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This paper presents an investigation of the generation of an ion-acoustic pulse by two electromagnetic

(EM) pulses in a collisionless hot unmagnetized plasma at the difference frequency of the two EM pulses.
On account of the interaction of the two EM pulses, a ponderomotive force at the difference frequency
becomes finite and leads to the generation of an ion-acoustic pulse. When the two EM pulses have a
Gaussian intensity distribution in time and uniform intensity distribution in space, the generated ion-

acoustic pulse is also Gaussian in time with a pulse width = [t ipt 2p/(t &p+ t 2p)]'", where t, p and t» are the
initial pulse widths of the incident EM pulses. Moreover, if the incident EM pulses have a Gaussian
intensity distribution in space and time, the nonuniform intensity distribution of the EM pulses in a plane

transverse to the direction of propagation leads to the redistribution of electrons and ions, and transient

(time-dependent) cross focusing of the pulses may occur for appropriate initial powers of the EM pulses.
The ion-acoustic-pulse generation is seen to be drastically modified by cross focusing of the two EM pulses.

I. INTRODUCTION

~hen two electromagnetic (EM) waves of fre-
quencies e, and (d, interact in a collisionless
plasma, the ponderomotive force at the difference
frequency 4&= ~, —(d, becomes finite and leads
to the resonant excitation of an electrostatic wave
at the difference frequency, when the difference
frequency A~ and the difference of the propaga-
tion vectors satisfy the dispersion relation of the
electrostatic waves. ' '

In the present paper, we have investigated the
excitation of an ion-acoustic pulse at the differ-
ence frequency 6w by two Gaussian (in space and
time) laser pulses of frequencies ~, and &o, in a
collisionless, hot, and unmagnetized plasma.
When the two EM pulses have a uniform intensity
distribution in space and a Gaussian distribution
in time, the ponderomotive force at the difference
frequency excites an ion-acoustic pulse at the dif-
ference frequency. But the ponderomotive force
at the difference frequency is time dependent when
the incident pulses have a Gaussian intensity dis-
tribution in time; therefore, the generated pulse is
also Gaussian in time with a pulse width equal to
[f',o f»/(t,'o+ foo) J ~', where t» and t» are the initial
pulse durations of the EM pulses.

When the incident pulses are Gaussian in space
and time, the ponderomotive force from the non-
uniform intensity distributions of the EM pulses
in a plane transverse to the direction of propaga-
tion becomes finite" and leads to the redistribu-
tion of the electrons and ions, and, if the initial
pulse powers are appropriate, the transient cross
focusing of the EM pulses occurs. As time
elapses, the intensities of the incident pulses
change, and thereby the cross focusing of the

II. TIME-DEPENDENT BEHAVIOR OF PONDERUMOTIVE
NONLINEARITY

We consider the propagation of two coaxial
Gaussian EM pulses (Gaussian in space and time)
along the z axis in a coll.isionless, hot, unmag-
netized, and homogeneous plasma. The intensity
distributions of the pulses at z = 0 are given by

E,E,"~, o=E'„(f)exp(-y'/y, ',),
E,E,"I, , = E'„(t)e p(-y'/y'„),

E'„(t)= E'„,exp( t'/t'„), -
Eoo(f) =Eooo exp( t /too) ~

(1)

(2)

(3)

(4)

where y'=x'+y' and yap y2p are the initial pulse
widths and t„, t„are the inital pulse durations.
On account of nonuniform intensity distributions
of the pulses in a plane transverse to the direc-
tion of propagation, the ponderomotive force be-
comes nonzero and leads to the diffusion of the
electrons. and ions. ' ' Hence, in the presence of

pulses and ion-acoustic pulse power are affected.
This is relevant to wave-interaction studies in
the field of laser thermonuclear fusion, where
high-power short-duration laser pulses are fre-
quently used.

In Sec. II we have studied the time-dependent
behavior of the ponderomotive nonlinearity in
the presence of the two EM pulses in a collision-
less plasma. The transient cross focusing of the

. EM pulses has been studied in Sec. III. In Sec.
IV we have investigated the generation of the ion-
acoustic pulse at the difference frequency. A
brief discussion of the results is presented in
Sec. V.
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the EM pulses, the background electron and ion
densities must be modified. Siegrist' has studied
numerically the change in the background electron
density by the ponderomotive force in the presence
of a Gaussian pulse. Here we have derived an an-
alytical expression for the modified electron den-
sity in the presence of two Gaussian EM pulses.

