eq. (2.2). For example,
it is possible to modify the potential defined by
Eq. (2.4) replacing R„by R, given by ~3 '',n = 1.
This; modification ensures that space in the fluid
is covered (on the average) exactly once.

B. Electron-atom interaction potential

As we are interested in the calculations of the
mobility of EE in compressed argon we confine
our considerations to the potential electron-ar-
gon atom. This potential has a one or more
parameters, and their values are numerically
adjusted to ensure the agreement between cal-
culated and experimental momentum transfer
cross section Q~ in some range of energy. e

Sometimes, the total cross section Qr is used
when Q„ is unavailable. Lekner' and Jahnke et aL '
have used a simple potential being a sum of the
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Hartree and a polarization potentials with one ad-
justable parameter. This simple potential (further
denoted as P,) enables us to fit quite accurately
the experimental values of Q„due to Braglia et
al."but cannot fit recently published data due to Mil-
loy et al." Therefore we decided to suggest the elec-
tron-atom potential in the form:

10

v(r) = UHF (r) + U,„(r)+ U ~(r), (2.7)

where U„„(r) is the Hartree-Fock potential, given
by Strand and Bonham, "U &(r) is the polarization
potential in the form":

Uz, (r) = —(e/2r')(1 —exp[- (r/r )']] (2.8)

where a is the static polarizability of argon atom,
a =11 a.u. , r is the adjustable parameter. The
adopted form of the exchange potential, U,„(r) is
the same as that proposed by Riley et a/. ,

"name-
ly,

U x(r) = —(2/v}KE(r)X(n),

where

X(n) = k+ [(1—n')/4n] in'(1+ n)/(1 -n) I,

(2.9)

.Qf
C(eV)

K'(r) =2[e+lexp(- e,r)]+K~(r),
where p(r} is the density of electron charge of
atom, ~ is the energy of EE, I is the first ioniza-
tion potential of argon atom and e, is the adjust-
able parameter, chosen to ensure correct beha-
vior of the function K(r) for large r (e, &0}. This
potential has two adjustable parameters, r and e,.
The most satisfactory fit of calculated Q„with
the experimental data of Milloy et al. is for the
following values of parameters: ~ = 4.475 a.u.
and e, = 0.6 a.u. (further, the potential given by
Eqs. (2.7)-(2.9) with the values of parameters
given above will be denoted by P,). However, our
potential is energy dependent (through the quantity
e) and therefore is very cumbersome in practical
use, so we have decided to fix energy e (e =0.0085
eV) and this energy-independent form of P, has
been used in further calculations. Figure 1 com-
pares the calculated values of Q„both of P, and

P, together with experimental data of Braglia et
al.' and of Milloy et aI,.' Also, ab initio calcula-
tions of Thompson" are displayed.

C. Numerical results of the CI. theory for compressed
argon (20-100 atm)

The calculations of the mobility of EE in com-
pressed argon have been performed with the radial
distribution function g(r) in the form

FIG. 1. Calculated and experimental momentum
transfer cross section Q& for argon. —-- experimental
(Ref. 13); experimental (Ref. 14); Q theoretical
using P~,. 4 theoretical, using P2 (energy-independent
form); theoretical, using P2 (energy-dependent form),
~ theoretical (Thompson, Ref. 18).

g(r) = exp[- PU~~(r) ][1 ng+, (r)], (2.10)

where U~~(r) is the Lennard- Jones potential for
argon, "P=1/RENT, and g, is the first term of the
virial expansion for g(r) calculated with the use
of U»(r}. The structure factor S(K) has been ta-
ken as the Fourier transform of the radial distri-
bution function given above. The results of cal-
culations of the mobility of EE for both potentials
P, and P, are displayed in Table I, together with
the experimental data due to Bartels. " Let us ob-
serve, that theoretical values of mobility for both
potentials P, and P, are rather close, but are far
too small as compared with the experimental
data. Also the results obtained with the use of the
modified Lekner potential with R replaced by R,
do not agree with the experimental data. In fact,
these results are even worse than those obtained
in the framework of original CL theory, probably
due to inclusion of the positive part of the average
electron-atom potential. Thi. s disagreement be-
tween the theory and experiment cannot be attribu-
ted to the neglect of the multiple scattering pro-
cesses in the CL theory. It seems to us that much
more important is cutting off the long-range po-
larization potential inherent in the CL theory [Eqs.
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where 0, is the kinetic energy operator of EE and
v(r —R,.) is the scattering potential, located at R,
For the case considered in this paper v(r —R, ) is
the potential of electron-free argon atom, modi-
fied by introduction of so-called polarization
screening function f(r) (for details see Ref. 6) in
order to account the interaction between EE and
the dipoles induced on the atoms of fluid.

