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Exact solutions of the master equations which describe single-mode m-photon absorption and m -photon
emission processes in a two-level atomic system are obtained using a density-matrix approach. Some aspects

of the photon statistics, e.g., antibunching, are discussed.

I. INTRODUCTION

In recent years, the study of the photon statistics
in multiphoton processes has received a great
deal of interest.!”® Several authors have discussed
the possibility of observing antibunching in multi-
photon absorption process.”?

Up to now exact expressions have only been de-
rived for the photon distribution function in a two-
photon absorption process using a generating func-
tion method and in a two-photon emission process
using a Laplace transform method. The genera-
ting function approach is rather inconvenient in
the study of photon statistics of m~photon pro-
cesses when m >2,

In this paper, we present exact solutions of the
master equations which describe m-photon ab-
sorption and emission processes, using a density-
matrix method. The diagonal elements of the
density matrix determine the photon distribution
function. By taking the appropriate moments
with respect to the distribution function in the m-
photon absorption process, we evaluate the photon
number fluctuations. With the help of the figures
we demonstrate that, for initial coherent and
chaotic fields, the fluctuations decrease below
unity when m =2, This is a manifestation of photon
antibunching.

II. MASTER EQUATION FOR THE DENSITY MATRIX
OF THE FIELD

Let us consider a coupled system of field and N
noninteracting two-level atoms. We assume that
the atoms make transitions from lower (upper)
level to the upper (lower) level by absorbing (emit-
ting) m photons, one photon in each of the modes
ki, k2. « « k. The number of atoms in the two
levels are assumed to be maintained constant by
some external influence. The interaction Hamil-

21

tonian for this process is expressed in the form’
N ~ ~ A~ A~
H,:; . CLCLEL(E) - - B} (F)+Hel, (1)

where C,;, Cy;, Cl,, and €}, are the annihilation and
creation operators for the ith atom in the ground
state |1,) and the excited state |2,). 7, is the ma-
trix element for the m-photon transition, The
positive-frequency part of the electric field at the
ith atom is given by

-

B} (F) = —i2n7w, ) *U,, (F)) @y, (2

where w,, is the frequency of the %;th mode of the
field (with atomic transition frequency w =wp;
+t...Fw, ), U, (F) is the mode function of the &;th
mode at the position T, and g, is the photon des-
truction operator of the %;th mode.

In the interaction picture, the equation of motion
for the density operator j of the atom-field system
is given by

L9 A A~
lha_[ﬁ):[HI,p]- (3)

We assume that at some initial time ¢, the radia-
tion field and the atomic system are decoupled;
i.e.,

N
Blto) =plto) ®I1 pilto) s (4)
i=

where pg(ty) = Tr4p(4y) is the reduced density ma-
trix of the field and j,(¢y) is the initial density op-
erator of the ith atom at time #;.

The equation of motion for pg(¢). may be obtained
using the standard perturbation techniques based
on Born and Markoff approximations. The re-
sulting equation is*
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d‘F B o m t . " A . . ‘m t . ot m ~
_E—dt =-B Kl[(g'ak‘)<gak’)pF 2 11 a;z,)ﬁ’F(Hak, +top L g, gakl

g, [(ﬁ ak‘)(II a;,>[>F— 2(11 a{‘)ﬁ F(n
i= =1 i= j=

where K and K, are the thermal populations of
the atomic states |1) and |2); 8™ is given by

pom = <2m)'"'2(2n2)<§ wkl) ERE®)

<[ di(f)aj| Uki(?)|2).

In Eq. (6) g(w) is the line-shape function of the
atoms and N(T) is the atomic density in the me-
dium.

~ Although the method for the solution of the re-
duced density matrix of the field in m-photon ab-
sorption and emission processes in the following
sections can be applied for arbitrary numbers of
field modes, we shall restrict ourselves to a sin-
gle-mode case (with ky=Fk;=---=k,) for the sake
of mathematical simplicity. Then Eq. (5) be-
comes

(6)

dp gmann  mama AfB L A Affia
*L%F—= —B'™K {a""a"pp = 2a"p " +ppa &}

_ﬁ(m)Kz{&m&f"‘ﬁF - 2&?"‘5Fam + 5Fam2‘l1""} (7

It is worthwhile to mention that this equation des-
cribes an m-photon laser!’ in linear approxima-
tion when the cavity losses are simulated by m-
photon absorption process to achieve detailed ba-
lance. We shall, however, restrict ourselves in
the next sections to m-photon absorption case
(ky=1, k,=0) and m-photon emission case (k;=0,
k,=1) separately.