Following Sodha, Ghatak, and Tripathi, 4

Schmidt, ' and Sodha et al. ,
' the expression for

ponderomotive force can be written as

1 1 2 2 2
e 1

—v(z z+)+ —v(z .z*)
2

In the quasihydrodynamic two-fluid approximation,
one obtains the following equations for diffusion
of electrons and ions:

BVe k~ To
me et'= -eES —

N
'VNe

e

e' —,v(E, Z,"}+—,v(Z, Z,*)l, (6)

BV,- kI, To
(7)

where the indices e and i refer to electrons and

ions, respectively; m, and m,. are the masses of
electron and ion, 'respectively; E, is the space-
charge field; To is the temperature of the plasma;
k~ iS the BOLtzmann COnStant; ~, and ~2 are the
angular frequencies of the EM pulses; and -e is
the electronic charge. It must be mentioned here
that in writing Eq. (7), the ponderomotive force
on ions is not taken into account because its mag-
nitude is less by a factor of m, /m, in comparison
to that on electrons. Owing to space-charge ef-
fects, electrons and ions move almost with the
same velocity; i.e. , V, =- V,.= V in an almost elec-
trically neutral medium N, =—N,.=N, where V is
the diffusion velocity of electrons and ions and N
is the modified electron and ion density in the
presence of the pulses. Adding Eqs. (6) and (7),
and neglecting electron mass m, as compared
to the ion mass m, , we obtain

V' 2ka To 7'NBt= -',~'
2

—,V(z, ~ E,*)+—,V(z, E,*)) . (8)

For further analysis, Eq. (8) may be supplemented
by the equation of continuity

—+ V ~ (NV)= 0.
Bt

(8)

Equations (8) and (9) may be combined to give

dt' dt
+ v —+ u&12$=E(t), (12)

where Q is the Fourier transform of In(N/N, ) and

E(t) is the Fourier transform of the second term
on the right-hand side of Eq. (10) given by

)
&'(K, + K', )Et =—

1

2

602

A Green's-function solution of Eq. (12) is
t

sin[A(t —t')] exp[=,' v(t —t')]E(ti) dtI,

(13)

where 0=-,'(4&v&' —v')'~'. Inversion of the Fourier
transform would give an equation for N. Equation
(13) gives N as

~TO 1 ~20 2
2 2 2

16 V uP &o' ji

e 1 12

+ —V'(E ~ E *)+—V'(E ~ E *)
4~) m ~2 1, 1 ~2 2 2

e g 2

(10)
where N, is the electron density in the absence
of the pulses. This differential equation is a
wave equation with a velocity of propagation V,
= (2k~TO/m, )'~' of. the order of ion-acoustic veloc-
ity. When a single pulse is propagating in the

plasma, Eq. (8) reduces to Eq. (10) of Siegrist'
derived from a slightly different approach. For
stationary conditions, the time derivative on the
left-hand side of Eq. (10) disappears, and one ob-
tains the following expression for the modified
electron density on account of the ponderomotive
force':

e' E,E,* EQ,*I
me a 0 (d1 ~2 j

An analytical expression for X from Eq. (10) can
be obtained as follows. To keep the analysis more
general we add a damping term phenomenological-
ly in Eq. (10). Taking the Fourier transform of
the resulting equation with respect to space co-
ordinates would give an equation of the form

where

I, ,= dK, dK, dt sin K2+K ' V t K +K' ' '
a OO a oe 0

x exp[ (K2+K,')-y, , f-', ,(t -t„z)J e[x-p( txK+ yK)]E,', (t -t, ),
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where the subscript "th" denotes thermal speeds.
It must be mentioned here that in deriving Eq.
(15), the intensity distributions of the pulses in
the plasma are consistent with Eqs. (25)-(28).

III. TRANSIENT CROSS FOCUSING OF THE TYCHO EM
PULSES

The electric vectors of the pulses in the plasma
are governed by the wave equation

1 8 2 8 2 8 8
102 20 8g 10, 20 8~ I, 2 8~ 10s 20

~1, 2

8 8
+ —$

8y 1, 2 8y 10, 20

8 8
1,2 +

8 2 I 2 10, 2o = o

82 8' 8' 1 82
— E + E + E = ——E

8~2 122 8y2 1~ 2 8~2 122 C2 8t2 Iy2

4~ 8
+ ——. J

C2 8

In writing Eq. (16) we have neglected the
YT(V ~ E») term which is justified as long as'