The Green operator for the above Hamiltonian
is defined by the relation:

C =G+GUG0 0 (3.2)

where G', is the free-electron Green operator, de-
fined as

0
(3.3)

The Kubo-Greenwood formula for electric con-
ductivity of any system with Hamiltonian (3.1) can
be written in terms of Green operator t"' as":

Op„= dk Re tr j~ G'j„G+ —j~ t"'j„Q

(3.4)

where 0„„is the conductivity tensor, I is the
Planck constant, 0 is the volume of the system, f
is the Fermi-Dirac distribution function, and j„is
the one-electron current operator. It is evident
from the equation given above that the calculation
of electric conductivity is reduced to the study of
quantity ((Gjp), i.e., configuration average of the
product of two Green functions. The quantity of
this form satisfies the Bethe-Salpeter equation,
which for the case of homogeneous and isotropic
fluid can be written in the form": (in the momen-
tum representation}
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j

((G(a)jG(a')))(k) =((G(a)))(k)((G(a')))Qk (j ( )ka, f dk as(',a'ak, (a) ((G(a)jG(a'')))Qk (3.5)

(3.6)

where we introduced the self-energy operator
Z. There is close connection between Z and

This is the so-called optical theorem or
Ward identity, "'"which can be stated as follows:

I"(e, R) =-- ImZ(c, k)= 1

cf ptIt( f ~ k y p p f y p

where we introduced a function p(e, p) defined as
follows:

(3.7)

p (e, p) = —(I/n) Im(( G(e, p))) . (3.8)

where W(e, e', k, k') is the vertex function. We
consider the vertex function for & = ~ + ig, e' = E

-ig, q 0' and therefore we denote: W(e, k, k')
= W(e, e', k, k'). An analog of the Bethe-Saipeter
equation for the configuration average of the single
Green function is the Dyson equation"

I

This function is the kind of dispersi. on relation
between energy & and wave vector p. For free
electrons there is a "sharp" relation e =5'k'/2m,
therefore, for this case:

p(~, k) =5(e -k'k'/2m) = (m/k'k, )5(k —k,);
k'k', /2m=a . (3.9)

For the case of EE it seems to be reasonable that
relation (3.9) is valid, at least as a first approxi-
mation. This is due to large mobility of EE which
is observed experimentally. ' ' Also, in the theory
of liquid metals this approximation is commonly
used. "

Now we consider the problem of evaluation of the
conductivity formula Eq. (3.4) which can be re-
written for isotropic fluid in a more tractable form
in terms of the functions I' and p [Eqs. (3. l) and
(3.8)].

(3.10)

(3.11)

0= —— d&, ' e- -ReZ c,k +j k G'jG k

Substituting the approximation (3.9) for function p(e, k) in the right side of Eq. (3.5) we get (denoting: p(k)-=p(e, k); I (k) =-I'(c, k))

. ((G'jG ))(k) =
~

j(k)+ C k', d&o'W(e, k, k,')j(k,')+C' d(dj'dv "k,W(e, k, k,')W(e, k,', k,")j(k,")+...
~I'ikey ~ j

where C = [Qm/Sv'5'k, I'(e, k,)] and integration is
performed over angles ~, ~" which defines the
directions of vectors k', k", k" ~ ~ Using the re-
lation"

d&gj ' W e, k, k'

j(K) f dd a=isa sos SS'(a, k„k)dS, (3.12)

where ik( = )k'( = k„after a little algebra we can
show that Eq. (3.10) can be rewritten in the form

2 me' +d 1
3 if'v' de A '(e) (3.13)

where we have introduced the quantity A, '(e) which
is defined by equation

The function V(c, k„8) is directly related to the
vertex function W(e, k„k„8):

/

W(e, k„k„8)= (n/0) ~ V(e, k„8)~'S(2k, sin-,'8) . (3.15)

In the lowest order of the scattering potential the
quantity A, '(e) is reduced to the quantity given by
Eq. (1l) in the paper due to Cohen and I.ekner. '
For small densities of fluid 1/nA, '(e) is equal to
Q„—the momentum transfer cross section. ' One
can also verify, that Eq. (3.13) gives the correct
result in the lowest order of scattering potential
for liquid metals (i.e. , Ziman's formula). Indeed,
using df/de =-6(e —e~), e~ is the Fermi energy
and Eq. (3.14) in the lowest order with respect to
the potential, we can easily obtain:

m'
A, '(e}= 2nv sin8(1 —cos8}4r'a '

x
i V(e, k„8)~'S(2k, sin~8)d8 (3.14)

,S(k -k') if)(k, k') i'

) -1
x(l —cos8)5(e —c~) i (3.16)
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where n, is the number density of electrons in
liquid metals and 8(k, k') is the Fourier transform
of the potential v [Eq. (3.1)].

