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Motion of atoms in a radiation trap
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The force exerted by optical-frequency radiation on neutral atoms can be quite substantial, particularly in
the neighborhood of an atomic resonance line. In this paper we derive from quantum theory the optical
force, its first-order velocity dependence, and its fluctuations for arbitrary light intensity, and apply the
results to the problem of creating a stable optical trap for sodium atoms. New results include the position
dependence of the velocity-dependent force, a complete expression for the momentum diffusion constant
including the substantial contribution from fluctuations of the dipole force, and an estimate of trapping
times in excess of 1 sec even in the absence of effective damping. The paper concludes with a discussion of
the prospects and difficulties in providing sufficient damping to stabilize such a trap.

INTRODUCTION

The force exerted by optical-frequency radiation
on neutral atoms can be quite substantial, par-
ticularly in the neighborhood of an atomic reso-
nance line. This force can be viewed, equivalent-
ly, as the I,orentz force exerted by the field on the
optical-frequency atomic dipol'es, or as the con-
sequence of momentum conservation in the absorp-
tion and reemission of light by the atoms. The
total. force has three distinguishable components,
resulting, respectively, from absorption, spon-
taneous emission, and induced emission. The
first two of t;hese'*2 have together been called the
scattering force, and are the only forces present
for plane-wave radiation. Spontaneous emission,
by the symmetry of its angular distribution, con-
tributes only to the fluctuations of this force com-
ponent. , The third force component3 6 is dispersive
in nature, and, below resonance, results in an
attraction of the atom toward regions of higher
field intensity. It has been called the dipole force,
and is the near-resonance form of electrostriction
in a gas.

The term resonance radiation pressure has been
used, heuristically, to denote these forces. Among
early proposals for their use were suggestions ' ".

for confining atoms to restricted regions of space.
The concept of optically cooling atomic motions by
resonance radiation forc es led to proposals ' ' of
spatial traps for atoms in which their temperature
could be cooled to -(10 3-10 ') K. Such a trap
would render the atoms available for long times
for spectroscopic studies or other novel experi-
ments.

In this work w e consider the motion of atoms
situated in optical resonance radiation traps. %e
derive the radiation pressure forces, their veloc-
ity dependence, and their quantum fluctuations in
a. consistent way starting from fundamentals. The

calculations yield new results on both the velocity
dependence and quantum fluctuations of the force
and lead to some new insights into the overall
trapping problem. The average scattering force,
by conservation of momentum, is in the direction
of the incident wave vector. It has been detected
in atomic-beam-deflection experiments~ ' ' and by
the generation of significant pressure differences
in atomic vapors. ' The strong velocity dependence
on this force has led to the concept of optical
cooling or damping. If the frequency of the light
is tuned below resonance, then any atomic motion
either toward or away from the light beam results
in a sizable Doppler shift leading to an incremental
force opposing the motion. The idea of optical
cooling was proposed independently within the con-
text of ion trapping. '3 Experimental cooling of ions
held in electromagnetic traps has recently been
observed. '4'5 The average dipole force is directed
a)ong the gradient of the optical field intensity and
is dispersive in character, being in the direction
of the gradient when below resonance, and in the
opposite direction when above resonance. Dipole
forces have recently been observed experimentally
in atomic beam focus ing and def ocus ing exper i-
ments. ' In a somewhat different context, non-
resonant dipole forces have been invoked~7 to ex-
plain observations on the distortion of liquid sur-
faces by radiation pressure. ' For the resonance
radiation forces on atoms the effect of saturation
and tuning must be considered2'6 to obtain the
greatest force for a given power.

Many uses have been suggested for radiative
forces on atoms, such as velocity selection, 2

isotope separation '~"~'~ production of trans-
versely cooled or axially slowed and confined
atomic beams, ' and acceleration of neutral atoms
to high velocity. 4 Transient dipole forces also
exist for light tuned to exact resonance if the atom
interacts with the f ield for times short compared
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to the natural lifetime. ~ Atomic-beam deflec-
tion has recently been observed under these cir-
cumstances. Analogous effects have been seen in
the deflection of molecular beams by resonant
microwave electric fields. 23 e shall, however,
restrict our present discussion principally to the
initially mentioned application of optical trapping
and cooling.

Basically an optical trap consists of an optical
field configuration5'~'~ with a point of stable equi-
librium such that any displacement of an atom from
this point results in an average restoring force.
The maximum kinetic energy (at the equilibrium
point) of an atom that can be confined in a trap is
defined as the well depth. An important aspect of
such traps is the fact that the trapping forces have
fluctuations due to the quantum nature of the inter-

'
actions. These fluctuations constitute a source of
heat. In the absence of cooling this will result in
a finite retention time for atoms introduced into
the trap. The fluctuations due to the scattering
force can be readily appreciated on intuitive
grounds. "9'4 Recently evidence on heating due
to the scattering force was observed experimental-
ly. 5 Fluctuations in the dipole force28'9 are con-
ceptually more difficult to understand and have not
until now been adequately considered in the context
of traps.

The heating of atoms by fluctuations must be
counteracted by cooling if atoms are to be retained
in the trap. Indeed the equilibrium kinetic energy
of an atom in a trap results from a balance of the
fluctuation heating and the degree of optical cooling
that exists. The effectiveness of a trap in con-
taining an atom is determined by the poltzmann
factor given by the ratio of the well depth to the
equilibrium kinetic energy. In practice we seek a
low average kinetic energy for trapped atoms and
a large Boltzmann factor.

