PHYSICAL REVIEW A

VOLUME 21, NUMBER 5 MAY 1980

Generation of an ion-acoustic pulse by two electromagnetic pulses at difference frequencies

in a collisionless plasma

M. S. Sodha, Md. Salimullah, and R. P. Sharma
Centre of Energy Studies and Physics Department, Indian Institute of Technology, Delhi, New Delhi 110029, India
(Received 20 September 1979)

This paper presents an investigation of the generation of an ion-acoustic pulse by two electromagnetic
(EM) pulses in a collisionless hot unmagnetized plasma at the difference frequency of the two EM pulses.
On account of the interaction of the two EM pulses, a ponderomotive force at the difference frequency
becomes finite and leads to the generation of an ion-acoustic pulse. When the two EM pulses have a
Gaussian intensity distribution in time and uniform intensity distribution in space, the generated ion-
acoustic pulse is also Gaussian in time with a pulse width = [t 25t 3,/(t 2 + t 30)]''%, where t, and t,, are the
initial pulse widths of the incident EM pulses. Moreover, if the incident EM pulses have a Gaussian
intensity distribution in space and time, the nonuniform intensity distribution of the EM pulses in a plane
transverse to the direction of propagation leads to the redistribution of electrons and ions, and transient
(time-dependent) cross focusing of the pulses may occur for appropriate initial powers of the EM pulses.
The ion-acoustic-pulse generation is seen to be drastically modified by cross focusing of the two EM pulses.

I. INTRODUCTION

When two electromagnetic (EM) waves of fre-
quencies w, and w, interact in a collisionless
plasma, the ponderomotive force at the difference
frequency Aw=w, — w, becomes finite and leads
to the resonant excitation of an electrostatic wave
at the difference frequency, when the difference
frequency Aw and the difference of the propaga-
tion vectors satisfy the dispersion relation of the
electrostatic waves.'™

In the present paper, we have investigated the
excitation of an ion-acoustic pulse at the differ-
ence frequency Aw by two Gaussian (in space and
time) laser pulses of frequencies w, and w, in a
collisionless, hot, and unmagnetized plasma.
When the two EM pulses have a uniform intensity
distribution in space and a Gaussian distribution
in time, the ponderomotive force at the difference
frequency excites an ion-acoustic pulse at the dif-
ference frequency. But the ponderomotive force
at the difference frequency is time dependent when
the incident pulses have a Gaussian intensity dis-
tribution in time; therefore, the generated pulseis
also Gaussian in time with a pulse width equalto
(82, 82,/ (£2+ £,) /2, where ¢,,and £,, are the initial
pulse durations of the EM pulses.

When the incident pulses are Gaussian in space
and time, the ponderomotive force from the non-
uniform intensity distributions of the EM pulses
in a plane transverse to the direction of propaga-
tion becomes finite*® and leads to the redistribu-
tion of the electrons and ions, and, if the initial
pulse powers are appropriate, the transient cross
focusing of the EM pulses occurs. As time
elapses, the intensities of the incident pulses
change, and thereby the cross focusing of the

pulses and ion-acoustic pulse power are affected.
This is relevant to wave -interaction studies in
the field of laser thermonuclear fusion, where
high-power short-duration laser pulses are fre-
quently used. '

In Sec. II we have studied the time-dependent
behavior of the ponderomotive nonlinearity in
the presence of the two EM pulses in a collision-
less plasma. The transient cross focusing of the
EM pulses has been studied in Sec. III. In Sec.
IV we have investigated the generation of the ion-
acoustic pulse at the difference frequency. A
brief discussion of the results is presented in
Sec. V.