In the case of EE in the fluids the correctly
normalized Boltzmann distribution function should
be used. This is due to very low density of EE
and small external electric fields. This function
has the form:

f =n, 4n'I '(1/2mk~Tm)'~' exp(-e/k~T) . (3.1'7)

After substitution of the function given above to
Eq. (3.13) we obtain the Cl result for the EE mo-
bility in the limit of small electric fields (as-
suming, that A,

' is energy independent}:

(3.5) that vertex W can be defined as the sum
of all irreducible diagrams, shown in Fig. 2.
Generally, such expressions as displayed in Fig.
2 cannot be summed up. In order to sum this ex-
pression we select diagrams with only one black
point, so we can write the expression for the ver-
tex W in the closed form:

W'= v G v 'v G* v'
f, s=0

)+k+2(R» ~ ~ ) R)+d+2)dRk ~ dR)ep. 2 ~

(3.19)
Now we use the momentum representation and de-
fine

', e(2/m—k~Tw)' '(1/A, '), (3.18) v(k„k,) = (1/0) exp[-i(k, -k,)R,, ] 8(k„k,)

where p, is the EE mobility.
On the basis of Eqs. (3.13)-(3.15) we can con-

clude that the problem of calculation of the EE
mobility in fluids is reduced to the calculation
the function V(q, k„8). In order to obtain the
equation concerning this function we consider
a diagrammatic expansion for the vertex W.
Using the mell-known cluster functions
H, (%„... , R,) (for details see Ref. 23) we con-
clude on the basis of the Bethe-Salpeter equation

v(k„k,) = f exp[-r(k, —k,)r] v(r)dr

d, (q„; . , q.)=—f exp[-r(q, R, +. . .rq, [()]

xH, (5,...R,)dR, . . .dR,

5(q, +. ..+q„o) .
Using the definitions given above we can re-

write the (I, s) term of Eq. (3.19}in the form

(3.20)

&3 -(l+s)
W, ,(e, k, p) =, Ã dk, ...dk„,8(k, k,)((G(k,)))...v(k„p)8(p, k„,)

~ ((G*(k„,)))...8(k„„k)S„„,(k —k„... ,k, —p, p —k„„.. . ,k„,—k), (3.21)

q.)=S.(qk} "S.(qk+ "q. k)

$2=$ (3.22)

where N is the number of atoms in the system.
Unfortunately, the expression given above still
contains unknown Fourier transform of the clus-
ter function H„,+,. We use the geometric approx-
imation for this function, "i.e.,

V(e, k, p) the following equation:

V(e, k, p) = Q (kiv(((G))Sv)'ip)
s=0

=P(k, p)+ f k; P(e, (r, q&((@q)&)

xS(k —q)8(q, p) ~ (3.23)

Using Eqs. (3.15), (3.19), (3.21), and (3.22) and the
momentum representation we obtain for function

This equation can be rearranged to a more con-
venient form:

p(e, k, p) = (,p)+ f * p(e, k, q)((&(q)&)

w = ] . .rk 'P .2.g .4I. x [S(k —q) —1]t (q, p) . (3.24)

Hs(R~, . . . ,Rs~

s-lines

FIG. 2. Some low-order diagrams contributing to the
vertex function 8'.

(3.25)

This is an analog of the well-known Lippmann-
Schwinger equation for ordinary scattering ma-
trix, t:

where we have introduced the scattering matrix
t containing averaged Green function ((G)). The
matrix t is defined by the equation:

t =v+v((G))t.
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t =v+vG, t . (3.26)

The comparison of Eqs. (3.23) or (3.24) with the
similar results obtained by Ashcroft and Schaich"
leads to the conclusion that the approximate pro-
posed here in the framework of the diagrammatic
method is equivalent to the van Howe's "irreduc-
ible diagonal" condition.