(d~2 1
ln& I~1,2 ~1,2

(16)

where

~1, 2+2 ~1, 2 ~I 2 +

N, -Ã
2

1 82 82
l 2 A 2 los 20 2 +los 20

ls 2 I, 2
(22)

However, for a two-dimensional beam in space
and 8/sy = 0, this is identically zero. In Eq. (16),
J, and J, are the total current densities in the
plasma in the presence of first and second pulse,
respectively. Assuming the variation of E» in
space and time a,s'

On transforming the variables (z, t) to z(=z) and

$, 2(=t -z/v, ), Eqs. (21) and (22) assume the
ls 2

following form:

8 2 8 2 8, 8—A + —A. ' +—S —A'
los 20 8~ 10 20 8y 1 2 2 8y 102 20

E~ 2=A, ,(x,y, z, t)exp[i(w, t2—k, p)],
where

k, ,= (cu, ,/c )(1 —&up/~,',)'i '

(17) 82 8

and AI 2 is a complex function of space and time,
the current densities in the plasma can be written
as

Ne' ZJ =— . A + —A
m s ' Bt8 122 122

2—&I 2+ —SI 2 + —, SI 2

No -1V
241 2 N0E

x exp [i(co, ,t —k, ,z]. (18)
1 82 82

Ios 20 2 10, 20
1s 2 los 20

Substituting the expression for J, , from Eq.
(18) and E» from Eq. (17) in Eq. (16),we obtain

8 82 82
122 8g ls2 8 2 122 8 2 ls2

12. 2 +~2 N &0
C (dl 2 No

+ 1..22s4) 8
I'2 C2 8

(19)

x exp— y'

P....f, ,,s, 4;,))
Si,2=-'&'ps. 2(z 4, 2)+ ci,2(z

(25)

(26)

The solution of these equations can be written as

&;, .((. )

122 ~ & 122

Further, assuming the variation of AI 2
as' '

XS2AS22p(XpyyZst)

1
P1,2 p d /1s2J1,2

(27)

x exp[- ik, ,S, 2(x, y, z, t )], (20)

where AI0 0 and Sl 2 are the real functions of
space and time; substituting for A» from Eq.
(20) in Eq. (19) and separating the real and imagi-
nary parts of the resulting equation, we obtain

where f» are the dimensionless beam-width
parameters. The equation governing the beam-
width parameters f, 2 can be obtained from Eq.
(24) by substituting for A2„„and S, , from Eqs.
(25)-(27) and equating the coefficients of y2 (=x'
+y2) in the resulting equation (within the paraxial-
ray approximation)
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ds g 2 pro ~ oo f $ o, , 16om, m,. V,'„i ' ' to,'

2 lrxexp-,
(

~'o ' + ~'" 4
16 m, m, V,'„) ~,' co', ) (28)

where

I3 4= dK1 dX2 dtlsln Kl+E2 "Vthtl Zl 1+K2"
~ oo ~ oo 0

x exp[ ,'(Z-,'-+K2)y,'o, ,of,', ,(s, $ —t)]E,'o, ,o(5, , , —I,), (29)

dK + 1 s&n ~th &1+&2 1 1+ 2
~ OO ~ 00 0

& exP[--,'(&,'+&,')7,'o. .of,', ,(, 4, , 2- i ) xo. oo(4. 2- i) ~ (3P)

To have a numerical appreciation of the results, we have plotted f, and f, in Fig. 1 for the set of parame-
ters mentioned in the figure caption.

IV. GENERATION OF THE ION-ACOUSTIC PULSE AT
DIFFERENCE FREQUENCIES

The generation of the ion-acoustic pulse by two
EM pulses in a collisionless plasma is governed
by the Quid equations'

(32)

—N, , +V ~ (N„&V,)=P,

20

16

(31)
where the subscripts e and i stand for electrons
and ions, respectively, q= -e for the electron-
Quid ease, and q =+ e for the ion case. In the above
equations X, ,- are the instantaneous particle den-
sities, V, , their fluid velocities, P, , the hydro-
dynamic pressures, y, , the ratio of specific heats
of the electron and ion gases, and c is the velocity
of light in vacuum. The damping coefficients I", ,
are given by'

1.2 8 (kA. s)' ( 2k'A.s
(33)

08

04

0.0
04 01

I I I I I I I ) I

0 2 0 3 04 0.5 04 0 7 08 0.9 1.0 1.1 1.2 1.3

ZC, rg
2

FIG. 1. Variation of f~ and f2 with ze/~~p~p at different
times for the following parameters: co~ = 1.963 x10
rad sec, &uq ——1.778 x10 rad see, 7qo=40gc/c, q, 'yap'Y2o

=2, &@~=0.5(mg —cu2), E(pp=3.98x108 (in cgs units)s
E2pp=3. 27x10 (cgs), tgp/t2p= 0;5. Curves A~, A2 corre-
spond to tlap= 0.0. Curves B~, B2 correspond to tlt~p
=0.8. Curves C1, C2 correspond to tlt~p=1. 0.