II. TIME-DEPENDENT BEHAVIOR OF PONDEROMOTIVE
NONLINEARITY

We consider the propagation of two coaxial
Gaussian EM pulses (Gaussian in space and time)
along the z axis in a collisionless, hot, unmag-
netized, and homogeneous plasma. The intensity
distributions of the pulses at 2 =0 are given by

EE¥|, o= E2(t)exp(~v2/v2,), (1)
EB|,.o = E2(t) exp(=v2/7%,) , (2)
E3(1)= E} s exp(~17/83,) (3)
E2(¢)= E%,, exp(—t2/t3,) , (4)

where y?=x%+y? and v,,, 7,, are the initial pulse
widths and ¢,,, £,, are the inital pulse durations.
On account of nonuniform intensity distributions
of the pulses in a plane transverse to the direc-
tion of propagation, the ponderomotive force be-
comes nonzero and leads to the diffusion of the

electrons. and ions.*"® Hence, in the presence of
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the EM pulses, the background electron and ion
densities must be modified. Siegrist” has studied
numerically the change in the background electron
density by the ponderomotive force in the presence
of a Gaussian pulse. Here we have derived an an-
alytical expression for the modified electron den-
sity in the presence of two Gaussian EM pulses.
Following Sodha, Ghatak, and Tripathi,*
Schmidt,? and Sodha et al.,’ the expression for
ponderomotive force can be written as

Feo

ez [1 - » = 1 = = =

yon ——V(El-El.)+w—§V(E2-E2) . (5)
In the quasihydrodynamic two-fluid approximation,
one obtains the following equations for diffusion

of electrons and ions:

7] - -
Ve 5 _taTagy

i ot s N i (7)

ions, respectively; m, and m; are the masses of
electron and ion, respectively; fs is the space-
charge field; T, is the temperature of the plasma;
kg is the Boltzmann constant; w, and w, are the
angular frequencies of the EM pulses; and -¢ is
the electronic charge. It must be mentioned here
that in writing Eq. (7), the ponderomotive force
on ions is not taken into account because its mag-
nitude is less by a factor of m,/m; in comparison
to that on electrons. Owing to space-charge ef-
fects, electrons and ions move almost with the
same velocity; i.e., V,=V,=V in an almost elec-
trically neutral medium N,=N;=N, where V is
the diffusion velocity of electrons and ions and N
is the modified electron and ion density in the
presence of the pulses. Adding Eqs. (6) and (7),
and neglecting electron mass m, as compared

to the ion mass m,;, we obtain

oV_ 2Ty =
—_—= -
a9t m;N VN

32 ) 1] o = )
- : = K)o gk
prm— (wf V(E, -EX)+ w§V(E2 E)). (8)
For further analysis, Eq. (8) may be supplemented
by the equation of continuity

BN - -

'a—t+v-(NV)=O. (9)

Equations (8) and (9) may be combined to give

where

82 N\ _2kT, 2( N
Y lnN0>— i v lnNo)
e’ (1_ AT B LoxE T
* T, wfv (E,-E}+ w:v (EZ.E2)> ,

(10)
where N, is the electron density in the absence
of the pulses. This differential equation is a
wave equation with a velocity of propagation V
= (2kg T,/m ;)" 2 of the order of ion-acoustic veloc-
ity. When a single pulse is propagating in the
plasma, Eq. (8) réduces to Eq. (10) of Siegrist’
derived from a slightly different approach. For
stationary conditions, the time derivative on the
left-hand side of Eq. (10) disappears, and one ob-
tains the following expression for the modified
electron density on account of the ponderomotive
force®:

N=N,exp [—————
° 8mykyT,\ w?

e

An analytical expression for N from Eq. (10) can
be obtained as follows. To keep the analysis more
general we add a damping term phenomenological-
ly in Eq. (10). Taking the Fourier transform of
the resulting equation with respect to space co-
ordinates would give an equation of the form
2

%3* v wmg=F ), (12)
where ¢ is the Fourier transform of In(N/N,) and
F(t) is the Fourier transform of the second term
on the right-hand side of Eq. (10) given by

F(t)= _fi(_]_(_]z_-k_ng

8mm ;

2 2 g2
x [%f—o EZ,(t) exp (-(K§+Kg)7—L2f—L>

2 2 2
+ %gE.f,o(t) exp (-(K'f+ Kg)ﬁ%‘)] .