B. Results of numerical calculations

In order to calculate the mobility of EE in com-
pressed argon in the multiple-scattering approxi-
mation with the use of formulas derived in Sec.
IIIA we should first calculate the scattering ma-
trix t. The direct evaluation of t from the Lipp-
mann-Schwinger equation (3.25) is, however, im-
possible, as we do not know the average Green's
function, ((G)) of the system. Therefore, we ap-
proximate the matrix t by the matrix t defined by
Eq. (3.26). This is equivalent with the replace-
ment of the averaged Green's function ((G)) by
free-electron Green's function G,. From Eqs.
(3.25) and (3.26) we obtain, after a little algebra:

i =&+f(((c))—a,)i (3.27)

Z=—nt ~ (3.28)

The calculations have been performed with the
potential P„defined in Sec. II. However, we
should modify this potential in order to account the
dipole interaction between EE and atoms of fluid.
This has been done emctly as in the CL theory,
i.e., by modification of the polarization part of po-
tential, U~, (r) with the aid of polarization screen-
ing function f(r) introduced by Lekner. ' Having
defined potential v, we solve Eq. (3.26) for matrix
t by the matrix inversion method using formulas
derived by Watson and Nuttall. " The numerical
solution of Eq. (3.24) for the function V(e, k, p) is
straightforward if we make the expansion of
V(e, k, p) into series of Legendre polynomials (we
truncate this series after the two first terms).
The obvious approximation for V is V= t, as it can
be seen from Eq. (3.24). This approximation can
be called the single-scattering approximation, as
it leads directly to the Lekner's formula for the
EE mobility, Eq. (3.18). Recalling the well-known
relation between scattering matrix t and the scat-
tering amplitude E, and taking into account Eq.
(2.1) we observe, that approximation V= I is the
equivalent to a reformulation of the single-scat-

so we see that the proposed approximation for
t =-t is the first term of iteration expansion of the
exact equation (3.27) for t. Consequently, recalling
the expansion of the self-energy into series of t
matrix" we approximate:

TABLE II. Mobility of EE in the multiple-scattering
approximation.

Number
density

(A&)

~s (Ref. a)
(cm2/V s)

p (Ref. b)
(cm2/7 s)

0.0005
0.0010
0.0015
0.0020
0.00-25

1882.9
970.3
666.9
547.3
431.6

2051.8
1101.8
777.6
654..7
580.8

p' is the mobility calculated with the function V= t.
p,

~ is the mobility calculated with the function V ob-
tained from numerical solution of Eq. (3.24).

tering approximation in terms of the vertex func-
tion TV. The results of our calculations of the mo-
bility of EE for V = t and for V obtained by numer-
ical solution of Eq. (3.24) are displayed in Table
II.

IV. DISCUSSION

In this paper we have calculated the mobility of
EE in compressed argon using both the CL theory
and the formula derived in Sec. III A. The results
obtained with the use of the CL theory for the mo-
bility of EE are far too low as compared with the
experimental values. On the other hand, the re-
sults obtained within the multiple-scattering ap-
proximation proposed in this paper agree much
better with the experiment, although a consider-
able gap between theory and experiment still
exists. The comparison of the data from Table II
with two last columns of Table I shows that the mo-
bility calculated with the full potential (including
the long-range polarization potential) is much more
close to the experimental data than values obtained
using the muffin-tin potential UMT(r) proposed by
Lekner. ' However, introduction of such long-range
potential means, that the potentials centered on the
neighbor atoms overlap to some extent. This gives
rise to the unsymmetrical interaction of EE with
the atoms of fluid. This point has not been con-
sidered in this paper, but we hope that this effect
is not very important at the densities of fluid con-
sidered in this paper.

The multiple-scattering contributions to the EE
mobility can be defined as the difference between
the mobility calculated with V = t and the mobility
calculated with the function V obtained from Eq.
(3.24). The multiple-scattering corrections de-
fined in such a way are of order about 10%%uo to 25%%uo

of the mobility of EE calculated within the single-
scattering approximation. Therefore, we conclude
that these corrections are significant even at such
low densities of Quid as those considered in this
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paper.
The theory presented in this paper suffers from

many deficiencies and therefore its results are
about 1.5-2 times lower than the experimental val-
ues of mobility of EE. Here we briefly discuss
the most important approximations made in the
process of calculations with the aid of the theory
developed in Sec. III A.

