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Infrared radiation in potential scattering
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Some time ago Bloch and Nordsieck, working in a model in which the spectrum of the radiation field is
cut ofF beyond some low frequency cubi, showed that the transition probability for scattering, summed over
final photon states, is approximately that which would be obtained if the interaction of the projectile with
the radiation field were neglected entirely. Here, within the context of a nonrelativistic treatment of the
scattering process, the sum rule is generalized through the inclusion of corrections of first order in co, . These
corrections can be interpreted in terms of a simple classical picture. In the course of the derivation, a low-

frequency approximation for the, transition amplitude is obtained which contains as special cases the
perturbative result of Low for single-photon bremsstrahlung and the more recently derived approximation
for scattering in a low-frequency laser field.

I. INTRODUCTION

Since charged-particle scattering is accompanied
by the emission of an infinite number of low-fre-
quency photons, a nonperturbative treatment of the
interaction between the projectile (an electron,
say) and the low-frequency. modes of the radiation
field is required in the construction of the asymp-
totic states. The appropriate asymptotic solutions
obtained by Bloch and Nordsieck in their funda-
mental treatment of this problem are built up from
what are now referred to as coherent states of the
radiation field. 2 Since hard photons can be ac-
counted for by ordinary perturbation theory, the
essential features of the infrared problem can be
studied in a model in which the electron-field in-
teraction vanishes unless the photon frequency lies
below some small limiting value, call it u&. For
mathematical convenience one restricts the fre-
quency range to (o() & co &(d&, with uo-0 at the end
of the calculation. The scatterer is represented
by a local, short-range potential. Working in this
model, and assuming (d& to be sufficiently small,
Bloch and Nordsieck derived a simple factorized
expression for the transition amplitude. One. fact-
or involves the initial and final coherent states of
the radiation field, while the other factor is just
the amplitude for scattering in the absence of any
interaction with the field. (The restriction to the
Born approximation in Ref. 1 was later removed
by Nordsieck. ) This result is not by itself partic-
ularly useful, since the field-dependent factor van-
ishes in the limit (do-0. It leads, however, to a
cross section which, when summed over final
states of the radiation field, is nonvanishing in that
limit and is given by the field-free scatteringcross
section.

The Bloch-Nordsieck approximation for the cross
section represents the leading term in an expansion

in powers of the limiting frequency m&. Here, using
a nonrelativistic description of the scattering pro-
cess, we extend this low-frequency approximation
by including the first-order correction term. It
turns out that the noteworthy feature of the Bloch-
Nordsieck sum rule, namely, that it involves the
cross section for scattering in the absence of the
field, is retained in the extended version. The im-
proved approximation for the transition amplitude
derived here represents a generalization of the
nonrelativistic version of Low's theorem4 for low-
frequency bremsstrahlung. As will be shown be-
low, Low's result is obtained by expanding the
present result in powers of the charge and re-
taining only the leading term.

It seems likely that the results obtained here in
a nonrelativistic model can be extended to the full
relativistic problem, allowing for the computation
of infrared corrections to scattering processes to
higher order in the photon frequency than has been
obtained up to now. This expectation is in line with
a suggestion made earlier by Brown and Goble. '

In Sec. II we set up the basis for the subsequent
analysis by reviewing the properties of the asymp-
totic solutions and establishing a time-independent
formulation of the scattering problem in terms of a
Lippmann-Schwinger integral equation, appropri-
ately modified to account for the infrared radia-
tion. It should be noted that the asymptotic solu-
tions would have to be modified if one wished to in-
clude potentials which are Coulombic at great dis-
tances. The necessary procedure for introducing
such modifications has been outlined by Kulish and
Faddeev in a relativistic treatment. (Long-range
Coulomb effects have recently been studied in the
context of the problem of nonrelativistic scattering
in an external radiation field. ') In Sec. III the im-
proved low-frequency approximation for the tran-
sition amplitude is derived. The sum rule is ob-
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II. FORMULATION OF THE SCATTERING PROBLEM

The Hamiltonian is taken to be

H =HO+ V, (2 1)

where V represents the local, short-range inter-
action between the electron and the target and Ilo
has the form

tained in Sec. IV and interpreted there in terms of
a picture in which the collision is thought of as
taking place instantaneously, the radiation being
treated classically. The methods used in these de-
rivations are very similar to those employed earl-
ier in the derivation of low-frequency approxima-
tions for scattering in an intense external radiation
field. 8' In fact the results obtained here, when

applied to the case where one of the modes of the
radiation field in the initial state is highly popu-
lated, provides a generalization of the earlier work
on scattering in a laser field, with effects of spon-
taneous emission and photon depletion now proper-
ly accounted for.