Letokhov et al. ' proposed trapping atoms in large
volumes on the standing wave maxima of 3 ortho-
gonal pairs of standing waves tuned -I'/2 below
the atomic resonance, where I is the radiative
decay rate of the atom, the reciprocal of the
radiative lifetime 7; This tuning gives optimum
damping and results in a minimum kinetic energy
-SI'. Unfortunately this trap has a well depth
which is also ™5I'giving a Boltzmann factor of
about unity. Thus thermal excitation out of this
trap is probable and the trap is very leaky. The
traps proposed by Ashkin et al. ' are based on
strongly focused Gaussian beams tuned
-(102-103)I' below resonance. In this way traps
of depth -(102-10~)gi' are achieved but at a price
of much reduced damping. In fact, the Boltzmann
factor is again -I. However, it has been pro-
posede to use additional optimally tuned damping

beams with these focused beam traps with the in-
tent of simultaneously obtaining trap depths of
(102-103)jgl' and minimum temperatures -gI' to
give highly stable traps with Boltzmann factors of
100 or more.

Currently the outstanding conceptual problems
remaining for the understanding of optical traps
for neutral atoms are the questions of the magni-
tude of the fluctuations of the dipole force and the
viability of the concept of separate trapping and
damping beams. In the earlier estimatess'~ of
minimum kinetic energy the contributions of the
dipole force fluctuations were neglected. One of
the principal results of this work is a quantum-
mechanical calculation of the dipole fluctuations
exact to arbitrary field strength. The results
show that these fluctuations can often be large. In
standing waves dipole force fluctuations make a
contribution which in the absence of saturation ef-
fects is the same size as the scattering force fluc-
tuations. Interestingly, their spatial variation is
such that when added to the scattering fluctuations,
there results a velocity diffusion constant which is
independent of position in the standing wave. In
Gaussian beam traps and at high powers dipole
fluctuations can exceed the spontaneous scattering
force fluctuations. Fortunately, however, condi-
tions exist in the Gaussian trap of Befs. 6 and 9
where the dipole force fluctuation can be neglected
relative to the scattering force fluctuations. This
paper draws no new conclusions about the problem
of using separate trapping and damping beams.
However, we develop the whole subject of cooling
and heating in a unified way and give some new in-
sights. For example, a new calculation is given of
the damping for a standing-wave field as a function
of position, correct to all intensities, for low
atomic velocities. An important aspect of this
result is that the damping varies with position and
is zero at the maximum of the standing-wave fields
where atoms are expected to collect. This repre-
sents another complication for single-frequency
standing-wave traps as proposed in Ref. 5. Al-
though an atom can be viewed as a simple harmonic
oscillator (SHO) only when saturation effects are
absent, it is shown that a single beam trap is
capable of stably trapping a SHQ. This result at
least shows that nature does not necessarily abhor
an optical trap. Finally, our estimate of the mag-
nitudes of the dipole and spontaneous force fluctua-
tions point out a new experimental possibility.
This involves an estimate of the retention lifetime
of an atom put into a single beam trap in the ab-
sence of significant cooling. It is shown that by
working at sufficiently low saturation and with
low dipole fluctuations, lifetimes of many seconds
are possible for deep traps using reasonable opti-
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cal powers. This implies that an experimental
demonstration of trapping is not contingent on
cooling. Cooling can then be studied subsequently
by the addition of separate damping beams, for
example. parenthetically, one further important
use of traps may be as an experimental probe for
the study of the fluctuations of the radiation pres-
sure forces themselves.

The approach used in our calculation of the force,
its velocity dependence, and the atom's momentum
diffusion is to treat the interaction of the optical
radiation field with the atom's momentum quantum
mechanically. The quantum treatment of f ield and
momentum is only necessary in finding the force
fluctuations. That, however, being a needed re-
sult, the quantum treatment is.used throughout.
Two approximations are used. First, we treat
the atom's position as a classical variable. gn the
case of sodium, or any comparably heavy atom,
this approximation is justified by its small de
Broglie wavelength, which amounts to only 0.03
p, m for sodium atom whose kinetic energy is of the
order of the natural width gp of its resonance level.
For sodium, I =(16.1 nsec) '. Alternatively one
can appeal to IIeisenberg's uncertainty principle,
which implies that if an atom's position is defined
to -x/2w, its momentum uncertainty is equal to
that occasioned by the random scattering of one
photon. As we are concerned here with the cumula-
tive eff ects of the scattering of many photons, the
neglect of an equivalent few more should have no
major consequence. Second, we treat the velocity
as small. , retaining effects only to first order in
v. Jn context, the reason for this is that atoms
caught in an optical trap must be moving quite
slowly. Again using numbers typical of the
sodium resonance line at 590-nm wavelength, the
trap depth might be of the order 103@+. A trapped
atom with, say, one tenth of that energy would have
an effective kinetic temperature of about 0.02 K,
and would travel, at most, about 0.1 p, m in one
lifetime. This being a small fraction of an optical
wavelength, it is appropriate, indeed desirable,
to treat the atom as moving slowly. A symptom
of such slowness is that the Doppler shift caused
by the atom's motion is less than the natural width.

CALCULATION OF THE FORCES AND MOMENTUM
DIFFUSION

In the electric-dipole approximation the force
of radiation on a neutral, slowly moving atom is
given by

f,. =g aE/Bx, ,

where p, is the atomic dipole moment, E is the
electric field, and f, is the'ith Cartesi'an compo-

nent of the force. Expression (1) includes both
the force the electric field exerts on the dipole
and that the magnetic field exerts of the associated
current.

The force (1), and all the other quantities we
need may be derived from the dipole Hamiltonian
function,

=Hf„u +H„,m —O' E( ),
where

Hf' M
= (E +H )dV

1

(2)

and

where the new E contains the &'positive"-frequency
part of the field, and represents an energy-lower-
ing operator, while p, has been similarly expanded
according to

p, = p, &2oe
'" + p, 2&a ",

where p, ,2 is the dipole matrix element connecting
the two pertinent atomic levels, and o is the
lowering operator for the atom. The operators
E~ and 0 ~ are the Hermitian-conjugate energy-
raising operators. In the dipolar energy (3), we
have kept only the secular, or energy-conserving,
terms, and have arranged them in normal order
(lowering operators to the right). The explicit
carrier frequency e is added for later convenience.
For a monochromatic applied field, e will be
chosen as the field frequency.