III. m-PHOTON ABSORPTION

If we calculate the matrix element of each term
in Eq. (7) between Fock states (z| and |n+F)
J

m.
. “ “ ~t \°
ak,) +PF<H ak‘)(}-l kl)]’

(5

r

(r=0,1,2,. . .), the matrix element p(n,n +k,7)

= (| pp(7) |n+ k) of the reduced density matrix

pr satisfies an equation of motion of the form (for
K1 = 1, Kz = 0):

8p(n,n+k,7)/87 = aln,n+k)p(n,n +k,7)
+b(n+m,n+k+m)
(8)

Xpn+m,n+k+tm,T),

where T=28'"¢ and

a(n,”""k)"-z((n—m)! (n+k-m)!)’ %2
nl(n+p)!

(9b)

)1/2

The matrix element p(n +%,n, 7) is just the com-
plex conjugate of p(n,n + &, 7); i.e.,

pn+k,n,7)=p*(n,n+k,T). (10)

The solution of Eq. (8) would, therefore, com-
pletely determine the reduced density matrix g5
of the field.

It is apparent from Eq. (8) that an element
pln+i,k+n+i,7) (i=0,1,...,m—1) is related
only to the elements p(n+i,k+n+i,7), p(n+i
+m,ktn+titm,T), and p(n+i+2m,k+n+i
+2m,T) - .- as shown in Fig. 1. We can therefore
replace Eq. (8) by the following set of » indepen-
dent equations corresponding to m chains in Fig,
1:

op(nm +i,nm +k+i,7)/8T=qalwm +i,nm +k+i)p(nm +i,nm+k+i,T)

+b(um +m+i,mm+mte+i)plm+mti,mm+m+r+i,T),

(11)

with i=0,1,...,m= 1. In matrix notation these equations are written as

9
37 p(7) =M,p,(7),

where

(12)
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1 pi, b +1i,T) )
p(m+i1m+k+ia7)

pi(T)= . ’

pnm +i,mm+k+i,T)

L . )

ali,k+i) blm+i,m+k+i) 0

alm+i,m+E+i) b(2m+i,2m+E+i)

M.= . .

We now define the eigenvalue ), ; of the matrix
corresponding to the right eigenstate

aol,i

at
Ay = . (15)

and the left eigenstate

B:,‘=(ﬁol"ﬁ1"""): (16)
by the following relations:

MiAp =X, 144,45 (17)

By, Mi=xy,By,; - (18)

If we multiply Eq. (17) by B,. ; from the left and
Eq. (18) for I’ by A, ; from the right and subtract
the two equations, we get an orthogonality rela-
tion: '
By Ay i =0y (19)

when X, ;#Ap .
In view of Eq. (17), the solution of Eq. (12) is
given by

P(O,K) I P(1,K+1) l P(m-1,K+m-1) I
P(m,K+m) P(m+1,K+m+1) " P(2m-1,K+2m-1) !
lese losae 1

1 | }

P(nm, K+nm) . P(nm+|,K+nm +1) :- P(nm+m-|, K+nm+m-1) T
| |

| |

FIG. 1. The chain structure of Eq. (8).

(13)
. (14)
I
p;(7) 22 CA, @it (20)
=

In case the eigenvalues are nondegenerate, the co-
efficient C, can be determined using the ortho-
gonality condition (16), and we obtain

cl:Bl,ipi(O) . (21)

Equations (20) and (21) can be recast in the func-
tional form by the following equation:

pmn+i,mn+k+i,1)

=29 B, e *p(mg +i,mq + & +4,0) .
1=0 ¢=0
(22)

It is therefore evident that a determination of the
eigenvalues 2, ; and the right and left eigenstates
A, ;s By, ; of the matrix M; would completely deter-
mine the reduced density matrix 5.

The eigenvalues X, ; of M,, which satisfy the
equation

det(M; - \)=0 (23)

(I being the unit matrix), are given by

Ay i=alml+i,ml+k+i)

1/ (miti)!
) <(ml+i—m)!

(ml+E+4)! )
i thviomi ) @Y

It is easy to verify that x, ; #x,. ; for I#1’. On
substituting from Eq. (24) into Eq. (17), we get an
infinite set of equations whose »nth member is the
following recursion relation: '
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amn—m+i,mm-m+k+tia, i +b(mnti,mn+tre+ia, " =ami+ti,ml+r+ia, . (25)

By iterating this recursion relation, we obtain

a ,,iﬁ[a(ml+i,mz+k+i)—a(mr-m+i,mr—m+k+i)] <
. 0 +i,mr+E+i » mE

ali= 7 b(mr +i, mr+k+i) 28)

0, n>1.
In a similar manner, it follows from Eqs. (18) and (24) that
g, bmy +i,mr+k+i) >1
1 v AL [ami+i, ml+E+i) = almr +i,mr +E+30)] 7=
B, t= r . (27)

0, g<lI.