Wave packets may then be constructed by super-
position of these particular solutions. Suppose we
represent

~
g„-) as

(2.11)

where W; is a unitary operator acting on the photon
states alone, the electron momentum being con-
served in the dipole approximation. Writing

E„;=p /2t» + E„+b,;, (2.12)

we see that the eigenvalue equation (2.10}is equiv-
alent to the operator relation

Following the standard procedure of time-depend-
ent scattering theory, ' we determine particular
solutions of the form

~C -(t)) =exp(-iE„;t/k) jg„,), (2.9)

where g„;) is a modified plane-wave state reducing
to ~n) ~p) as the interaction is switched off, and

I satisfying

(2.10)

Ho —p /2p. +H~+H'.

The free-field Hamiltonian is

(2.2)
P'

[Hz, W, ] = —g K&u»p»f(a-„- + a-„-) +6; W~,
kX

with

(2.13)

where n represents the sequence of occupation
numbers {n(k&X&}, n(k212), ...j and

E„=g h&eyg (kX) .

The dipole approximation will be assumed for the
electron-field interaction H' (corresponding to the
neglect of electron recoil effects and introducing
errors of order v/c), and the A. 2 term will be ig-
nored. We then have

(2 5)

H'=-(e/p, c)p A,
with

2WSC2 '~2
A =g, X(a-+a„--) .

m~L '

(2.6)

(2.7}

Here I is the quantization volume. We work in a
basis in which the polarization vector X is real.

The Schrodinger equation in the asymptotic do-
main, where V is negligible, is

e—„,ie(t))=H, iC(t)). (2.8)

H, = g 1(o»a-„a~, (2.3)

the sum extending over the modes (assumed for
convenience to be discrete at this stage of the cal-
culation) of the radiation field. Here u» =kc, k be-
ing the wave number. The eigenvalue equation for
H& will be expressed in condensed notation as

H,
i

)=E
i ), (2.4}

h&u, p-=- (2vrhe2/p, 2&ug')'~' p ~ 7
kX

Now the left-hand side of Eq. (2.13) can be re-
duced to

(2.14)

[Hz, W;] =Q Kz»(a„-» [a@,W;] + [a„-», W;]a„-f) . (2.15)
kX

Equation (2.13) will be satisfied, then, provided
that

[a- W-]=-p-W-kX' p kX p ' (2.16a)

[a-, W;] = —p„-W; (2.16b)

(the two relations being consistent by virtue of the
unitarity of W;), and &; is chosen as

= —Q Sco»p 2

Equations (2.16) are easily seen to have the solu-
tion

(2.17)

W» = exp p»- a- —a-
p k)i, kX kX

k)t

(2.18)

It is not difficult to construct the matrix represen-
tation (n' ~W~ ~n) and to verify that the result is
equivalent to that obtained by Bloch and Nordsieck,
who employed a different representation of the
field operators. Actually, we shall not require this
explicit evaluation; the commutation relations
(2.16) along with the normalization condition Wo —1
will be sufficient for our purposes. For example,
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the useful relation

(2.19)

may be established by verifying that both sides
satisfy the same commutation relations. The or-
thonormality and completeness relations satisfied
by the states

I P„;) follow directly from Eq. (2.19)."
The familiar level shift &; shown in Eq. (2.17)

may be interpreted in terms of a classical picture.
The work done on an electron accelerated from
rest to momentum p is P /2p. However, the ener-
gy available to the electron is less than this by the
amount of energy 8; radiated in the process. The
observed kinetic energy, E;, is then P /2p, —E-.
Since in the low-frequency limit It; =

I
&- I, we

have

We then have

D t -1 ~-- A$+ E,n. E„—
3 2)

P'/2u -P "/2p (P'/2) -P"'/2) )'
correct to first order. To begin with, we drop the
first-order correction term and define the approx-
imate Green's function

n ~ knm&)&(In&e&

P /2u-P"'/2p' (3.3)