(34)
where T, and T,. are the electron and ion gas tem-
peratures, k is the ion-acoustic wave vector, and

XD = (ksT, /4we'No)'~' is the Debye length, and the
other symbols have their usual meaning. It may
be observed that the V, , x 5 and (V, , &)V, ,
terms of Eq. (32) give rise to ion-acoustic-pulse
excitation at the difference frequency ~, —v2.

Combining Eqs. (31) and (32), we obtain



1712 M. S. SODHA, MD. SALIMULLAH, AND R. P. SHARMA

82 9
,N, + 2I',—N, —t)(2„V'N, ——V ' (N,E)

e

[~N,V(V, V,) —V,ON, /Ot]

and

O'N, /Bt2. + 2I',.ON,./Ot —V2(„V2N, +—V ' (N;E)

(35)

V E =4((e(N(, —N„).
The equations for the perturbed quantities N„and
N'„are given by

O'N„/Ot' —v', „V'N„+2I",ON „/Ot + (2) P2,(N„-N (,)N „/No

—= V [&N„V(V„V+,)] (39)

= V ' [~N(V(V, ' V() —V(ON(/Ot], (36)

for electron and ion fluids, respectively, where

v(„= (y, k((T,/m, )' (' and V,„=(y,. k~T,./m, .)'('

for the electron and ion, respectively. In writing
Eqs. (35) and (36), we have made use of Maxwell's
equation

'To solve for 1V, , we assume, in the perturbation
approximation,

e, i el, jl& ~e2, s2 y
.((~

E(t) = E,(t)+E,(t)+E (t),

N. , (t) =N„„(t)+N„,,(t), N„,, «N, .„,, (37)

where N„(t) =—No;(t) is the electron density in the
presence of the two Gaussian pulses given by Eq.
(14), V„,, are the electron and ion velocities in
the high-frequency fields K, and E„v, , and N„,,
are the perturbations in the velocity and density
varying at difference frequencies (&o, —&o,), and

E~ is the electric field associated with the genera-
ted ion-acoustic pulse and is given by Poisson's
equation,

where only terms oscillating at frequency (&ok —~,)
have been retained in the right-hand side of Eqs.
(39) and (40). It follows from Eq. (33) that the
electron plasma pulse is heavily damped when

kXD =—1. 'The ion-acoustic pulse can still pro-
pagate if T,» T, Henceforth, only Eq. (40) need
be considered.

Equation (40) is a coupled equation for electron
and ion perturbations. Now, taking the variation
of N„as exp[i((dt —&kz)] in Eq. (39), we obtain

where

V ' P;N„~(V„'V,*,)]+ (dP2, N, ,
0

&2+ (()2k)2&2 + ~2 O(jN
th P(P ~0

(41)

(d = (dl —Q)2=—+4)
~

&k =k, —k2 ~

(42)

Substituting N„ from Eq. (41) into Eq. (40), we

obtain

O'N, ,/Ot2 —V2(„V2N, ,+2I'(ON(, /Ot+ (dP((N, , —NN()NO(/No

[(N„V(V„.V(+,)], (40)

i 8 2 Pl

'Y 1 0

Pi Oi V [1 N V(V ~ Vj(j )]
'Y l 0

(43)

where

D„,= [-(d +(Ak) u—(„+(dP2, N, /N ]. (44)

We assume the solution of Eq. (44) to be of the form4~

N, , =N(, (x, y, z, t) exp[i((dt —kz)] +N'(2(x, y, z, t) exp [i((dt —&kz)], (45)

where k =—e/C„and N', , and N,', are slowly varying complex functions of space and time. Substituting for
N „from Eq. (45), we obtain the following equation for N,' , and N,',:.

