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Expressions for the wave-energy density and wave-momentum density of each species of a collisionless
plasma are derived. The sum of the wave-energy (momentum} densities of all the species and the
electromagnetic-energy (momentum) density gives the previously known result for the total wave-energy
(momentum) density of a dispersive medium.

I. INTRODUCTION

Expressions'-' for the wave-energy density and
wave-momentum density of a dispersive medium
have been applied to a number of problems. The
sign of the wave energy can be used to determine
whether coupled waves are explosively unstable. '
The ponderomotive-force density acting on a med-
ium can be deduced" from the knowledge of the
wave-energy density and wave-momentum density.
In addition, Nevins" has shown that particle
transport, caused by trapped-particle instabili-
ties, can be explained by the increase in the wave-
momentum density as the unstable wave grows.

In a collisionless plasma, the quantities of con-
cern for each of the above questions can be divided
into contributions from the separate plasma spe-
cies. One may wish to know which species causes a
wave to have negative energy, how much of the pon-
deromotive-force density acts on the ions and how
much acts on the electrons, or the relative amounts
of ion and electron transport caused by an instability.
To answer these questions by the methods of the
previous analyses, ''-" one first needs to know the
wave-energy density and wave-momentum density
of the individual species.

The purpose of this paper is to derive the con-
tributions of the separate species to the wave-en-
ergy density and wave-momentum density of the
medium. This we do under the following assump-
tions: (I) The electric field is smali. Hence,
linear theory is valid. (2) The electric field has
the wave-packet form; i.e., it is the product of a
slowly varying amplitude with a plane wave. (3)
Dissipation is small. (4) The plasma is collision-
less. Upon obtaining these expressions for the
wave-energy and wave-momentum density, we note
that they and the electromagnetic contributions
sum to give the previously known' formulas for the
total wave-energy density and wave-momentum
density of the medium.

II. WAVE-ENERGY DENSITY AND
WAVE-MOMENTUM DENSITY OF THE SEPARATE

SPECIES OF A COLLISIONLESS PLASMA

We consider a homogeneous, multispecies plas-
ma under the influence of a small electric field.
In this case, the current response of each species
is given by a separate conductivity

J'(k, ~) =0 (k, (~) E(k, (d). (I)

In addition, we follow Bers' in assuming that the
electric field is the product of a slowly varying
amplitude and a plane wave

E(x, t) = h (x, t) exp(ik, x —i(d, t)+ c.c. (2)

1J (x, t)-(2 )4
3Q d(d&((k. f-mt)os(k (d) . E(k (d)

Z(i«, «) fd'edte-""'"'E(««e)=

= 8(k- k„()—(u, )+ (7l*(k+ k„(u+ (u, ) . (4)

[In this expression, 8*(k, v) denotes the Fourier
transform of h*(x, t), not the complex conjugate of

Furthermore, we assume dissipation to be small.
Finally, we assume the plasma to be collisionless,
so that a given species can obtain energy and mo-
mentum only from the macroscopic electromag-
netic fields. Under these conditions we derive lo-
cal conservation laws for the energy and moment-
um of each species, thereby obtaining the wave-
energy density and wave-momentum density of the
separate species of a collisionless plasma

In order to derive these local conservation laws,
we must first find local relations between the elec-
tric field and the current density of species s. To
do this, we Fourier transform Egs. (1) and (2) to
obtain
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]S'(k, u&). ] Insertion of Eq. (4) into Eq. (3) now yields

J'(x, f)=, rPkd(re""'" ""o'(k, (u) 8(k-k„a) —cu, )+c.c.
2&r

'
This integral is calculated by changing the integration variables to (v, 0)—= (k —k„u& —&u, ) and expanding
cr(k, v) about the point (k„&u,). The result is

(6)

9 9
J'(x, f) = s""o'-"o"~1+i—— —i~ [o'(k„(u,) 8(x, f)]+ c.c.9t 9~, 9x 9k,

a local relation between J' and E.
By the same procedure, we can obtain a relation between the external charge density and the electric

field, using p' = k ' J'/]d, and a relation between the magnetic field and the electric field, using
B =ckx E/&u:

J'(x, f) = e' "o' "o Z —/i — —i —' —— [o'(k„cd,) ' S(x, f)] + c.c.('k ~n! (sfs, s- sk,

At this point, we invoke the assumption that b (x, f) varies slowly. This allows us to neglect the higher de-
rivatives in Eq. (6), thereby obtaining

t/(x, t&=e""'- "(1+~~ ~
—i~ ~- ]lr, s'(ic„w& 8(x, t&/a, ]+c.c. (8)

B(x, f) = e""o'-"o" 1+i —i — [ck, x &(x, t)/u), ]+ c.c.st s]d, sx (9)

With these expressions in hand, we proceed to calculate the average rate at which species s gains ener-
gy. In the absence of collisions, species s gains energy only from the electric field. Hence, the average
rate at which energy is transferred to species s per unit volume is given by (E(x, f) ~ J'(x, f)). (The brack-
ets refer to the time-averaged part of the quantity. ) From Eqs. (2) and (3) we find the relation for this
quantity