%e now wish to find expressions for the mean
force on the atom, the first-order velocity de-
pendence of that force, and finally the two-time
autocorrelation function of the force, which de-
termines the momentum diffusion constant. The
first two of these require only semiclassical
theory, but the last requires that we stay with
the quantum theory. %e shall be working in the
Heisenberg picture, where the operators are time
dependent, satisfying the equations of motion

H„. =-P'/2M+Re, o».
In (2) g is the atomic dipole moment, E is the
electric field of the radiation, H the magnetic
field, and cr~2 is the projection operator for the
upper atom level. Also p is the atom's momen-
.tum, x its position, and M its mass.

5 we deal with sharply resonant two-level atoms,
we can approximate the dipolar energy term by

u E=(I &2 E')o+o'(f2& E). (3)

Here the total field E has been expanded according
to

Ee-g~t + Eg tet
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dO/dt =-(i/1)[O, X] . (4)

O'22 ~

(Note off+o22 1.) Using the operator relations

oaoai =ogr6(j~k) ~ (8)

where a&2—= o, o2&=o', and 6(j,k) is the Kronecker
delta function, we gain from (4) the usual equations
of motion

o —iQo = (i/K)D(p2& E),
and

D =(2z/k)[(j E~)o —o~(p E)]
where -=or —+0 is the detuning of the atomic
resonance frequency mo from the chosen m. Next

Here the square bracket represents the commuta-
tor, and the (constant) quantum state of the system
is prescribed at some appropriate initial time.
Note that, e.g. , oe '"' represents a Heisenberg
operator. Using (2), (3), and (4) we can im-
mediately write down the equation for the force on
the atom, namely

F-=dP/dt = -grad(3e)

=o' grad[ p2, .E(x)] + H.c. , (5)

where H.c. represents the Hermitian-conjugate
operator. Note that (5) has the same form as the
classical equation (1).

The next step, solving for the field at the atom,
is plagued by the usual difficulties of quantum
electrodynamics. However, if we can approximate
that field by the sum of the external field and the
radiation reaction field, assuming that the effect
of the divergent local dipole field can be suitably
renormalized into the excitation energy of the
atom, our purpose is served. Thus we assume
that E(x) can be developed as

E(x) =ED(x) +i ', k~p(2-c, , (6)

where E'(x) is the free external incident fieM, and
the other term is the local reaction field, with 0
=u/c, where w is the frequency of the atomic
dipole. BecaBing that the reaction field has no
gradient at the atom's position, we note that it
does not contribute to the force (5). Hence we:can
write

io' gr-adG + H.c.,

where

G—= ip, 2$ Eo(x, t)/8.
We now turn to the equations of motion of the

atomic operators. I.et o«be the projection opera-
tor for the lower atomic level, and D be the popu-
lation difference

we make the reaction field approximation (6), to
obtain [using (8)]

c + (I"/2 —iQ)o =DG

(9)

where

g =iq». E'(x, t )/I=«&.
Here the complex conjugate (~) has replaced the
Hermitian conjugate (~) of (7) and (9), and we
have with a minimum of complexity obtained the
appropriate semiclassical equations with damping.

If we represent gradg by

gradg= (n+ip)g,
where n and P are real (Note: if g=ue'~ with u
and Q real, then Z=gradlnu and P =grad/) then
the force equation expands to

(12)

(f) =n[ih(g (o) -g&o& )]

+IIP(~'&c&+g&c) ). (13)

In (13), the coefficient of o. is the negative of the

D + I D= I' —2(G~o +o~ G),

where 1 = (4/3k)k'( p, ,2 ~' is the usual expression
for the natural radiative decay rate of the atom.
Note that the operator order in Eqs. (9) has be-
come important, for while E(x) commutes with o'
at the same time, for example, as they represent
different physical entities, it is evident from (6)
that the external field Eo(x) (and hence G) does not.
The reason for choosing normal ordering will
surface in, . the next paragraph.

I.et us now consider the quantum expectation
value of (7) and (9). We may represent the initial
state of the system by a Dirac ket j S&, or some-
times more simply just by) . The quantum ex-
pectations of (7) and (9) are then just those equa-
tions surrounded by angular brackets, as in abc-&abc) . If the initial field is the coherent state
JE'(r)) we can.apply the well-known result that

E'(r, t) IE'(~)& = IE'(r)&E'(r, t), (10)

where E'(r, t)e '"' represents the classical field
satisfying the vacuum Maxwell equations and
having E'(r) as its initial value. We use r to
represent any point in space, and x to represent
the atom's position. Thus, because of the normal
ordering of Eqs. (7) and (9), if we assume the
above initial coherent field state, we achieve the
following equations

&f) = —it[& o) ~gradg —(o) gradg ~],

&o& + (I'/2 —iQ)(o) =(D) g, (11)

&D&+ I'&D) = I" —2(g "&c& +g&o& '),
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expectation value of the dipolar interaction energy;
i.e. , ( p,

.E ) if we use (3). This is the dipole
force familiar also for dc fields. The coefficient
of @P is the absorption rate, as may be seen from
the third of Eqs. (11). This is the force component
usually called the scattering force.

If the external field E'(x, f )e '"' is monochro-
matic, of frequency v, and the atom is motion-
less, then E' and hence g is independent of time,
and the stationary solution of (11) is

This modifies the solution of (11). We can obtain
an expression for the force accurate to first order
in the velocity by taking the time derivative of the
zero-order solutions (14), using (16), and then
using these first-order results for (o) and (, D)
to re-solve Eqs. (11) to first order in v. We find
thus

2P
(D) '= — (v n)(D&,1+P

(o& =8/[r(I+ p)1,

(D&=(I+P) ',
where

y-=«2- Q p-=24 l' /lyl'
and the force, from (13), is

(f) =AP(1+P) '(- Q n+ I'P/2).

