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Photon statistics in multiyhoton absorption anti emission processes
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Exact solutions of the master equations which describe single-mode m-photon absorption and m-photon
emission processes in a two-level atomic system are obtained using a density-matrix approach. Some aspects
of the photon statistics, e.g., antibunching, are discussed.

I. INTRODUCTION

In recent years, the study of the photon statistics
in multiphoton processes has received a great
deal of interest. ' ' Several authors have discussed
the possibility of observing antibunching in multi-
photon absorption process. '

Up to now exact expressions have only been de-
rived for the photon distribution function in a two-
photon absorption process using a generating func-
tion method and in a two-photon emission process
using a Laplace transform method. The genera-
ting function approach is rather inconvenient in
the study of photon statistics of rn-photon pro-
cesses when rn &2.

In this paper, we present exact solutions of the
master equations which describe m-photon ab-
sorption and emission processes, using a density-
matrix method. The diagonal elements of the
density matrix determine the photon distribution
function. By taking the appropriate moments
with respect to the distribution function in the rn-
photon absorption process, we evaluate the photon
number fluctuations. With the help of the figures
we demonstrate that, far initial coherent and
chaotic fields, the fluctuations decrease below
unity when m ~2. This is a manifestation of photon
antibunc hing.

tonian for this process is expressed in the form

N

H, =P {g Cp, c(;E„(rg) E', (ry) + H.c.), (1)
i=i

E~» (rj) = t(2wh-(u» )'t'U» (r~)B», . (2)

where ~„.is the frequency of the k,.th mode of the
i

field (with atomic transition frequency &u =e»,
+ +~» ), U». (r~) is the mode function of the k,.th
mode at the position r&, and g~. is the photon des-
truction operator of the k, th mode.

In the interaction picture, the equation of motion
for the density operator p of the atom-field system
is given by

We assume that at some initial time to, the radia-
tion field and the atomic system are decoupled;
lo eop

A A Ag Agwhere C&, , C2, , C~, , and C2, are the annihilation and
creation operators for the ith atom in the ground
state ~1,) and the excited state ~2,.). q is the ma-
trix element for the m-photon transition. The
positive-frequency part of the electric field at the
ith atom is given by

II. MASTER EQUATION FOR THE DENSITY MATRIX
OF THE FIELD

p(tp) =p.(to) . .. .p;«p»
i=1

(4)

Let us consider a coupled system of field and N
noninteracting two-level atoms. We assume that
the atoms make transitions from lower (upper)
level to the upper (lower) level by absorbing (emit-
ting) m photons, one photon in each of the modes
k&, k&. . . k . The number of atoms in the two
levels are assumed to be maintained constant by
some external influence. The interaction Hamil-

where p~(tp) = Tr„p(tp) is the reduced density ma-
trix of the field and p;(tp) is the initial density op-
erator of the ith atom at time to.

The equation of motion for pz(t) may be obtained
using the standard perturbation techniques based
on Born and Markoff approximations. The re-
sulting equation is
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h2 („., a~) I„.. aa, pz-2 „.i at, p ....a~)(+»I. .. . a~( I ", a~,

where E& and E2 are the thermal populations of
the atomic states

~
1) and

~
2); P' ' is given by

(k=0, 1,2, . . .), the matrix element p(n, n+k, ~)

=(n!p~(7) ~n+k) of the reduced density matrix

p~ satisfies an equation of motion of the form (for
Eg ——1,Xg ——0):

&p(n, n+ k, 7')/87' = a(n, n+ k)p(n, n+ k, 7')

In Eq. (6) g(&u) is the line-shape function of the
atoms and N(r) is the atomic density in the me-
dium s

Although the method for the solution of the re-
duced density matrix of the field in m-photon ab-
sorption and emission processes in the following
sections can be applied for arbitrary numbers of
field modes, we shall restrict ourselves to a sin-
gle-mode case (with k~

——k2 —— ~
——k ) for the sake

of mathematical simplicity. Then Eq. (5) be-
comes

dt

+b(n+ m, n+ k+ m)

xp(n+m, n+k+m, 7), (8)

where 7'= 2p' 'i and

a(n n+k) =-—
~

+ — (, (9a}
1 ( n! (n+k)!
2 ((n —m)! (n+k —m)! &

'

b(n n+k)—
(n —m)!(n —m+k)! )

(eb)

The matrix element p(n+k, n, 7) is just the com-
plex conjugate of p(n, n+ k, &); i.e.,

-p~™&2(aa~ pz-2a pea +pea a ). (7)
p(n +k, n, &) =p*(n, n + k, &) ~ (10)

It is worthwhile to mention that this equation des-
cribes an rn-photon laser' in linear approxima-
tion when the cavity losses are simulated by m-
photon absorption process to achieve detailed ba-
lance. We shall, however, restrict ourselves in
the next sections to rn-photon absorption case
(kg 1, k2 ——0) and m-photon emission case (kq

——0,
k, =1) separately.