(E ' J'& = 28 (x, t &
v ,'(k„, „& 8 (x, t& —

(
— -= '

&&
[&& ]x, t& s ,' ( k , « , &

'
&& (x, t&]

9 9 9 9
+ i8*(x, f) ~

s ~ —— [o„'(ko, ~,) ~ h (x, f)]+ c.c.
9~ ~o 9x 9ko

where we have introduced the Hermitian and anti-
Hermitian parts of the conductivity o'= a~+i&', .
At this point we invoke our last assumption, that
the dissipation is small. This allows us to neglect
the last term of Eq. (10) in comparison to the sec-
ond, thereby obtaining

(E ~ J') =28*(x, t) o(k„r &,) $(x, f)

+ s [-Z*(x, f) ~ o.'(k„(u, ) ~ X(x, t)]
0

[8 "(x, f) (r.'(k„(o,) 8(x, f)].

Equation (11) is an energy-conservation law for
species s. The left-hand side of Eq. (11) is the
rate at which energy is transferred to species s
per unit volume. The first term on the right-hand
side of Eq. (11) is the rate at which species s dis-
sipates energy per unit volume. If we neglect

I

this term and integrate Eq. (11) over space and

time, we find that the total energy received by
species s is given by the spatial integral of

w'= -(s/sh), )[h *(x, f) (7,'(k„(u, ) ' g(x, f)]. (12)

Hence, 8" is the wave-energy density of species
s. Finally, the last ter'm of Eq. (11) is the diver-
gence of the energy flux of species s

F]] = (s/sko)[]g*(x &) ' &.'(ko ~o) ~(» f)1 ~ (13)

W'= — [8*(x,f) ]&,g'„(k„]d,) 8(x, t)]. (14)
4 9 0 0 If 0 0

By a similar analysis, we find the rate at which
momentum is transferred to species s per unit
volume:

In order to compare Eq. (12) to previous work,
which we will do momentarily, we rewrite Eq. (12)
in terms of the susceptibility ]f'—= 4»io'/~:
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(p'E+ J' x B/c) = (k /2v)8* ~ g,' ~ xg +———, [&oat~ ~ )ff, ~ h] ——48*. g'„~ k~ ——8*k . g'„~ g~t 4p Bc@ . — cu0 p 0 0

- [k.&* Xi &] —21b* X' @+@* Xl@+X;.&@*[.&x 4w l&k,

(The arguments of the functions are the same as in the previous equations. ) We therefore conclude that
the wave-momentum density of species s is given by

1 k ~ 1 + 1, sG'(x f)=——' ——[~'h* X' 8]-—88* X'' k, -—8*k X' 8p h ~ 'h ~ 0 h
0 0 0 0

and the wave-momentum flux tensor is given by

x'x(x, x)=-& ( —Ixx" x', xl —xxx" x', x+8' x', xt+x', Ãxt ) .

(16)

(17)

'To correlate the present results with previous work, we note the following. If one sums the wave-ener-
gy density, as given by Eq. (14), of all the species and the electromagnetic energy density (E'+ B')/8v,
one finds that the total wave-energy density is given by

W= —
&

[@*(x,f) ~ &uoD„(k„v,) ~ @(x, f)],
1T p

(18)

where D(k, ~) = I(1-k'c'/&u')+ kkc'/&u'+Z)f'(k, ~) is the dispersion tensor. This result is equivalent to the
result of Bers (Ref. 3, p. 128) for the total energy density of a dispersive medium. Similarly, if one sums
the wave-momentum density, a,s given by Eq. (16), of all the species and the electromagnetic momentum
density (E x B)/4vc, one finds that the total wave-momentum density is given by

(19)
0 0

This result is equivalent to the result of Bere (Ref. 3, p. 132) for the total momentumdensity of a disper-
sive medium. Analogous statements apply to the energy flux density and the momentum flux density.

III. AN ILLUSTRATION

As an illustration of these ideas we consider
the generation of longitudinal drift waves in an
electron-ion, low-P plasma with density gradient
in the x direction, with magnetic field in the z
direction, and with both species having low therm-
al velocities. In this case the longitudinal sus-
ceptibility of species s is given by"

I

Hence, the wave energy of species s is negative
when

1 & 2(d„~/(d (22)

holds.
7o be specific, let us examine the case k, ~0

and, thus co„,&0 and co„,&0 hold. In this case, the
electrons have negative wave energy for

2 2
(d k K (d Q3„

QQ co Q3
(20) 2'„,&co &0 (23)

((ux. )=—:(x- ) . (21)

where ~, is the plasma frequency of species s, 0,
is the gyrofrequency (including the sign) of spe-
cies s, u&„, -=vk„T,c/e, B, is the drift frequency and
tc= n'dn/dx. Using—Eq. (14) we note that the sign
of the energy density of species s must equal the
sign of the quantity

and the ions have negative wave energy for
x

2(d& ~ + co ~ 0 . (24)

Hence, unstable waves with negative phase velocity
~/k„&0 are due to the negative wave energy of the
electrons. Unstable waves with positive phase
velocity are due to the negative wave energy of the
ions.
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