A Green’s-function solution of Eq. (12) is

o= é ' sin[Q(t —t")] exp[—sv(t —=¢')]F (') dt’
i (13)

where =% (4w’ —v?)!/ 2, Inversion of the Fourier
transform would give an equation for N. Equation
(13) gives N as

_ e? y2 [ 92 ]
N—Noexp[ lﬁﬁmem,Vm( w? Tz )] (14)

+0 el 0
I,,= f dK, f dK, f dt sin[(K2+ K2)Y 2V ot J(K2 + K32
-0 0

X exp[ "(Kf“' K;)%yfo. 2off.2(t =1;,2 )]expf-—i(le + sz)]Efo,zo(t - tx) ’ (15)

-
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where the subscript “th” denotes thermal speeds.
It must be mentioned here that in deriving Eq.
(15), the intensity distributions of the pulses in
the plasma are consistent with Eqs. (25)—(28).

III. TRANSIENT CROSS FOCUSING OF THE TWO EM
PULSES

The electric vectors of the pulses in the plasma
are governed by the wave equation

82 92 92 1 82
5'95_2E1,2+WE1,2+52E1.2=§ WEI'Z
41 9
+ o QJI‘Z . (186)
In writing Eq. (16) we have neglected the
V(V-E,,,) term which is justified as long as*
2
3)—.‘,’; —l—lnel <1,
w ’
1,2

However, for a two-dimensional beam in space
and 8/8y =0, this is identically zero. In Eq. (16),
J, and J, are the total current densities in the
plasma in the presence of first and second pulse,
respectively. Assuming the variation of E, , in
space and time as*

E, =4, ,0,y,2,0)expli(w, ¢ =k, 2)], (A7)
where

k2= (wl.z/c)(l - w%/“’f.z)llz

and A, , is a complex function of space and time,
the current densities in the plasma can be written

as*
- Ne? s i 8 -
Jy,2= ALt —A,
2 omgw, , w8t

x exp [i(w, t ~k,,,2]. (18)

Substltutmg the expression for J 1,2 from Eq.
(18) and El , from Eq. (17) in Eq. (16) we obtain

. a 92
-2k, 5—A1.2 tox? A1,2+

- ,z_e_(N -N, >A12+2iw1 K3

92
2 A1,2

T Wwi,\ N, c®  ar LR
(19)
Further, assuming the variation of A, , as*™®
K1,2=K10, 20,¥,2,1)
xexP[_ikl,Zsl,2(x,y727t)]7 (20)

where A, ,, and S, , are the real functions of
space and time; substituting for A1 , from Eq.

(20) in Eq. (19) and separating the real and imagi-
nary parts of the resulting equation, we obtain

1 0 9

2 2 .
v,. ngfo. 2o+5;Afo,2o+ % S % — Al 20
0 0
"'Esl,ngfo,zo
02 9z ,
+ W‘Sl,z*”gz— Sy, 2)A%0, 20=0 (21)
and
2 9 9 9 2 2
Si,p*2 S, (_ 1,2 ( 1, 2
Ve,,, Ot 9z b ox 3y
_ W Ny-N
wi, s Ne€y,
1 92 92
t A, <8x2 Ao, 20t e A, 2o)a (22)
1, 2431,
where
- / - 2
Ve, =ceh and €, =1-wh/wy,,.

On transforming the variables (z,¢) to z(=z) and

£ (=t-2/v, 2), Egs. (21) and (22) assume the
following form

o F) 5 . 8
S'Z—Aio, 20t ox Afo 20+3y Sy, 2 @Aio,zo

92 9% 2
+ Wsl,z-kw Sy, 2) A%, =0 (23)

and

e] 0 2 a 2
zaz 61, 2 (8x Sl, 2> +(ay Sl 2)

1 32 82
+m ﬁAm, 20+53)—2—A10,20> . (24)
The solution of these equations can be written as

A? —_19429&1422
10,20 fz (z, £1,2)

_r (25)
) exp( ﬁo,zoff,z(z’ 51;2)) ’
S1,2=%72/31,2(Z) £ ,20F @ 5z, &, ,), (26)
bami— L P
1,2 f 1,2 »

where f, , are the dimensionless beam-width
parameters. The equation governing the beam-
width parameters f, , can be obtained from Eq.
(24) by substituting for A%, ,, and S, , from Egs.
(25)-(27) and equating the coefficients of y? (=x?
+92) in the resulting equation (within the paraxial-
ray approximation)
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@ . ___1 1 2;_( e
dz® "M% R 2Vi0, Sl €1, \18mmm VE

i1 vi, 1
)f1'2< 1023 + 20 ~ 4

w1 w3

ez .},2 Il ,y2 Il
X - <L20°3 2044
exp[ (161rm3m,- th-) ( w? *

where

00

’
0

)) o

e e
I“=f dKI/ dK, [ at, sinf (K3 + KM Vi £, J K307+ K372

X exp| - 3 (K} +K3 Wi, 2off, 22, &~ t)]Efo. 20(é1, 2 —11), (29)

40 + o0 0 .
1, [ ak, [ aK, [ dt,sin vy, (K3 + K22 1] (K2 +KDM?