(14)

(15)

(t))=((v v) +((v. T)))(v),

and it is then straightforward to solve Fqs. (II)
again to find the modified force. In the simple
case of a plane wave of wave vector k, we have
e = 0, P =k, so that in this case the only change
in Eq. (15) is the Doppler shift Q- Pi —v. k. This
change modifies P. Then to first order we find

For the same monochromatic field as above, we
have, using (12),

8 =v. (a+iP)g . (16)

The quantity p is called the saturation parameter.
From (15) we can demonstrate that the scat-

tering force is associated with spontaneous emis-
sion, the dipole force with a coherent redistribu-
tion of the incident field due to stimulated emis-
sion, The stationary upper-state probability (o22&
=P/[2(1 +P)]. Hence one may express the scat-
tering force component as

( f), , = I'( o„)SP.

This evidently may be regarded as the result of
removing quanta of average momentum kP from
the incident external field at the same rate that
the atom is undergoing spontaneous decay. The
dipole force by contrast depends on the detuning
0 as well as on the excitation of the atom. It must
therefore depend on the phase relationship between
the mean dipole p, &~( o& and the external field E'.
It may be regarded as the result of the redistribu-
tion of field momentum caused by coherent inter-
ference between the emitted field of the dipole and
the outgoing waves of the incident field. For ex--

ample, an atom below resonance (negative Q)
sitting in a focused Gaussian beam is pulled toward
the beam focus by the dipole force because the
atom acts rather like a weak positive lens. The
"light scattering" involved in generating this force
is the intrabeam coherent forward scattering.

Now we examine the first-order velocity de-
pendence of the force. A moving atom experiences
a modified field since

dE'(x, t) BE'(x, f) + (v. grad E'(x, f ).

(f& =up(I+p)-'(I /2)kl I+
~r~'(I+P) (17)

I' (1-p) —2p lylx 1+ 2 2 v ktan
I'1yl I+P

(18)

Here P represents the local value of the saturation
parameter, or P=4P, cos2(k. x), where P, is the
saturation parameter corresponding to one of the
two oppositely directed traveling waves that com-
prise the standing wave. For small values of po,
the force reduces to

(f) =MkPOQ(sin(2k x)

+ (1'/lyl )v k[1 —cos(2k. x)]) .
Our result (18) is consistent with a derivation2' of
the first few spatial Fourier components of the
force, which were derived for all velocities. ln
particular, we checked that the spatial averages
were the same to first order in the velocity at all
intensities. Two things are noteworthy about (18).
First, the velocity-dependent force vanishes at
the standing-wave maxima (e.g. , at k x=0),
exactly where one might expect trapped atoms to
accumulate. gn addition, there is a sign reversal

For negative ~, this velocity dependence damps
the motion of the atom along k, a necessity for a
stable trap. Note that the damping force is maxi-
mized for P =1 and Q = —I'/2. Another relatively
simple case that has been examined in the litera-
ture is the case of a pure standing wave. For this
case we have in (12), g=2gocos(k x); whence
P =0, o = —ktan(k. x), and we obtain after some
algebra the result

I

(f) = [Qktan(k x)]
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where the second line results from f =dp/dt, and
the third from expressing p as the time integral of
the force. Note that the product of two Hermitian
operators is Hermitian only if they commute,
which p and f do not. The time zero is arbitrary,
and the time minus infinity is an exaggeration,
since the autocorrelation of the force lasts only
for the order of the atomic lifetime I' . For
quasistationary conditions, we can advance the
time arguments of the integrand by It I

obtaining
equivalently,

Dp=Re dt f 0' t
0

(2o)

A quantity written without a specific time argu-
ment is assumed to have its stationary equilibrium
value; and (f)2=(f) ~ (f) . Inserting (7) for the
forces, and using (10) we obtain the result

&f(0) f(t)) =tt 8o (0)a(t)+a(0)o'(t)& I (g»dg}'I
—

&
a' (0}a' (t)&(g»dg)'

—
& g(0)a(t)& (grad g')'

+ (o~(0)corn(0, t }a(t))}, (21)

of this force when P2/(I -P) = I'2/2 IyI2, which,
for large detuning IQ I» I', can have a quite small
value. Thus, for negative 0, which yields traps
at the standing-wave maxima (a desirable feature
since this also makes a trap for the directions
perpendicular to k), the damping which exists at
low intensities in the neighborhood of the maxima
reverses sign and transforms into heating at
rather small values of the saturation parameter P.
These features complicate the conception of
trapping atoms in a standing wave, as in Ref. 5.

We turn now to the investigation of the force
fluctuations, which ultimately determine how long
an atom will stay in the trap. We assume a mono-
chromatic field, negligible velocity, and quasi-
stationary conditions. We seek the value of the
momentum diffusion constant 2D due to the quan-
tum fluctuations of the force. It is given by

2&, =(d/dt)(&p' p& -&»'&p&)

=2Re(&p f&-&p& ~ &f&)

0
= 2 Re dt [(i (t) f (0)) —&f(t)) ~ (f (0)) ],

(/A}~ I'&o22) 6 (t}, (22)

and indeed this result can be modeled by the
random instantaneous emission of quanta of mo-
mentum }fan at an average rate I'(o22&, as one
might expect.

The remaining terms of (21) encompass the ef-
fects of the external field gradient interacting with
the atomic dipole fluctuations, and constitute the
same result one would obtain from a semiclassical
theory. The autocorrelation times involved are,
as we have mentioned above, of the order of the
atomic lifetime, and their modeling in terms of
the emission and absorption of quanta is not at all
obvious. To proceed with the evaluation, we see
that we need quantities such as

N=- dt g~ 0g t — 0~ o
0

(23)

Suppose we have solved the set of first- moment
equations in (11) for arbitrary initial conditions to
yield a result of the form

( g(t)) =ao(t ) + ay(t)& a(0})

+a (t)(a (0)) +a (t)(D(0)) . (24)

One can show by study of its equation of motion2
that the quantity (a~(0)o (t)) has the similar solu-
tion

& '(0} (t}&= 0(t}& '(0))+ i(t)& '(o) (0)&

+a, (t)(o'(0)a' (o)) +a, (t)& o (o)D(o))

=[ q(t) +as(t)](o"(0)) +a)(t)(@22(0)) .
(25)

The solution for N that we seek follows from in-
sertion of (25) into (23), yielding

be used. One can show that the field gradient
operators commute with the atomic operators at
all times.