(i) The electron-atom potential defined by Eq.
(2.'I) together with the parameters chosen in the
way described in Sec. II is a very crude approxi-
mation of the true electron-atom potential. The
much better would be fitting of function given by
Eq. (2.'I) with more adjustable parameters to the
differential cross section for a set of energies,
but at present such fitting is rather impossible
due to the lack of extensive experimental data con-
cerning the differential cross section for argon
at low energies.

(ii) The use of geometric approximation for
higher correlation functions [Eq. (3.22)] permits
an overlapping of two or more atoms of fluid,
which is certainly untrue for real fluids. Unfor-
tunately the calculations involving the more ad-
vanced approximations, for example, the superpo-
sition approximation, lead to very complicated
expressions even for averages of quantities de-

pending only on the single Green's function oper-
ator."

(iii) The numerical values displayed in Table II
have been obtained with the approximation for the
matrix t and self-energy Z, discussed in Sec. IGB.
One can see that these approximations are, re-
spectively, zero and first order in the density of
fluid, and therefore should be valid at low densi-
ties of fluid, but we have not estimated the contri-
bution of higher powers of density to matrix t
and self-energy Z.

(iv) The estimation of the effect of overlapping
potentials, mentioned previously is very difficult.
We can only say, on the basis of comparison of the
data contained in Tables I and II, that permission
for overlapping of potentials gives considerably
less error than the use of the muffin-tin potential
of Lekner, U«(r) [Eq. (2.4)]. This statement is
probably true only at low densities of fluid, where
the overlapping is rather negligible, but may be
wrong for high densities of fluid.

ACKNOWLEDGMENT

We wish to thank Dr. A. K. Bartels for kindly
providing us with a copy of Ref. 11.

~H. Schnyders, S. A. Rice, and L. Meyer, Phys, Rev.
150, 127 (1966).

2B. Halperin, S. A. Rice, and R. Gomer, Phys. Rev.
156, 351 (1967).

SJ. A. Jahnke, L. Meyer, and S. A. Rice, Phys. Rev.
A 3, 734 (1970).

H. T. Davis and R. G. Brown, Adv. Chem. Phys. 31,
329 (1975).

M. H. Cohen and J. Lekner, Phys. Rev. 158, 305 (1967).
J. Lekner, Phys. Rev. 158, 130 (1967).
J. A. Jahnke, N. A, W. Holtzwarth, and S. A. Rice,
Phys; Rev. A 5, 463 (1972).

R. Boehm, Phys. Rev. A 12, 2189 (1975).
J. Gryko and J. Popielawski, Phys. Rev. A 16, 1333
(1977).
L. G. Huxley and R. W. Crompton, The Diffusion and
Drift of Electrons in, Gases (Wiley, New York, 1974).

~ A. K. Bartels, Ph. D. thesis, University of Hamburg,
1974.
G. L. Braglia and V. Dallacasa, Phys. Rev. A 18, 711
(1978).

36. L. Braglia, G. M. de Munari, and G. Mambriani, in
Com. Naz. Energia Nucl. RT/F160 (1965).
H. V. Milloy, R. W. Crompton, J. A. Bees, and A. G.
Robertson, Aust. J. Phys. 30, 61 (1977).

T. G. Strand and R. A. Bonharn, J. Chem. Phys. 40,
1686 (1964).
W. A. Garret and R. A. Mann, Phys. Rev. 130, 650
(1963).

~M. E. Riley and D. G. Truhlar, J. Chem. Phys. 63,
2182 (1975).

~ D. G. Thompson, Proc. R. Soc. London A 294, 160
(1966).

9J. Rubio, J. Phys. C 2, 288 (1969).
P. L. Leath, Phys, Rev. B 2, 3078 (1970).

2~T. E. Faber, An Introduction to the Theory of Liquid
Metals (Cambridge University, Cambridge, England,
1972).
G. V. Chester and A. Thellung, Proc. Phys. Soc.
London 73, 745 (1959).
L. E. Ballentine, Adv. Chem. Phys. 31, 263 (1975).
N. W. Ascroft and W. Schaich, Phys. Rev. B 1, 1370
(1970).
K. M. Watson and J. Nuttal, Topics in Several Par-
ticle Dynamics (Holden-Day, San Francisco, 1967).
M. Watabe and F. Yonezawa, Phys. Rev. B ll, 4753
(1975).

~J. P. Hansen and J. R. McDonald, Theory ofSimPle
Liquids (Academic, London, 1976), p. 68.