0o

X exP[—%(Kf"'K; )750. 20f3, 22, £, tl)]Efo. 20léy, 2= t,). (30)

To have a numerical appreciation of the results, we have plotted f, and f, in Fig. 1 for the set of parame-

ters mentioned in the figure caption.

IV. GENERATION OF THE ION-ACOUSTIC PULSE AT
DIFFERENCE FREQUENCIES

The generation of the ion-acoustic pulse by two
EM pulses in a collisionless plasma is governed
by the fluid equations®

a - -
ﬁNe.i“{'v'(Ne.iVe"-):O, (31)

0.0

1 1 1 1 1 A1 1 1 1 1 1 1
00 01 02 03 04 05 06 07 08 09 10 12 13

26ferry

FIG. 1. Variation of f; and f, with ze/wyy}, at different
times for the following parameters: w;=1.963x10%
rad sec™!, wy=1.778x10* rad sec™!, v,=40mc/ w1, Y1/ Y20
=2, wp=0.5(w; —wy), EIp=3.98x108 (in cgs units), -
E300=3.27x10%(cgs), #;¢/ty=0.5. Curves A;, A, corre-
spond to #/¢9=0.0. Curves By, B, correspond to ¢/t
=0.8. Curves Cy, Cy correspond to ¢/t;9=1.0.

-

3 - - - — 1-» —
_Ve.i'*'(ve.i.v,)ve i= L (E+_ Ve.ix B)

at ’ Mg, ; c
Ve iVPe i
2T, Vo,y=m, N, ,;’
(32)

where the subscripts e and ¢ stand for electrons
and ions, respectively, ¢=—e¢ for the electron-
fluid case, and g=+e¢ for the ion case. In the above
equations N, ; are the instantaneous particle den-
sities, V,,; their fluid velocities, P, ; the hydro-
dynamic pressures, v,,; the ratio of specific heats
of the electron and ion gases, and c is the velocity
of light in vacuum. The damping coefficients T, ;
are given by?®

I = T 1/2__&0..22_ ex (__1_. _2> (33)
T8 (e, Py T2
and
ro_k___(mksT,\"/?
A2\ 8m,

1/2 3/2
)" ) o)
(34)
where T, and T, are the electron and ion gas tem-
peratures, k is the ion-acoustic wave vector, and
Ap=(kgT,/4me®N,)*/? is the Debye length, and the
other symbols have their usual meaning. It may
be observed that the V, ;xB and (V, ,- V)V, ,
terms of Eq. (32) give rise to ion-acoustic-pulse
excitation at the difference frequency w, - w,.
Combining Eqs. (31) and (32), we obtain
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92 0 = = B = R
3—t2-Ne+2re—a—[Ne—v§hV2Ne—;5_V ‘(N E) VB =d4relNy—Ny). (38)
. The equations for the perturbed quantities N, and
=V [aNV(V, V) - V,oN,/ot] (35) N,, are given by
and
azNel/atz — V5 VPN, + 2]'-‘eal\’«.»x/at +Wh(N, =N ix)NOe/No
e - —- - - -
9°N,/84*+ 2T N /0t = V{,V°N, +7n‘;V " (NE) =V [N, V(V,, " VE)] (39)

=V-[ANF(V, V,) -V oN,/0t], (36) and
azNu/atz - V%hVZNu*zriaNu/at"' ""?’i(Nix _‘Nel)NOi/NO