Consider first the final term of (21). It is the
only term which depends on the quantum fluctua-
tions of the field (i.e. , on a field commutator).
Qne would thus expect it to yield the effects of
spontaneous emission. The quantity corn(o, t) is a
free field commutator; its value, casting out a
possible high-frequency divergence as usual, is

corn(0, t ) =021"6(t) .
The last term of (21) thus reduces to

where N = (A0+A3)&a~& +Ai&g22&, (26)

corn(0, t ) =- gradG (0) ~ gradG~(t)

—gradG ~ (t) ~ gradG(0) .

The last term of (21) arises upon rearranging the
field operators into normal order so that (10) may

where

dt a] t — o 5i 0, i =03.
0

(27)

The other terms of (20) may be treated similarly;



1612 J. P. GORDON AND A. ASHKIN 2}

we obtain thus

2D& ——2A2 Be[ (2AO(v~) +A&) l(gradg)' l

+ (2Ao(a) +A~) (gradg ~)~]
I'+Py 2g

yi'(I+&) '
lyl I'(I +P) (29)

+ (Ak) I (@~2), (28)

The quantities A,. may be conveniently found by
taking and solving the I aplace transform of Eqs.
(11),. One finds thus

Finally, using these results, along with the sta-
tionary values (14) of the atomic variables, and
using (12) for gradg, we obtain the final result

2

+28'(n P)g, z +P + (kk)'I

%pe now have in hand the quantities necessary for discussion of trap stability.

(30)

DISCUSSION OF THE DIFFUSION CONSTANT

2'= ~h21'P(k + o.'+ P~)

= k'1(o») (k'+ o'+ P'), (31)

We see here three terms, each associated with
one of the elementary processes, absorption (P2),
induced emission (o2), and spontaneous emission
(k2). The spontaneous-emission term can be
alternatively associated with the interaction of
the semiclassical dipole (note that for small P,
(o») = l(o) l2) with the zero-point field fluctuation,
while the other two terms may be similarly as-
sociated with interaction of the semiclassical field
gradient (recall that n2+ p~ = lg 'gradgl ) with
the zero-point dipole fluctuation. In this regard
we note that

(~ 7) =
I ~i~l'(o "o+«'& = l~i21'

independent of the state of the atom. Thus an atom
even in its ground state has a substantial random
dipole moment which gives rise to a random force
in interaction. with the external classical field
gradient. Another view may be had by noting that
a weakly excited two-level system is indistinguish-
able from a one-dimensional harmonic oscillator,
whose zero-point fluctuation can interact with the
external field gradient. In passing, we remark
that calculation of the diffusion constant for a one-
dimensional harmonic oscillator yields exactly
(31), with (o») replaced by (n), the mean excita-
tion number of the oscillator.

The above result for the diffusion constant has
some properties which are at first sight somewhat
surprising; hence it merits some discussion. For
small excitation of the atom (to first order in the
saturation parameter P) we find

An interesting and perhaps somewhat unexpected
aspect of (31) occurs when the atom is in the
presence of several beams of radiation of the same
frequency but diff erent directions. In particular,
consider the standing-wave case

g = 2gp cos(k x) .
Then

g = 0, n = —k tan(k x),

Dq= (kk) I'po,

where po = 2 lgo l2jlyl2 represents the saturation
parameter corresponding to a single one of the two
associated traveling waves. We see that the diffu-
sion constant is independent of the atom's position
in the standing wave, even though the field strenth,
excitation of the atom, and mean force are strong-
ly position dependent. The explanation of this
curious behavior we have noted above; that is, in
the field minima the diffusion results from the
interaction of the zero-point dipole fluctuation
with the large gradient of the external field ampli-
tude. Further, we see that in this approximation,
the diffusion depends only on p„hence if we hold
P0 fixed while increasing lQ l, we can increase the
depth of the sinusoidal potential while the diffusion
constant remains unchanged. This is encouraging
with regard to trapping atoms, but fortunately does
not ensure a stable trap, because the damping is
reduced as ln l

increases.
The other particularly interesting feature of (30)

is the term proportional to n2p4(1+p) 3, which
becomes dominant at large P. It is the only term
which does not saturate or decrease for large P.
Thus, if p»l, and Q. WO we find,

2D -2a'~'plyl'jl =4a', 'jgl'jl (32)
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It is noteworthy that this term can contribute
significantly to the diffusion constant even for
small p when the detuning 0 is large. Thus it
merits careful consideration in constructing a
trap. Its proportionality to g shows it to be as-
sociated with the dipole force.

At large P we can understand (32) by a not-too-
complex argument. In this limit, the atom is
strongly coupled to the externally excited field
mode, and it is appropriate to consider the atom
and that one field mode as a single quantum sys-
tem, according to the picture of the «dressed"
atom. 29 This system has two quasistationary
states, in each of which the atom has an equal
mixture of upper and lower levels, with its dipole
p,2(o), respectively, in phase with and in opposi-
tion to the field, giving them equal and opposite
interaction energies a

l p, 2
~ E'

l
and thus equal and

opposite dipole forces. Each time this system
spontaneously emits a photon into one of the un-
excited field modes, the atom of necessity finds
itself in its lower state, and thus in an equal mix-
ture of the above two quasistationary states. Thus,
after each spontaneous emission event the atom is
forced randomly in either direction by the field
gradient, the same steady force persisting until
the next decay. Finally, the spontaneous decay
rate of each quasistationary state is I"/2, since
in each such state the upper atomic level proba-
bility is —,

' 'and the spontaneous emission rate is
always proportional to the upper level probability.
On this basis one can calculate the resulting dif-
fusion constant. The interaction energies are

~& l~l,
hence the forces f areak gra%l =ahnlgl. The
diffusion constant from (19) is

2D&
——2 dt f t. f 0

where we have used the fact that the forces are
real. To make the required average we observe
that the force is constant between decays and
takes a new random direction at each decay.
Thus 2D& reduces to

2' ——2f ~( t„),
where —t~ is the time of the last spontaneous decay
prior to time zero. Since the spontaneous decay
rate is I'/2, we have (t~) = 2/I', and hence

2D =4f /I'=41 (y lgl /I'
in exact agreement with (32).