To determine ;" and B8,"f we first notice that, in view of Eqgs. (15), (16), and (19), the following relation-
ship holds:

B, A, =B a, =1, (28)
We can therefore choose

a,hi=1, (29a)

Bbi=1. (29Db)

It then follows from Eqs. (26) and (29a) that

b a b(mr +i, mr +k+i)
0 _H[a(ml+i,ml+k+i)—a(mr—m+i,mr—m+k+i)] :

(30)

The choices (29b) and (30) enable us to combine the m equation in Eq. (22) corresponding to m values of i
(i.e., i=0,1,...;m=1).

On substituting from Egs. (24), (26), (27), (29b), and (30) into Eq. (22), we obtain, after some rearrange-
ment, (

qar 2

L] !
IT vGr+n' = n))e“"' "TT(q,q 0’ = n,0)

pln,n’, 1= D ~TER— ) (31)
t=n q=1 (ﬁ [a(l,l+n’-n)—a(r,r+n’-n)]>
e ,
where the primes on the summation and product by Simann and Loudon’ using the generating func-
signs mean that the increment is in steps of m. tion method. In Figs. 2-7, we have plotted p(n,T)
This equation combined with the expressions of versus n for various values of 7 in two-~, three-,
a(r, ') and b(7, '), i.e.,
1 7l 7'l 0.5 T [ T
’ — —— +
0(7”7_) 2((7’—7}’&)! (r'—m)!)’ (32
n_ rly'! 12 L)
”(””—((r-m)z(w-mn) : (33)
completely determines the evolution of the reduced pint) 0.2
density matrix of the field in the m~photon absorp- ! |
tion process. ’ 025 ol
The photon distribution function p(%,7), which is
obtained by putting z=#' in Eq. (31), is given by
q T=0
= = ( 0¢ b(r,r)>e""'”'p(q,0)
P(n, T) =Z Z . r=ntm . (34)
ten o=t IIJJ [a(l,l) —a(’)’,’l’)]
r=n, ¢l 00 | |
~o 5 10 15 20
It is not difficult to verify that, for the two-photon FIG. 2. p(n,7) versusz for two-photon absorption
absorption process (i.e., for m = 2), this expression process with initial coherent state (with#,=10) at 7

for p(n,T) reduces identically to the one obtained =0, 0.1, 0.2, and =, respectively.
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0.4
il I
P(n,7) @
0.21— 002 —]
pusgele]
T =0
o | | |
(¢} 5 10 15 20

n

FIG. 3. p(n,7) versusz for three-photon absorption
process with initial coherent state (with#, =10) at 7
=0, 0.01, 0.02, and %, respectively.

and four-photon processes when the initial photon
distributions are coherent and chaotic, i.e.,

371 5,7
Pean,0) ="LE—, (35)
N
pcha(n!o) - (1 + ﬁO) T4 (3 6)

With the expression (34) for p(x,7), the expecta-
tion values ") (»=1,2,. . .,) for the photon num-
bers can be evaluated using the formula

) =Z_; n"p(n,0) . (37)

In Figs. 8 and 9, we have plotted the quantity

0.25
I [ \
©
0.002
P(n,7)
000!
0.25— . 0
A |
00 5 10 15 20

n
FIG. 4. p(n,T) versus = for four-photon absorption
process with initial coherent state (with#,=10) at 7
=0, 0.001, 0.002, and =, respectively.

0.60 T
[+ o]
P(n,7) -
0.30| |
0

FIG. 5. p(n,T) versus n for two-photon absorption
process with initial chaotic state (with#;=10) at 7
=0, 0.1, 0.2, and =, respectively.

2(7) = (?y = )} /() (38)

versus T in two=-, three-, and four-photon absorp-
tion processes for initial coherent and chaotic dis~
tributions. (Caution must be used in interpreting
the results from these figures because 7=28"t
depends upon m.)

It is evident from the figures that, in many cases,
go(7) <1. This is a manifestation of the photon anti-
bunching., Simaan and Loudon’ discussed this ef-
fect in two-photon absorption process and Paul,
Mohr, and Brunner® predicted this effect in an ar-
bitrary m-photon absorption process (with m >2)
using a perturbative method.