For &d, sufficiently small, we may treat the
level shift, as well as the field energy E„, as quan-
tities of first order. The energy denominator in
Eq. (2.23} is

D =P'/2l), +E„+6-—P "2/2l(, —E„„—&- . (3.1)

E-=P /2p, +&-. (2.2O}
This can be evaluated with the aid of Eqs. (2.11}
and (2.19) as

With the asymptotic states determined, it is now

a straightforward matter to define the scattering
matrix and to set up an integral equation of the
Lippmann-Schwinger type for the evaluation of the
scattering amplitude. '0 (Mathematical questions
relating to the existence of the scattering operator
have been studied previously. '2) The scattering
amplitude is given by the matrix element

T",.&=&4.-„1T(E.;) lk.;&, (2.21)

where the operator T(E) satisfies

T(E) = V+ VGO(E)T (E) . (2.22)

Here we have introduced the Green's function GD(E)
=(E —Ho) for which we have the eigenfunction ex-
pansion

GOPn$1 —~ En) +n»y»
(2.23)

the sum running over all values of the occupation
rinumbers n'(0&&&), n "(k2&2},. .. . The presence of a

small positive imaginary contribution to the ener-
gy denominator will be understood. The Born ap-
proximation is

&e.„-.lvl~. g=&"l&p'lw. vw; Ip) s)
= V(p' —p) &n'

I w; -, ln), (2.24}

where V(p' —p) =&p' I VI' is the Born amplitude for
the field-free scattering by the local potential V.

~p"&&p"~

P'/2u P"'/2-u ' (3.4)

Associated with this Green's function is the ap-
proximate scattering amplitude

&0"-„ I
T(E.;) I @.;&

=f(P'/2~;p', p}& 'lw;;, I &

where t is the field-free amplitude satisfying

(3.5)

() '!»&R&=&()- &)+&f &d&) ('(&' &")"-
1

t(Pi2p p p) ~

C„,-...„-= d P't P 2p. ;p', p

(3.6)

The energy-conservation condition E„,~ —F.„~ re-
duces, in this low-frequency limit, to P'2/2p =P2/
2p, , so that t(P /2p, ;p', p) represents the physical
(on-shell} scattering amplitude.

The low-frequency approximation (3.5) is in
agreement with that obtained by Nordsieck. ' To
derive an improved approximation we include the
first-order correction term in Eq. (3.2). This
leads to a correction term, to be added on to the
lowest-order approximation (3.5), of the form

III. LOW-FREQUENCY APPROXIMATION

The expression (2.17) for the level shift is to be
evaluated by the usual rule

i g —( )fd&&
k

the integration limits on k being (do/c and (d,/c,
from which we see that &- is proportional to m&

with

(P2/2 . P&&2/2 )2 (P / P' jp & P) &

/

n' W-„- n &~ —&~+E„»-&„

x&n" iW;;„in).

(3.7)

(3.8)
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The contribution coming from the terms in the
square brackets which are independent of n" is
readily evaluated, using closure and the property
(2.19), as

I, =(~.,„-~-, z„)(n' Iw;;, In). (3.9)

[We have also used W-, = W; which follows by set-
ting p=0 in (2.19), with Wo —1.] To eva. luate the
remaining contribution involving E„„we make use
of the eigenvalue equation (2.4) and closure to ob-
tain

,'(I-"/2V +P'/2} }, &=(p'- p}',

(3.17}

We observe that the coefficient 5 +p U vanishes.
This may be verified by reexpressing the contribu-
tion to 8 in Eq. (3.13) which involves the term E„,
—E„as a commutator of H& with W», ;„and then

using Eq. (2.13).
The amplitude t(P /2p;p', p, ) appearing in the

lowest-order term (3.5) can be expanded, to first
order, as

r2 &n—'IW-, -~rW- - In&. (3.10) Bt
t(p /2}), ;p', p) =t+(0 /2 p —p '/2P) s, (3.18)

If we commute B& to the left, for example, we
'
find, using Eq. (2.13), that

Er =(rr'((E„. + Q Era, [((r-"- —p, )(rr;„-+rr(;)
8

+ (rr;"„- —rrl„-)')) rE; -„lE),

(3.11)

where t and Bt/3)' are evaluated for values of the
scalar variables shown in Eq. (3.17). From ener-
gy conservation, we have

(0'/2p -P "/2t ) =&..—&.+ &-„-&;. (3.19)

Combining the lowest-order term with the correc-
tion term (3.16), we obtain the improved low-fre-
quency approximation

a prime on p„-~ indicating the replacement of p by
p' in Eq. (2.14). The expression for I'=I', +I'2
then becomes

BI
T„,-„.,„;=(n'Iw- -„In)t+-.(p+p') v —, . (3.20)

I = 8+p" 'U,

with

E =(rr'/(E —E„+g„,Erd [-p-';(a-;+rr;-)
k)T.