In conclusion of this section, we will risk some
remarks concerning the photon concept. It is most
precise, and often useful, to think of the mo-
mentum exchange between atom and field as oc-

curring in quantum units @k. In the present case
one can nicely understand the scattering force and
its associated fluctuations in such terms. How-
ever, the dipole force and its associated fluctua-
tions cannot be simply understood on this basis;
in particular, our heuristic picture of the fluctua-
tions in the high saturation limit invokes a steady
force giving many @k of momentum to the atom,
intetvmPted by the spontaneous-emission events.
The photon concept does not seem particularly
helpful in understanding this part of the force on
the atom.

IMPLICATIONS FOR TRAPPING

(f)«, ———
grad[ (IQ/2) ln(1+p)],

so that

U= (hn/2) ln(l +P) .

(33)

This is called the trap potential. The mean scat-
tering force

(f)„,~ =AI'P(1+P) ~P/2 (34)

is nonconservative and must be offset by the
dipole force. As we -shall see, the trap param-
eters may be chosen so that the mean scattering
force is negligibly small. Thus for negative de-
tuning 0 (i.e. , below resonance) atoms might be
expected to collect at the positions of the field
amplitude maxima.

The important question is then how long a
trapped atom, subject to the fore e fluctuations,
will remain in the trap. g sufficient damping
could be obtained, a stable trap would ensue, but
as we shall see, any simple single-frequency trap
is unstable for a two-level atom. We shall return
to the discussion of damping below. Neglecting
the effects of damping altogether, it turns out that
it should be possible to keep an atom in the trap
for a considerable time, of the order of seconds.
Define the trap depth Uo as the maximum of l Ul,
l.e. )

U, = lUl-'
Also, let W be the energy of the atom relative to
the bottom of the trap; i.e. ,

W= Uo+ U+P /22M.

A trapped atom gains energy due to the force
fluctuations, so that, in the absence of damping,

d W/dt =D,/tif .

Vfe are now prepared to consider the problem of
trapping. First we note that the mean dipole force
[from Eq. (15)] may be written as the negative
gradient of a potential U.~ Since gradP =2', we
have
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The residence time T of an atom in the trap is
thus of the order of

7 = Uo(dg/dt) =MUO/(D~)~, „.
The use of (D&),„here, rather than some more
accurate average, makes this a conservative esti-
mate. It turns out that the optimum value of p is
always very much smaller than unity, and the
optimum detuning is always very much larger than
1 . If we define a normalized detuning parameter
by

(36)

then we can here approximate p «1 and q» 1. In
the small P approximation, we find for the trap
depth,

that so long as the e q P term in the diffusion
constant, remains small, the trap lifetime is pro-
portional to (I !Uo), whereas if the n2q2P~ term
becomes dominant, the proportionality changes to
(I2 /Uo) and the making of a deeper trap becomes
very costly. Recalling that gradP =2nP, we ob-
serve that a is inversely proportional to the trap
dimension; hence smaller traps are limited to
smaller depths.

To get an idea of the numbers involved, we will
look at two types of traps that have been proposed,
namely a standing-wave trap and a traveling-wave
Gaussian beam trap. For the former, we consider
only longitudinal trapping in the standing-wave
maxima. Recalling that here the atom field cou-
pling has the form

U,/kr =qP. /2. (37) g = 2go coskx
~

We want this quantity to be reasonably large com-,
pared to unity, which shows immediately that for
small p, the detuning q must be large. We now
need a suitable approximation for D~. For small
P, we need keep from (30) only the terms linear
in P, and the potentially troublesome n P term.
Thus, when q»1, p«1,

2D, =(k'rp/2)(k'+ n'+ p'+4o. 'q'p') . (38)

P(1+4q2) =I/I, ,

where

I,=kv rk /12m =6.29 mW/cm,

(39)

where the evaluation30 is for the case of sodium.
For q» 1 we have

4Pq'= I/I, . (40)

Using expressions (37) and (40), we can express
P and q in terms of the trap depth and the light
intensity I at the bottom of the trap. In particu-
lar,

q = (I „/4I,)/(2U, /I r),
P = (2'/8' r)2/(I /4I~),

and (41)

It is helpful to note how the residence time de-
pends on the parameters describing the trap, par-
ticularly the light intensity, trap depth, and trap
dimension. If we define intensity by

I = (c/4w)E2 = (c/2v) ~E' ~2,

which is the same as the poynting vector for a
plane wave, then one can demonstrate for a free
atom the relation

where go is the magnitude of the coupling constant
corresponding to a single traveling plane wave, we
have

q = 8 x 10', p, = 6 x 10-5,

T =2q(M/Ak2) = 5 sec.
(44)

The detuning required is about 270 cm ', or about
1.6% of the 3p state energy. For this trap there is
no average scattering force, so its negligibility is
ensured.