0.4

P(n,7)

FIG. 6. p(n,7) versusn for three-photon absorption
process with initial chaotic state (withz=10) at 7
=0, 0.01, 0.02, and =, respectively.
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0.3 l | |

P(n,7)

Q.15

FIG. 7. p(n,T7) versus n for four-photon absorption
process with initial chaotic state (with #(=10) at 7
=0, 0.001, 0.002, and =, respectively.

It follows from Eq. (34) that, in the steady state
(T =), we obtain
0, n=m

p(nJ w)=/ - (39)

© , q ,
b(r,7) m n<m .

& AL, laln,n) = a(r,7)

This expression for p(n,») is according to our ex-
pectation that the steady state photon distribution
function is nonvanishing only for » <m. In Table I
we have presented the values of gy(~) and (#),.«

in two-, three-, and four-photon absorption pro-
cesses with initial coherent and chaotic photon
distribution functions.

1.0

o8
gz(T)

05 0.05 010
T
FIG. 8. g,(7) versus 7 for two-, three-, and four-
photon absorption processes with initial coherent state

(with 7y=10).

g,(T)

0 0.05 010
T

FIG. 9. gy(7) versus 7 for two-, three-, and four-
photon absorption processes with initial chaotic state
(with 7,=10).

IV. m-PHOTON EMISSION

We now consider the equation of motion of the
matrix element p(n,n +k,7) of the reduced density
matrix g in the case of the m-photon emission
process which is obtained from Eq. (7) with K
=0 and K,=1, It is given by

8p(n,n+k,7)/87=c(n,n+k)p(n,n +k,T)

+dn=-mntk-m)

xXpn=mm+k—m), (40)
where
c(nm+k) =_;_<(’Vl :;lm“ (n E;k_’_—;;?;l)! ) ’ (41)
I(n+p)l 172
dl,nt k) =<(n-::z) !7n+k— m) ) . (42)

Following the method outlined in the previous sec-
tion, we first replace Eq. (40) by the following

set of m independent equations, for i=0,1,2,. ..,
m=1:

TABLE I. The value of gy(®) and {z);-- for several
multiphoton absorption processes with coherent and
chaotic initial photon distributions.

Coherent Chaotic
7y=10 7y=10
£2() M r=c0 g2(®) G2) =0
Two-photon
process 0.500 0.5 0.524 0.476
Three-photon
process 0.667 1.0 0.709 0.936
Four-photon
process 0.833 1.5 0.898 1.381
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ap(nwm +ium +k+i,7)/0T=clum +i,pm +k+i)pluwm~+imm+k+i,7)

+dnm —-mtigmm=m+tr+i)plnm=-=m+tigm=-m+r+i,7). (43)

As before, their solution can be expressed as

plnm +imm +k +i,7) =Z§ 7,10, e 1 i"p(mg +i,mq +k +1,0), (44)

1=0

where , ;, 6,"%, and y,'* are the eigenvalue, the nth element of the right eigenstate, and the gth element of

the left eigenstate, respectively, of the matrix

(c(ik +1) 0)
d(i,k +i) clm+i,m+k+i)

N,= ‘ . (45)
dm+i;m+k+i)
~ 0 o
It can be shown that they are given by the following equations:
pyi=clml+iml+k+i), (46)
- dimr =m+i,myr—-m+k+i) n>1
o i = Jrmint [elmL ¥ iyml+ o+ ) =clmy +imr +k +4)]’ @7
0, n<l
/lfI dmr+ti,mv+k+i) g<1
y ot = lemi+i,ml+E+i) —cimr+imr+E+i)]’ ) (48)
0, g>1 -
It follows, on substituting from Eqs. (46), (47), and (48) into Eq. (44) that
n-1
n (H d(m1’+i,m1’+k+i)> ec(mhl,ml+k+i)1p(mq+i’mq+k+i’0)
plnm +iynm +k +i,7) =Z; Zoj g (49)
1=0 g= n
( I [etmi+iml+r+i)—clmr+imr+k +i)]>
r=qy 721

As before, the photon distribution function for
m-photon emission process can be obtained by -
putting =0 in Eq. (49).

V. CONCLUSION

We have obtained, using a density-matrix ap-
proach, the exact expressions for the density ma-
trix in single-mode m~-photon absorption and
emission processes., With the help of the figures,
we demonstrated the possibility of observing
photon antibunching in an arbitrary m~photon ab-
sorption process (with m >2),

T
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