+pL+ p-'-'] w- - In)kX kX y-p

I' 2mae' '"-
g =(n'

I I
~((2-+(2-- 2(o-'-)

kX kX kX

kX

(3.12)

(3.13}

Remarkably, the coefficients of the off-shell de-
rivatives at/a) and Bt/3(' both vanish so that the
result can be evaluated from a knowledge of the
physical field-free scattering amplitude over a
small range of energies for a fixed value of the
momentum- transf er variable.

To establish the connection between the result
just derived and Low's well-known approximation
for the bremsstrahlung amplitude, 4 we specialize
to the case where the initial state In) of the radia-
tion field is the vacu'um, and the final state In' )
corresponds to the presence of a single photon of
wave number k and polarization X. Working to
first order in the electronic charge we have

xw, ;, In&. (3.14)

An expression of the form (3.7) with I" given by
(3.12) can be evaluated in terms of the amplitude t
and its derivatives with respect to certain scalar
variables. Thus, we express the amplitude t(e;q',
q), for arbitrary values of the energy and momen-
tum variables, as t(v, 7', $, $'), where

W;,"—=1+E (pm —p6)(e- —
Rr)

so that

(n'I w~;, In) —=p; —p„-, .
An evaluation of U to first order in the charge
gives

~=2(q2/2p+q'/2t ); 2 =(q'-q)',
(=e —q2/2p, ; ('=e-q"/2p, .

(3.15)

Bt Bt
C @; "=E(P+P } '0——(h+ P U)—

Bv sg

—(8+p' u)
S gE

where the derivatives are evaluated for

(3.16}

It has been shown ' that to first order in the small
quantities 8 and 'U Eq. (3.7) can be expressed as

Equation (3.20) then reduces to

2~le' '~'»
k )())' ) 0 y I

2 2P
p

(p p)
~ t+-, (p +p)—

Scop 8v

which is Low's result.
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IV. SUM RULE result

For simplicity, we specialize in the following to
the case where the initial photon state is the vac-
uum. The differential cross section is given by

dq, = ja'p n(z„'z-;-+s--)It I'. (4 9)

2

do„, =(2v)' d'p' 6(E„,- —E„.)

x iT„,.„., i'. (4.1)

Of greater physical interest is the sum over final
photon states

g do„,= (2v)4(p, S'/p) dQ,

with

dQ =Q d p'5(E-„E;+-E„,) iT„,-„oi2. .(4.3)
n~

In the low-frequency approximation of Eq. (3.20)
w e have, to first order, '

iT„,;...,; i' = i&n'i W„--„io&i' ii f& dQ, = ~t d'P'6(E, ,—E, +R--)S,—if i',2gV (4.10)

The energy-conserving 5 function appearing in
Eq. (4.9) has a simple classical interpretation.
The term 8;;, represents the energy which would
be radiated by the electron as the result of an in-
stantaneous collision which changes its momentum
from p to p'. The electron kinetic energy [which
includes the level shift according to Eq. (2.20)] is
not conserved, but rather is diminished by the
radiation energy B»,~.