The other pertinent example is the traveling-
wave Gaussian beam trap. Assuming the beam is
focused at the origin, and travels in the x direc-
tion, we have now3'

p =4pocos2kx, a = —kx tankx, p=0,
where x is the x directed unit vector, so that (38)
becomes

2D~ = 2(k k)~ 1'po(l + 256q2p03sin~kx cos6kx) . (42)

The maximum value of sin28cos88 is f22M, occurring
when cos 8= ~. Thus the p&~term will begin to be
in evidence when I using P =4P„ I =4IO, in
(41)l

27q po ——27(UO/2k I') 4/(I0/I, ) ~ 1,
(43)

pg (Uo/k r) & Io/I, ,

where Io is now the intensity of one of the traveling
waves that comprise the standing wave. Thus for
(Uo/kr) =100, we need Io2 1 MW/cm2 for sodium
to avoid the effects of the troublesome dipole force
fluctuation term, but we then have

I
using (36),

(41), and (42)]

q'p'„= (2U,/kr )'/(I „/4I,)'.
One can observe, then, from (35), (38), and (41),

g =go(b/is) exp[ik (x +~'/2s)],
where

(45)
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s =x —ib r 2 =y2+z2,

and b is the confocal length. Then, one has

p=p [b /(b +x2)J exp[ —kbr /(x2+b )J (46)

proportional to velocity damps the atom's motion.
If the components of the damping force may be
expressed in terms of a damping tensor y, & by

f) ———M Q y)~v~,

2D = (kk)'I'P(1+2n'k 'q'P~) (48)

The quantity 2n k 2q2p3 of (48) maximizes at x =0,
r2=b/3k, where it equals 2q2P0~/3ekb. Thus cor-
responding to (43), the P term will in this case be
n.egligible if

(2/3skb)(2UO/a r)4 & I,/4I„

and if kb»1, then to good approximation,

P=kx, n = —(xX +kbrr)/(x2+ b2) . (47)

In evaluating the diffusion coefficient (38) for this
case we can ignore e P with respect to the other
terms, leaving

then the equation of motion of the energy p" may
be expanded from its from (35) to read now

dW/d&™ U0/T MQ-y))v)v).

If the trap can be so structured that the velocity
distribution remains nearly isotropic, then we
may average over directions to obtain

d W/df = U,/T —2y(E,), (51)

where y =p y&,./3, and (Ez) is the kinetic energy.
If we further assume that (E~) = g/2, as it is for a
harmonic potential well, then we find the relation

or, approximately

(16/kb) (U,/n I )' SI,/I, . (49)

dye/dt = Uo/T —yIV.

If steady-state conditions come about, then

(52)

T = (m/kk2)q, (50)

a factor of two less than for the standing-wave
case for the same detuning.

%e can check that the mean scattering force is
negligible. From (33), (34), and (47), one finds
the ratio of the mean x-directed dipole force to the
mean scattering force to be

(f~, )„/(f, ,)„=—2qx/k(x2+b2).

This ratio maximizes at x =b, where it is —2q/kb.
If we are thinking of values of q near 10, then.

so long as kb ~ 104, the mean scattering force will
not be important.

The interesting point here is that the traps we
have considered, with light intensities of 1 MW/
cm2 or greater and with depths of 10051' or
greater, can hold atoms for periods of several
seconds even in the absence of effective damping.

Finally, consider the question of damping. The
component of the mean scattering force which is

From this expression it is evident that somewhat
deeper traps may be obtained if the trap is less
sharply focused. Recalling from (43) that the 1/e
beam radius ceo at the beam focus is related to
b by

kb = (kazoo)2 .
we see that we can gain trap depth in proportion
to the square root of the beam radius, but of
course only at the expense of a less localized
trap. For comparable light intensity and fairly
tight focus, one sees that the trap depth and resi-
dence time are comparable to the standing-wave
case. In the present case

W/Uo ——(yT) =D~/MyUD. (53)

Thus, the trap will be stable if (yT) & 1, and un-
stable otherwise.

It is quickly evident that a single beam trap is
unstable. Consider the Gaussian beam trap. The
damping is very nearly that for a plane wave;
hence, for an x-directed beam, picking out the
velocity-dependent term from (17), we find (for
P «1)

gk2 Pq
Mq+—

Using (37) and (48), there results

yT =-', P(1+1/4q') '«1, P«1.
' Hence in traps withP«1, as in the example dis-
cussed above, the damping is ineffectual. An at-
tempt to increase yT by increasing P (with U~

~Pq = constant) fails, for while y« then varies as
p2, so does D~ (and hence T ') after its q2p4 term
becomes dominant. Similar arguments pertain to
the standing-wave trap. Thus while single-beam
(really single-frequency) traps can contain an
atom for a sufficiently long time to envisage ex-
periments, they are essentially unstable.

Vfe have proposed9 the idea of stabilizing the
trap by using one or more additional light beams,
tuned closer to res6nance, whose sole purpose is
to damp the atomic motion. It turns out that
nature has pgt an obstacle in the way of this solu-
tion, namely the dynamic Stark shift of the damping
beam's resonance as the atom moves around in the
trap.

To examine this idea, we suppose that in addi-
tion to a Gaussian trapping beam, whose param-
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eters will now be labeled by the subscript t, there
is also a damping beam (subscript d) tuned closer
to resonance. If both saturation parameters are
small, and the damping beam is not strongly
focused, then the damping due to the trapping beam
and the trapping due to the damping beam can both
be safely neglected. The only signif icant interac-
tion between the two beams is the dynamic Stark
shift.

The important parameters of the two-beam prob-
lem are thus

Uo ——k I'q~pt/2,

y =Kk P~q~/3M(q~~+ —,'),
2D~ ——(kk) l (P, +P„),

where we must add the two beams' contributions
to the momentum diffusion, and the detuning pa-
rameter q„of the damping beam is subject to the
Stark shift. With these values, we find for the
equilibrium energy [see (53)]

W/k r. = D,/Myn r = &(f, +p, )(q,' + .'}/&P,q, . -
If p~»p„ this expression reduces to

W/O'I' = 2 qg+ 4 (
~

1 )
(54)

4q„]
Without the effects of Stark shift we could quickly
minimize this by setting q„= —,', thus maximizing
the damping and obtaining an equilibrium energy of
the order of 5I'. The Stark shift, however, has
the following effect. As an atom of energy W (with
respect to the bottom of the trap), moves in the
trap, it encounters changes in the potential equal
to 9&. Now for small P„ the Stark shift of the
resonance as seen by the damping beam is just
twice the potential U; that is

q, =q„2U/k r, -
where q« is the unperturbed detuning parameter.
Thus for a change in potential equal to g, the
change in q~ is

5q, =-2W/kr =-s~q„+(
4qg

where we have used (54). One sees that the change
in q~ occasioned by the motion of the atom in the
trap is larger than q~ itself, and hence the effect
of the damping beam is not at all simple. We have
shown that if only one dimension is considered, the
trap is still stable, because the damping is most
eff ective at the bottom of the trap, where the
atom's momentum is largest. For three dimen-
sions, that conclusion may not hold.