8
(-tv'+k'V', „)N[, V, (

—2ik —N,', +, ,N,'-, +,N,', +kivt, N,':, +2(i',.+iV) N;+'[(j'iij. )'v, „——V ], N'. =0
Tl 0

(46)

and
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8 a
[—tz'+ (ee)' V)'N, —',.,V,'„(-2i(ee) N—, +', ,N',.,+,N', , + 2iei', N ', , +. 2.(I', + ie) N'„—

t' t'z
2OO aOO eXP

~ 2 +
+~ * [(&k)'vt„—uP]

I

(

~I

Substituting further for N,'., as'-'

&I2 =&,'.'2(x, y, z, t) exp[-ikS(x, y, z, t)] . (48)

In Eq. (46) we obtain, after separating real and

imaginary parts,

—
¹ + —¹'+—S —K" + —S —

¹

Bg i& ~ Bt i j- B~ B~ f& By By i&

82 ~rr2

and

BS 2 &S BSI (BS
2 —+ ——+ —i+i-

Bz. e' Bt Bx] (By

2 2

th th 0

(53)

where

2

[(t2k)'v', „-o)'] ", (50)
th r& 0

(I (+ i(2)) (2)
(5l)

rr2 rr2@rr2+ pf rr2+ pf rr2

Bz Bx Bx

2I" N"'
+~ + N"'+ ' " =0 (52)

We now make the transformation of variables from
the set (z, t) to (z, g'= t —z/v, '). Then Eqs. (49)
and (50) reduce to

The solution of Eqs. (52) and (53) is given by

r
N(',*=,(,)

exv
(
—,,(,) ) exv(-2e, z),

S(z, $') = .r'P(z, $-')+ C(z, $'),

1 dp(ze() —
f( (2) d f 2

(54)

(55)

(56)

2FfQP
f A@2

th
(57)

where B' and a0 are the unknowns to be evaluated
from the boundary condition. The equation for the
beam-width parameter of the generated ion-acous-
tic pulse is obtained from Eq. (53) by substituting
for S and N,"2 from Eqs. (55) and (54) and equating

the coefficients of y2 on both sides in the resulting
equation:

(56)

where I, , and I,', are given by Eqs. (29) and (30),
respectively.

Substituting for¹,as (Refs. 4—6, and 9)

x exp [-i[@,S,(x, y, z, t) —k,S,(x, y, z, t)]] (59)

in Eq. (47), we obtain where

4D2 yg D, N0 m)
'E„(t)E„(t)i,,t, „„

(d2ooof2f» ( &2of2 &2of2 j
y'( 1 1

eei

(60)
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D„,= 0-P+ (&k)'V',„
+ ((k),/D„,)[(t2k) v', „-(d ][N„/N ]. (61)

z

To find an expression for the electric vector of
the ion-acoustic pulse, we employ the equation
of continuity,

BN, ,/st + v ~ (N0; V,,) =0, (62)

where V,,—= eE~/m, .i(0 and N„ is given by Eq. (45).
Thus,

S —= (]
' P, exp —,, )exp[-ik(z+S)]

(gN 1 2~2 2

2

x exp[-((ekz+ k,s, —k,s,)]I,

(66)
where

where

and

~f . +2

f( (') Xe'8 ' ) (64)

" exp(-ikz)+ " exp(-ikkz)),m, i(d' fN,',

(63)

and

B'exp(- k, 2)
kf(~, $')

&o.
4(tk.k)Dy2, Dy, N0 m,

+ 2 2+
2 2

y10 1 y20f 2

„ e'z, „(t)z,.(t)
0)1(02fsf2

(67)

(68)

In the expression for N,', [Eq. (64)], B' and a0
are two unknowns and have been obtained from
the assumption that the electric field of the gen-
erated ion-acoustic pulse is zero at z = 0. Thus,

Hence,

y' 1+1 (65)

X~=0 ate=0,
which yieMs

1 1 1
2 2 2+

~o 'Yao 'Yao

and

(69)

(70)

[ y2t'1 1 1x exp(ik(k')exp ——
~
» +

[zy10 1 y20 2 0
(71)

Therefore,

/m .(d 2

E @*(t)=(
~

F,'exp — » ~+F2exp -y', ,+»
~

+2cos[k(z+g) tkkz —(k,g, -—kp, )]

2/1 1 1xF,F2exp ——.
I ...+ ~ ..+ ...

0~ »ol a Y2of 2

This is the intensity of the generated ion-acoustic
pulse at the difference frequency, when the two
EM pulses are having Gaussian intensity distribu-

(72)

I

tion in space and time
Hence, the total integrated power associated

with the generated ion-acoustic pulse across the
transverse cross section at g is given by

Vkh m1(d 2 2F2+ y\0y20fkf 2 F2 ~ 4F1F2oos( ~ t) +)

@Of
'

ykof1 ymf 2

(78)
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where Np ls given by EQ. (14) and Fl and +o al
given by Eqs. (6V) and (68).