III. m-PHOTON ABSORPTION

If we calculate the matrix element of each term
in Eq. (7) between Fock states (n

~

and ~n+ k)

The solution of Eq. (8) would, therefore, com-
pletely determine the reduced density matrix p„
of the field.

It is apparent from Eq. (8) that an element
p(n+ i, k +n+ i, r) (i = 0, 1, . . . , m - 1) is related
only to the elements p(n+ i, 0 +n+ i, &), p(n+ i
+ m, k+n+i+m, &), and p(n+i+ 2m, k+n+i
+ 2m, &) ~ ~ ~ as shown in Fig. 1. We can therefore
replace Eq. (8) by the following set of m indepen-
dent equations cor'responding to m chains in Fig.
1:

8p (nm +i, nm + k +i, &)/S & = a(nm +i, nm + k + i)p(nm + i, nm + k + i, &)

+b(nm + m +i, nm + m + k + i)p(nm + m +i, nm + m + k +i, &),

with i = 0, 1, . . . , m —1. In matrix notation these equations are written as

(12)

where
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p(i, k+i, T)

p(m+i, m+0+i, T)

p)(&) =

p(nm +i, nm + k+ i, T)

a(i, k+i) b(m +i, m + k+i)

a(m+i, m+k+i) b(2m+i, 2m+k+i)

We now define the eigenvalue Xr» of the matrix
corresponding to the right eigenstate p, (r) =Q C,A, ,e'&. !'.

- l=0
(20)

A, , =

l, »l
0

l, »

1

In case the eigenvalues are nondegenerate, the co-
efficient C, can be determined using the ortho-
gonality condition (16), and we obtain

C, =B, ;p, (0) . (21)

and the left eigenstate

B(,(= +0 "P("
by the following relations'.

M»Ar, » =~r, »A

(16)

(17)

(16)

Bl. »Ar» =5 (19)

»
= ~r, »Br, » ~

If we multiply Eq. (17) by B, , from the left and

Eq. (18) for l' by A, , from the right and subtract
the two equations, we get an orthogonality rela-
tion:

Equations (20) and (21) can be recast in the func-
tional form by the following equation:

p(mn+ i, mn+ k + i, r)

=gg P,"n„''e ' "p(mq + i, mq + k + i, 0) .
r=0 q=,0

(22)

It is therefore evident that a determination of the
eigenvalues Xl »

and the right and left eigenstates
A. .. B, »

of the matrix M, would completely deter-
mine the reduced density matrix p~.

The eigenvalues Xr» of M», which satisfy the
equation

when &l, »
~ &r', »

~

In view of Eq. (17), the solution of Eq. (12) is
given by

det(M,. —XI) = 0

(I being the unit matrix), are given by

(23)

P(O, K ) ( I K+I ) P(m- I, K+rn-I )

P(m, K+m) " P(m+I, K+m+ I )
I

I' ~ ~

I

P( nm, K+ nm) ~ P(nm+I, K+nm+I)
I

I

I

I

P(2m-I K+2m-I)
I

I
I

I ~ ~ ~ ~ I

I I

I I

~ P(nm+m - I, K+nm+m- I ) ~
I I

I I

I I

FIG. 1. The chain structure of Eq. (8).

X, ,-=a(ml+i, ml+k+i)

1 (ml+ i)! (m/+ k+ i)!
2 ( .)+i-m)! ( + )+i)-m)! )'

It is easy to verify that &r» @Xl, »
for lel'. On

substituting from Eq. (24) into Eq. (17), we get an
infinite set of equations whose eth member is the
following recursion relation:
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a(mn —m+i, mn —m+k+i) o„ i''+ b(mn+i, mn+k+i)a„''=a(ml+i, ml+ %+i) o„&".
By iterating this recursion relation, we obtain

[a(ml+i, ml+k+i) —a(mr-m+i, mr-m+k+z)]

~

~ ~

n l
gl b(mr+i, mr+ k+i)

0, n&l.