=V AN,V (V, - V5], (40)

for electron and ion fluids, respectively, where

Ven= Vo kpT /m M2 and Vo= (v, kT ;/m /2

for the electron and ion, respectively. In writing where only terms oscillating at frequency (v, — w,)
Eqgs. (35) and (36), we have made use of Maxwell’s have been retained in the right-hand side of Eqs.
equation : (39) and (40). It follows from Eq. (33) that the
. 198 electron plasma pulse is heavily damped when
VXE= i EAp=1. The ion-acoustic pulse can still pro-
pagate if T,> T';. Henceforth, only Eq. (40) need
To solve for N, ; we assume, in the perturbation be considered.
approximation, Equation (40) is a coupled equation for electron
= * > - - > = and ion perturbations. Now, taking the variation
L= . : . << .
Ve. i Vel. at Vez, i2 ive. ir Ve, i Vel. i Ve2, i29 of N,, as exp[i(wt — ARz )] in Eq. (39), we obtain
E#=E,0)+E,®)+E, (), E;<E,E,, a7 S BN I T4 Ny,
37 VAN, V(V,, *VE) + wE N —2¢
Ne.i(t)=Noe,oi(t)+Nex,n(t), Nel,i1<<Noe’ 0i NexE é “ ° IGV " No s (41)
where N,,(t)=N;,(t) is the electron density in the [—-wz + (R0}, + wh,; Noe]
presence of the two Gaussian pulses given by Eq. °
(14), V,,, ,, are the electron and ion velocities in where
the high-frequency fields E, and E,, ¥, ; and N, ;, w=w, - w,=Aw,
are the perturbations in the velocity and density (42)
varying at difference frequencies (w, - w,), and Ak=k,~k,.
E, is the electric field associated with the genera-
ted ion-acoustic pulse and is given by Poisson’s Substituting N,, from Eq. (41) into Eq. (40), we
equation, | obtain
02 9 w3 N, N . = -
5N = ViV N+ 2Ty Ny + == [(AR )0, - ] TV (4N ¥ (V- V)]
w3 N.. = = - -
+22i N0 G LN IV, - VE)], (43)
D‘rl NO
where
D, =[-w?+ (k0% + w3, Ny /N,]. ‘ (44)
We assume the solution of Eq. (44) to be of the form?*-
N =N (x,9, 2, 1) expli(wt - k2)] + Niy(x, v, 2, t) exp [i(wt - kz2)], (45)

where 2= w/C,, and N}, and N}, are slowly varying complex functions of space and time. Substituting for
N,, from Eq. (45), we obtain the following equation for Nj, and Ni,:

’ - d ’ 82 ’ 82 ’ . ’ . 9 ’ (.02 . N..
(-w2 +k'2V%h)N i~ V%h (—ZZkEEN“ +_8_sz"1 +5§"§N‘-1)+ leFiN“ + 2(F,~+ zw);t— i +B£:[(Ak)21)%h - wzlﬁoLN:'l =0 ,
k4 o

(46)
and
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92 82 . o
[~w? + (AR)? VinlNi = Vin ( 21(Ak +on 52N ‘a'y'EN;z> +2{wD N, +2(T; + ’w)'é'fN 2
#/1 1
2E 100F 200 €XP [——(—+———>] }
+_..J.[(Ak)21)th wzll—j\]ﬂN;z = -—l-Yli oo e 2 \ig tg‘o —~exp [_)/_2 (—1 —-——1
D,, ) 4 w1“’zf1f2 2 'Vfoff+7§of§
2 1 wi N, 1
AR +—— (——-— Xe Yo 1\,
< ((ahp e 770) (i A %) @)
Substituting further for N}, as*-®
Nj =Nj(x,v, 2, t)exp[-ikS(x,, 2, t)] . (48)
I
In Eq. (46) we obtain, after separating real and and

imaginary parts,

9 N2 1 —_ 1/2 —_— —_— 02 —_— ””2
azN“ v; atN S N SayN
02 02 . 2T ,wN[?
w2 27 ¢4 49
(ax"’ s)zv,l W 0, (49)
and

8 | 2 aS (as)2 (as)2
2 —+ = = +{—=
az 1) 9t \dx oy,
1 2 " wz
" PN (af N+ “)+ (kzvih - >

2
- _iP.L__ [(Ak)zvzth" wz] %% , (50)
71l 0

KV 2, D
where
sz“l sz » 5
(r +iw) w (1)

We now make the transformation of variables from
the set (z,¢) to (z, £'=¢-2z/v]). Then Egs. (49)
and (50) reduce to

i n2 § ___a_ ”?2 _a_§ i ”2
5z Vit ox ax Vi By 9yN“
8%s  02S e 2T wNJ?
+<W ayz)N'1+ IeVzth =0 (52)

J
the coefficients of ¥2 on both sides in the resulting
equation:

(as)z (as)2
2——- +H—
9z 9y
1 2
” »
kZN:; (ax Nu y Nil)

w? N,
+(-k_2_VZt_h - 1) W;jﬁ_ [(a%)y*V3 th— w?] 5.