Since the second term on the right-hand side of
Eq. (4.4) is of first order, the argument of the 5

function need only be correct to zero order in the
evaluation of dQ2. Choosing the argument as in Eq.
(4.9), we have

where, inserting the expression (3.14) for 'U,

(4.4)

We write dQ =dQ, +dQ» where dQ, and dQ2 repre-
sent the contributions coming from the first and
second terms, .respectively, on the right-hand side
of Eq. (4.4). The 5 function in Eq. (4.3) can be
represented as

5(x) =(2v) '
J

e'"'ds,

S, = g g —h, (p„-, + p„';)(0 i
Wt;,

i
')

x(n'i(a„--+at„- —2p„-'-)W- - i0). (4.11a)

This may be evaluated using closure and Eqs.
(2.16) to give

82 —— gS(dg p„+p„

which makes the n' dependence tractable. In
evaluating dQ» we encounter the sum

x &01(a-„I+al- + 2(p-'- —p-) —2p-']
I »

S, =g exp(iE„a}(0 iWt;, in' )(n'iW;;, i0) Z @~& (PH+Pi~f)PV, . (4.11b)

=(OiW; - exp(iH s)W~;, i0). (4.6)

Sy 1 + gS B~s'$ p

with

(4.6)

= Z +~~(p~) pE)
~0+0

kX

%e may write, to first order,

(4.7)

S, = exp(isR~;) . (4.8)

The s integration can now be performed with the

Retaining only the first two terms in the expansion
of the exponential and making use of Eqs. (2.16),
we find

The addition of dQ2 to dQ& given in (4.9) has the ef-
fect of shifting the energy. variable to

v =-,'(P' /2p, +P~/2p, ) +S2. (4.12a)

This can be written, using the result (4.11b) for S,
along with the value of P'2/2p, determined by the 5
function in Eqs. (4.9) and (4.10), as

(4.12b)

Here R;=
i &; i is the energy which would be radi-

ted classically by a current which vanishes for t
& 0, while for t & 0 it is that generated by an elec-
tron moving with momentum p. The effective en-
ergy v which the electron can deliver to the target
is less than the kinetic energy E- by the radiation
energy. R-.
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Combining the expressions for dQ, and dQ2, we
find the sum rule

d)) fr&' )1a(z';, - z;+s.;-) )&[i, (p'- p)'] ~'.

(4.13)

Thus, the total probability of a transition p- p' of
an electron, independent of the number of photons
radiated, can be determined from a knowledge of
the transition probability which would be obtained
if the interaction with the radiation field were neg-
lected entirely. The result generalizes that ob-
tained by Bloch and Nordsieck through the inclusion
of corrections of first order in the cutoff frequency

These corrections have the effect of introduc-
ing a small shift in the energy va.riable, as well as
changing the energy conservation condition in a
manner which admits of a simple classical inter-pretationn.

ACKNOWLEDGMENTS

This work was supported in part by the Office of
Naval Research under Contract No. N00014-76-C-
0317. The hospitality of the personnel of the Joint
Institute for Laboratory Astrophysics is gratefully
acknowledged. I wish to thank Dr. L. Spruch for
reading the manuscript and making several useful
remarks.

*Permanent address: Dept. of Physics, New York Univ. ,
New York, N. Y. 10003
F. Bloch and A. Nordsieck, Phys. Hev. 52, 54 (1937).

2J. M. Jauch and F. Hohrlich, The Theory of I'hotons
and Elect~ons (Springer, New York, 1976), Suppl. S3
and S4.

SA. Nordsieck, Phys. Hev. 52, 59 (1937).
F. E. Low, Phys. Bev. 110, 974 (1958).
L. S. Brown and B. L. Goble, Phys. Bev. 173, 1505
(1968), footnote 5.

6P. P. Kulish and L. D. Faddeev, Theor. Math. Phys.
(USSR) 4, 745 (1970).

~L. Rosenberg, Phys. Bev. A 20, 457 (1979).
E. J. Kelsey and L. Hosenberg, Phys. Bev. A 19, 756
(1979).

9L. Bosenberg, Phys. Bev. A 20, 275 (1979).

M. L. Goldberger and K. M. Watson, Collision Theory
(Wiley, New York, 1964), Chap. 3.
One interesting property of the explicit expressions for
the matrix elements of S'; is that they pass over into
Bessel functions in the limit where one of the occupa-
tion numbers of the initial state of the field is large
and photon depletion is negligible. This observation
enables one to establish precisely the connection, men-
tioned in Sec. I, between earlier work on scattering in
a laser field and the more general treatment given here.
Ph. Blanchard, Commun. Math. Phys. 15, 156 (1969).

3L. Heller, Phys. Bev. 174, 1580 (1968).
For simplicity, and with no loss in generality, we take
the matrix elements of W- to be real in arriving at the
second term on the right-hand side of Eq. (4.4).