200

V. DISCUSSION

T h e more physical insight into the present
mechanism o eof the generation of ion-acoustic p

EM ulses at the difference frequency,by two pu s
n E s. (63)-(VO).oneent~ate our attention on qs. ,we cone

(63) the first term within the brackecket is onInEq. s e ir
unt of the natural mode of the hot plalasmaaccoun o e

the second termat the difference frequency, and the s
arises on accoun ot f the ponderomotive force at
t eh difference frequency. The te ' '

de term which is due
he hot lasma can also be Landau- pau-dam ed

when the phase velocity &u/k is compm arable to the
thermal veloce y o't f the particles, and under such
conditions

150—

50

0
0-0 0-5

zc

1.0 15

roof x r»f o)

(74)

where Il, is defined in Eq. (68).
Moreover, if the incident EM pulses have a

uni orm i'f ntensity distribution in space
( =~ f f =1 and N~/Np Np /Np='O»y 720 s ly 2

ic ulse atintense y ot f the generated ion-acoustic p
the difference frequency is

Z,Z~+(t) =fpexp [-t'(1/t,', +1/f,'p)], (75)

where

eN~ )"(4Dy2~ ~; Dy3. m

= [-~ + (&") vp + pe] ~yZ

(76)

a = f-(u'+ (ak)V'+ (~~,./Dy, )[(ak)'v,~-oo']),y2-

1/2 o 1/2
co& I (d$ ooo i(i 4)p

c k to~ c

It is obvious from the expressioion of the in-
75 that thetense y o't f the generated pulse (Eq. 7

utionintensity has eth Gaussian intensity dxstrxbu
'

in time with a pulse width equal to

The maximum intensity Io isis a function of the
' s of the inci-density of the plasma, frequencies o

dent EM pulses, an d the temperature of the plas-
ma. But for the propagating pulses [&u~« ~„

~w~ and for the nonrelativistic plasma
2&

/

(v,„«c)
2

(dr ElnP mn

4C CO,
—(d2 m, (J~Cu,

FIG. 2. Variation of the power P '
g'n c s units) of the

t' ulse as a function of zclw~p~ogenerated ion-acous xc pu e
ti . 1. Curve A represen sfor the parameters as in Fig.

= 1.0.tltf 0
—0.0. Curve 8 represents plt20=

For sue a p asmh lasma the peak intensity is propor-
tiona ol t the square of the electron and ion

1 toE )' and inversely proportxonadensity,
o of~,&u,(~, —~,)]'. Moreover, for a fixed ratio o

~, and &„ the peak intensity is inversely pro-
portional to ~,. Therefore, if the EM pulses are

their frequencies in the microwave range,
the pe xn enak ' tensity will drastically increa
comparison ot that for the laser pulses. For ex-

= 1.963le for two CO;laser pulses (&u, =amp e,
x10' radsec ' and (d2=1.778x10 rad14 sec 1)

the peak intensity is 10' times less in comparison
to when we choose ~,=1.963x10~~ radsee ~ and

1 778x10x' radsec '.
'd t EM pulses also have GaussianWhen the inei en

intensity xs rx u id' t 'b t'ons in space the transient
cross focusing o ef the two pulses may occur, and

' allthe power o e gf the enerated pulse gets drastica y
'

n The re-ith the distance of propagation. T e re-
sults of calculations are depicted in Figs. an

ade for the fol-2. The calculations have been made
lowing set of parameters: = 1.963x 10~4

radsec ', ~,=1.778x10'4 radsec ' (CO,-laser
=0 5 0 T' = 3 keg, y»=1.9x10pulses)~ tao t» ~ B p ~ zo

cm, r„/r»= 2, eak power fluxes of the two
lasers are =' . x=' 4 8 10"watt/cm' and = 3.5x 10"
watt/c m', and ~~/~ = 0.5.

Fi ure 1 depicts the variation of the dimension-Fzgure 1 depxe s

ulses with the normalized distance of propagationpulses wx e
at different times. It is observed athat two first
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pulse exhibits oscillatory focusing while the
second pulse exhibits focusing and defocusing with
the distance of propagation. As the time elapses
the intensities of the two incident EM pulse changes
and hence the cross focusing also gets affected.
Therefore, the power of the generated pulse also
exhibits maxima and minima with the distance of
propagation, as is depicted in Fig. 2.
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