No
(53)

4-6,9

The solution of Egs. (52) and (53) is given by

D : Ly SR, G _
NE= 7D ex"( agfz(z,w)e"p‘ 22),

| (54)

S(z, &’ =§726(z,f;")+4>(z,£’), (55)

B )= oy 25 T (56)
2T ,w

k‘= —k—‘_;_zt; ) (57)

where B’ and a, are the unknowns to be evaluated
from the boundary condition. The equation for the
beam-width parameter of the generated ion-acous-
tic pulse is obtained from Eq. (53) by substituting
for S and N}, from Egs. (55) and (54) and equating

FEPRE S 1) 4 S Y
dz kiay f RV D

e2 .y2 I! .)/2 I!)
X exp|— 10°3 2014
[ (Isﬂmemivzt})( w] * w; ’

where I, , and I , are given by Egs. (29) and (30),
respectively.
Substituting for N/, as (Refs. 4-6, and 9)

Ni,=Np(x,9,2,¢)

x exp{-i[k,S,(x,9,2,8) = kS,(x, v, 2, )} (59)

in Eq. (47), we obtain

167mm V3,

(Viols N 73014)]
wi Wy

(58)
)
N, [ 1 w3, Ny; 1
o _ 20 - L TPiZ0i
Ni 4D,2( 2+ D, N, mj)
¢°E (HE (t))( S 2 2
X 10 20 (Ak)2+ + )
( w,wy f1 fo Yicf:  Yaof:
2
v 1 1 )
X e [ ( (60)
® 7’10f2 'Yzofg ],
where
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D, = —w?+(AR2VE,
+ (wi’i/Dn)[(Ak)zv%h—wz][No;'/No]- (61)

To find an expression for the électric vector of
the ion-acoustic pulse, we employ the equation
of continuity,

N, /8t +V+(Ny; V,,)=0, (62)

where V= ¢E ,/m jiw and N, is given by Eq. (45).
Thus,

. 2
= mT—l's:‘: (N}; exp(—ikz)+ iz exp(—zAkz))
(63)
where
' 1 k (64)
= f( /) Xp( zang"kiz—l S>
and ;
o Nog (1 B Ny _1.>
Ne=-1p, (m‘% "D, N, m2
2 2 €2 E,(£)E,,(t)
x ((AR)*+ + )( 1020
(( ) yfofi ')’Zofg w,we f1 f2
'y2 1 1 >] .
X e . (65)
xp[ (710f1 Ygofgﬂ‘
Hence,

o (M1 _r -
EL—z( N, ) {Fl exp(— 2agf2)exp[—zk(z+$)]

v? 1 1
+F,e [ ( )]
P mex Ygofg

x exp[-i(Akz + kS, — kzsz)]} ,

(66)
where
F,- B’exp(—k;z) 67)

kf(z, &)

and

Fam- 4(Ak yz(r: Dyl No le)
<(owre e )
(2E e°E 1 ,(1)E 5(t) (t))' (68)

wiw»f1f2

In the expression for N}, [Eq. (64)], B’ and q,
are two unknowns and have been obtained from
the assumption that the electric field of the gen-
erated ion-acoustic pulse is zero at z=0. Thus,

E,=0 atz=0, (69)
which yields

1 1 1
and (70)

4(ak)D,, c onf i

2

x exp(ikS)exp [— 7/2—( 2 73 Yzofz éfz)] ’

Therefore,

E, E} t)=—‘——2- {F%xp( v )+F2exp[ 2(L—+
EE O™ eny, a3f? Yiol 3

1 1

,yz
xFleexp[ (%fz

This is the intensity of the generated ion-acoustic
pulse at the difference frequency, when the two