In a similar manner, it follows from Eqs. (18) and (24) that

p
i, i b(mr+ i, mr+ k+ i) q~l„",;'! [a(ml+i, ml+k+i) —a(mr+i, mr+k+i)] '

iI

0, q&l.

(25)

(26)

(27)

To determine no' ' and P, ' ' we first notice that, in view of Eqs. (15), (16), and (19), the following relation-
ship holds:

&i, i&r, (=pi ' &r ' =1 ~
E, l l, i

We can therefore choose

l, s
E

p l, i

It then follows from Eqs. (26) and (29a) that

b(mr+i, mr+k+z)
' !'[a(ml+i, rnl+k+i) —a(mr —m+i, mr m+0—+i)]

(26)

(29a)

(29b)

(30)

The choices (29b) and (30) enable us to combine the m equation in Eq. (22) corresponding to m values of i
(i.e., i=0, 1, . . . ;m —1).

On substituting from Eqs. (24), (26), (27), (29b), and (30) into Eq. (22), we obtain, after some rearrange-
ment,

b(r ~+a' —n))e"""'""p(q,q+m' —n, o)

[a(l, l+n'-n) -a(r, r+n'-n)]
&'r'='n'

r&l-

where the primes on the summation and product
signs mean that the increment is in steps of m.
This equation combined with the expressions of
a(r, r') and b(r, r'), i.e.,

by Simann and I oudon using the generating func-
tion method. In Figs. 2-7, we have plotted P(n, &)

versus n for various values of 7 in two-, three-,

r~ r't
a(r, r') =-— +

2 ir-m)! ir'-m)! j ' (32)
0.5

r!r'!=
I (r —m)!(r' —m)! (33)

completely determines the evolution of the reduced
density matrix of the field in the m-photon absorp-
tion process.

The photon distribution function p(n, &), which is
obtained by putting n =n' in Eq. (31), is given by

P(n, t')

0.25

a

g b(r r)
~

e' ' '
p(Z 0)

p(n r) g g ~+m

al, l -arr (34)

0.0
IO l5 20

It is not difficult to verify that, for the two-photon
absorption process (i.e., for m =2), this expression
for P(n, &) reduces identically to the one obtained

FIG. 2. p(I, 7) versus e for two-photon absorption
process w'1th initial coherent state (with no =10) at v

=0, 0.1, 0.2, and ~, respectively.
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I

0

P(n ")= (39)
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[ ( i
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IV. m-PHOTON EMISSION
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o e
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8
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1
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( „) 1 (n+m)! ( +k+mn k+ m)!
2 ! ( +k)!
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8p(nm + i,nm + k + i, T)/8 & = c(nm + i,nm + k + i)p(nm + i,nm + k + i,&)

+d(nm —m + i,nm —m + k + i)p(nm —m + i,nm —m + k + i, T) .
As before, their solution can be expressed as

(43)

p(nm+i, nm+k+i, T)=g y "5„''e~).q']()(mq+i, mq+k+i, 0),
)=0 q=

(44)

where p, . .. 5„",and y,"are the eigenvalue, the nth element of the right eigenstate, and the qth element of
the left eigenstate, respectively, of the matrix

'c(i,k+ i)

d(i, k + i) c(m + i,m + 9 +i)

0

N,.=
d(m+i, m+ k+i)

(46)

0

It can be shown that they are given by the following equations'.

= c(ml +i,ml + k + i),
d(mr - m +i,mr —m + k + i) +a )„(,; [ e( ml +i, ml +k+i) c(mr—+i,mr+k+i)] '

n

0, n&l

'=' ~ d(mr+ i,mr+ k+ i)
q ~&)

[c(ml+i, ml+ 0+ i) —e(mr+i, mr+I+ i)] '

(46}

i47)

(48)

n

p(nm + i,nm + k + i, r) =
q-0

( II (c(ml+a, ml+q+ a) —c(mr+a mr+0+(}]}
7'=q, r&l

It follows, on substituting from E(ls. (46), (47), and (48) into E(l. (44) that

0

II q(mr+i, mr+0+a'))c" "' ' '"C(mqrl, mqrq+a', 0)
(49)

As before, the photon distribution function for
m-photon emission process can be obtained by
putting k=0 in Eq. (49).

V. CONCLUSION

We have obtained, using a density-matrix ap-
proach, the exact expressions for the density ma-
trix in single-mode nz-photon absorption and
emission processes. With the help of the figures,
we demonstrated the possibility of observing
photon antibunching in an arbitrary rn-photon ab-
sorption process (with m & 2).
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