I.est one think that nature somehow will not allow
an optical trap to be stable, we remark that a sim-
ple- harmonic-oscillator dipole (SHO) can be
trapped even by a single beam. For the case of
the linear SHQ one takes the small p limit of the
theory, and then replaces

P - 2(n),

where (n) is the mean excitation number for the
SHQ. The results so derived are valid for any

(n) . For the Gaussian beam trap, we then have,
for q»1,

and the trap is stable for large (n). For a real
atom, however, we don't have the privilege of
large (n), and some clever methods are called
for. If the two-beam trap also turns out to be un-
stable in three dimensions, then there are several
possible ways to proceed. Qne can reduce the
Stark shift by a factor of 2 by using different
upper levels for the trapping and damping reso-
nances, so that only the lower level of the damping
resonance is shifted. In addition, or alternatively,
one might use a third beam tuned near a resonance
of the upper damping level to cancel the Stark shift
of the damping resonance.

Thus it would seem in principle possible to form
a stable trap for atoms. Obtaining the optimum
form of damping may take some experimentation,
but since the traps can contain slow atoms for
long times anyway, such experimentation would
seem feasible and worthwhile.

O. R. Frisch, Z. Phys. 86, 42 (1933).
A. Ashkin, Phys. Rev. Lett. 25, 1321 (1970).
G. A. Askar'yan, Zh. Eksp. Teor. Fiz. 42, 1567 (1962)
[Sov. Phys. —JETP 15, 1088 {1962)l.

A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 63, 1628 (1972)
[Sov. Phys. —JETP 36, 861 (1973)]; ibid. 66, 1599
(1974) [ibid. 39, 784 (1974)].

V. S. Letokhov, V. G. Minogin, and B. D. Pavlik, Zh.
Eksp. Teor. Fiz. 72, 1328 (1977) [Sov. Phys. —JETP
45, 698 (1977)]; V. S. Letokhov and V. G. Minogin,
Appl. Phys. 17; 99 (1978).

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).

~A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
8T. W. Hansch and A. L. Schawlow, Opt. Commun. 13,

68 (1975).
A. Ashkin and J. P. Gordon, Opt. Lett. 4, 161 (1979).

~ R. Schieder, H. Walther, and L. Woste, Opt. Commun.
5, 337 (1972); J. L. Picque and J. L. Vialle, ibid. 5,
402 (1972).
A. F. Bernhardt, D. K. Duerre, J. R. Simpson, and
L. L. Wood, Appl. Phys. Lett. 25, 617 {1974)."J.E. B~orkholm, A. Ashkin, and D. B. I carson, Appl.
Phys. Lett. 27, 534 (1975).
D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc.



21 MOTION OF ATOMS IN A RADIATION TRAP 1617

20, 637 (1975).
~4D. J. Wineland, R. E. Drullinger, and F. L. Walls,

Phys. Rev, Lett. 40, 1639 (1978).
W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Deh-
melt, Phys. Rev. Lett. 41, 233 (1978).
J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B.
Pearson, Phys. Rev. Lett. 41, 1361 (1978).

~~J. P. Gordon, Phys. Rev. A 8, 14 (1973).
~ A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 30, 139

(1973).
A. P. Kazantsev, Usp. Fiz. Nauk 124, 113 (1978) [Sov.
Phys. —Usp. 21(1), 56 (1978)].
R. J. Cook, Phys. Rev. Lett. 41, 1788 (1978).
R. J. Cook and A. F. Bernhardt, Phys. Rev. A 18,
2533 (1978).
E. Arimondo, H. Lew, and T. Oka, Phys. Rev. Lett.
43, 753 (1979).
R. M. Hill and T. F. Gallagher, Phys. Rev. A 12, 451
(1975).
A. Yu. Pusep, . Zh. Eksp. Teor. Fiz. 70, 851 (1976)
[Sov. Phys. —JETP 43, 441 (1976)].

5J. E. Bjorkholm, R. R. Freeman, A. Ashkin, and D. B.

Pearson, in Laser Spectroscopy IV, I'roceedings of
the Fourth International Conference, Rottach-Egern,
Germany, 1979, edited by H. Walther and K. W. Rothe
(Springer, Berlin, 1979).
A. P. Botin and A. P. Kazantsev, Zh. Eksp. Teor. Fiz.
68, 2075 (1975) [Sov. Phys. —JETP 41, 1038 (1975)].

~V. G. Minogin and O. T. Serimoa, Opt. Commun. 30,
373 (1979).
M. Lax, Phys. Rev. 129, 2343 (1963). The theory of
such two-time autocorrelation functions for driven
atoms was worked out in his study of resonance fluo-
rescence by B.R. Mollow, Phys. Rev. 188, 1969
(1969). See also H. J. Kimble and L. Mandel, Phys.
Rev. A 13, 2123 (1976), and references therein.
C. Cohen-Tamoudji and S. Reynaud, J. Phys. B 10,
345 (1977).
To get this number we assume that the sodium atom
is behaving like an oriented two-level system. Optical
pumping may in fact bring this about. Other cases
involve further complication, which we have not taken
into account.
H. Kogelnik, Appl. Opt. 4, 1562 (1965).