EM pulses are having Gaussian intensity distribu-
J

- ;f )/ezEm(t)E m(_t))

\ W0 ,f, /5

(711)

72:1‘—3)] +2cosfk(z+8) —Akz — (k,S, —k,S,)]

I -

+
YiSi vaf3

I
tion in space and time.
Hence, the total integrated power associated

- with the generated ion-acoustic pulse across the

transverse cross section at z is given by

4F F,cos(kz — Akz)

Vi /M wz)z Yiyanfif3
= Jth fI0 4 alf2F2+ Fz
16\ eNy; of T 1of1+72of2 ( 1

1 1 > ’ (73)

+ +
ZIERR NG
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where N,; is given by Eq. (14) and F, and F, are
given by Eqs. (67) and (68).

V. DISCUSSION

To have more physical insight into the present
mechanism of the generation of ion-acoustic pulse
by two EM pulses at the difference frequency,
we concentrate our attention on Eqgs. (63)—(70).
In Eq. (63) the first term within the bracket is on
account of the natural mode of the hot plasma
at the difference frequency, and the second term
arises on account of the ponderomotive force at
the difference frequency. The term which is due
to the hot plasma can also be Landau-damped
when the phase velocity w/k is comparable to the
thermal velocity of the particles, and under such

conditions
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where F, is defined in Eq. (68).

Moreover, if the incident EM pulses have a
uniform intensity distribution in space
(Y10: Y20=%» f1,f=1 and No, /Ny=Ny;/No=1), the
intensity of the generated ion-acoustic pulse at
the difference frequency is

EEX) =1exp[-t2(1/t3,+1/t2)], (75)
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It is obvious from the expression of the in-
tensity of the generated pulse (Eq. 75) that the
intensity has the Gaussian intensity distribution
in time with a pulse width equal to

[tm 13 /(5o +13 )]1/2

The maximum intensity 7, is a function of the
density of the plasma, frequencies of the inci-
dent EM pulses, and the temperature of the plas-
ma. But for the propagating pulses [w, < w,,

w,, Aw] and for the nonrelativistic plasma
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FIG. 2. Variation of the power P (in cgs units) of the
generated ion-acoustic pulse as a function of zc/ w{yw
for the parameters as in Fig. 1. Curve A represents
t/t14=0.0. Curve B represents ¢/t;o=1.0.

For such a plasma the peak intensity is propor-
tional to the square of the electron and ion
density, (E,,E,q)° and inversely proportional to
[wiwalw, —w,)]% Moreover, for a fixed ratio of
w; and w,, the peak intensity is inversely pro-
portional to wd. Therefore, if the EM pulses are
having their frequencies in the microwave range,
the peak intensity will drastically increase in
comparison to that for the laser pulses. For ex-
ample, for two CO,-laser pulses (w,=1.963

x 10 radsec™! and w,=1.778x 10" radsec™?),
the peak intensity is 10° times less in comparison
to when we choose w,=1.963x 10" radsec™! and
w,=1.778x 10" radsec™?.

When the incident EM pulses also have Gaussian
intensity distributions in space, the transient
cross focusing of the two pulses may occur, and
the power of the generated pulse gets drastically
affected with the distance of propagation. The re-
sults of calculations are depicted in Figs. 1 and
2. The calculations have been made for the fol-
lowing set of parameters: w,=1.963x 10
radsec™!, w,=1.778x 10 radsec™! (CO,-laser
pulses), t,o/tx=0.5, kT =3 keV, y,,=1.9x10"2
cm, v,,/v5= 2, peak power fluxes of the two
lasers are = 4,8x 10'° watt/em? and = 3.5x 10°
watt/cm?, and wp/w = 0.5,

Figure 1 depicts the variation of the dimension-
less beam-width parameters f, and f, of the pump
pulses with the normalized distance of propagation
at different times. It is observed that two first
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pulse exhibits oscillatory focusing while the

second pulse exhibits focusing and defocusing with
the distance of propagation. As the time elapses
the intensities of the two incident EM pulse changes
and hence the cross focusing also gets affected.
Therefore, the power of the generated pulse also
exhibits maxima and minima with the distance of
propagation, as is depicted in Fig. 2.
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